page 15 of 20
RU-C
RU-D
(529)Response approach to the integrated shear 3-point correlation function: the impact of baryonic effects on small scales
  • Anik Halder,
  • Alexandre Barreira
Mon.Not.Roy.Astron.Soc. (01/2022) e-Print:2201.05607 doi:10.1093/mnras/stac2046
abstract + abstract -

The integrated shear 3-point correlation function ζ_± is a higher-order statistic of the cosmic shear field that describes the modulation of the 2-point correlation function ξ_± by long-wavelength features in the field. Here, we introduce a new theoretical model to calculate ζ_± that is accurate on small angular scales, and that allows to take baryonic feedback effects into account. Our model builds on the realization that the small-scale ζ_± is dominated by the non-linear matter bispectrum in the squeezed limit, which can be evaluated accurately using the non-linear matter power spectrum and its first-order response functions to density and tidal field perturbations. We demonstrate the accuracy of our model by showing that it reproduces the small-scale ζ_± measured in simulated cosmic shear maps. The impact of baryonic feedback enters effectively only through the corresponding impact on the non-linear matter power spectrum, thereby permitting to account for these astrophysical effects on ζ_± similarly to how they are currently accounted for on ξ_±. Using a simple idealized Fisher matrix forecast for a DES-like survey we find that, compared to ξ_±, a combined |$\xi _{\pm }\ \&\ \zeta _{\pm }$| analysis can lead to improvements of order |$20\!-\!40{{\ \rm per\ cent}}$| on the constraints of cosmological parameters such as σ_8 or the dark energy equation of state parameter w_0. We find similar levels of improvement on the constraints of the baryonic feedback parameters, which strengthens the prospects for cosmic shear data to obtain tight constraints not only on cosmology but also on astrophysical feedback models. These encouraging results motivate future works on the integrated shear 3-point correlation function towards applications to real survey data.


MIAPbP
(528)Redshift-space effects in voids and their impact on cosmological tests - II. The void-galaxy cross-correlation function
  • Carlos M. Correa,
  • Dante J. Paz,
  • Nelson D. Padilla,
  • Ariel G. Sánchez,
  • Andrés N. Ruiz
  • +1
Monthly Notices of the Royal Astronomical Society (01/2022) doi:10.1093/mnras/stab3070
abstract + abstract -

This is the second part of a thorough investigation of the redshift-space effects that affect void properties and the impact they have on cosmological tests. Here, we focus on the void-galaxy cross-correlation function, specifically, on the projected versions that we developed in a previous work. The pillar of the analysis is the one-to-one relationship between real and redshift-space voids above the shot-noise level identified with a spherical void finder. Under this mapping, void properties are affected by three effects: (i) a systematic expansion as a consequence of the distortions induced by galaxy dynamics, (ii) the Alcock-Paczynski volume effect, which manifests as an overall expansion or contraction depending on the fiducial cosmology, and (iii) a systematic off-centring along the line of sight as a consequence of the distortions induced by void dynamics. We found that correlations are also affected by an additional source of distortions: the ellipticity of voids. This is the first time that distortions due to the off-centring and ellipticity effects are detected and quantified. With a simplified test, we verified that the Gaussian streaming model is still robust provided all these effects are taken into account, laying the foundations for improvements in current models in order to obtain unbiased cosmological constraints from spectroscopic surveys. Besides this practical importance, this analysis also encodes key information about the structure and dynamics of the Universe at the largest scales. Furthermore, some of the effects constitute cosmological probes by themselves, as is the case of the void ellipticity.


CN-2
MIAPbP
RU-D
(527)Dust entrainment in photoevaporative winds: Densities and imaging
  • R. Franz,
  • B. Ercolano,
  • S. Casassus,
  • G. Picogna,
  • T. Birnstiel
  • +3
Astronomy and Astrophysics (01/2022) doi:10.1051/0004-6361/202140812
abstract + abstract -

Context. X-ray- and extreme-ultraviolet- (together: XEUV-) driven photoevaporative winds acting on protoplanetary disks around young T-Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions.
Aims: We constrain the dust densities in a typical XEUV-driven outflow, and determine whether these winds can be observed at μm-wavelengths.
Methods: We used dust trajectories modelled atop a 2D hydrodynamical gas model of a protoplanetary disk irradiated by a central T-Tauri star. With these and two different prescriptions for the dust distribution in the underlying disk, we constructed wind density maps for individual grain sizes. We used the dust density distributions obtained to synthesise observations in scattered and polarised light.
Results: For an XEUV-driven outflow around a M* = 0.7 M T-Tauri star with LX = 2 × 1030 erg s−1, we find a dust mass-loss rate Ṁdust ≲ 4.1 × 10−11 M yr−1 for an optimistic estimate of dust densities in the wind (compared to Ṁgas ≈ 3.7 × 10−8 M yr−1). The synthesised scattered-light images suggest a distinct chimney structure emerging at intensities I∕Imax < 10−4.5 (10−3.5) at λobs = 1.6 (0.4) μm, while the features in the polarised-light images are even fainter. Observations synthesised from our model do not exhibit clear features for SPHERE IRDIS, but show a faint wind signature for JWST NIRCam under optimal conditions.
Conclusions: Unambiguous detections of photoevaporative XEUV winds launched from primordial disks are at least challenging with current instrumentation; this provides a possible explanation as to why disk winds are not routinely detected in scattered or polarised light. Our calculations show that disk scale heights retrieved from scattered-light observations should be only marginally affected by the presence of an XEUV wind.


(526)Precision tests of fundamental physics with η and η<SUP>′</SUP> mesons
  • Liping Gan,
  • Bastian Kubis,
  • Emilie Passemar,
  • Sean Tulin
Physics Reports (01/2022) doi:10.1016/j.physrep.2021.11.001
abstract + abstract -

Decays of the neutral and long-lived η and η mesons provide a unique, flavor-conserving laboratory to test low-energy Quantum Chromodynamics and search for new physics beyond the Standard Model. They have drawn world-wide attention in recent years and have inspired broad experimental programs in different high-intensity-frontier centers. New experimental data will offer critical inputs to precisely determine the light quark mass ratios, η-η mixing parameters, and hadronic contributions to the anomalous magnetic moment of the muon. At the same time, it will provide a sensitive probe to test potential new physics. This includes searches for hidden photons, light Higgs scalars, and axion-like particles that are complementary to worldwide efforts to detect new light particles below the GeV mass scale, as well as tests of discrete symmetry violation. In this review, we give an update on theoretical developments, discuss the experimental opportunities, and identify future research needed in this field.


CN-5
RU-D
(525)Driving Galactic Outflows with Magnetic Fields at Low and High Redshift
  • Ulrich P. Steinwandel,
  • Klaus Dolag,
  • Harald Lesch,
  • Andreas Burkert
The Astrophysical Journal (01/2022) doi:10.3847/1538-4357/ac2ffd
abstract + abstract -

Although galactic outflows play a key role in our understanding of the evolution of galaxies, the exact mechanism by which galactic outflows are driven is still far from being understood and, therefore, our understanding of associated feedback mechanisms that control the evolution of galaxies is still plagued by many enigmas. In this work, we present a simple toy model that can provide insight on how non-axisymmetric instabilities in galaxies (bars, spiral arms, warps) can lead to local exponential magnetic field growth by radial flows beyond the equipartition value by at least two orders of magnitude on a timescale of a few 100 Myr. Our predictions show that the process can lead to galactic outflows in barred spiral galaxies with a mass-loading factor η ≍ 0.1, in agreement with our numerical simulations. Moreover, our outflow mechanism could contribute to an understanding of the large fraction of barred spiral galaxies that show signs of galactic outflows in the CHANG-ES survey. Extending our model shows the importance of such processes in high-redshift galaxies by assuming equipartition between magnetic energy and turbulent energy. Simple estimates for the star formation rate in our model together with cross correlated masses from the star-forming main sequence at redshifts z ~ 2 allow us to estimate the outflow rate and mass-loading factors by non-axisymmetric instabilities and a subsequent radial inflow dynamo, giving mass-loading factors of η ≍ 0.1 for galaxies in the range of M = 109-1012 M , in good agreement with recent results of SINFONI and KMOS 3D.


CN-2
(524)Silicon in the dayside atmospheres of two ultra-hot Jupiters
  • D. Cont,
  • F. Yan,
  • A. Reiners,
  • L. Nortmann,
  • K. Molaverdikhani
  • +20
  • E. Pallé,
  • M. Stangret,
  • Th. Henning,
  • I. Ribas,
  • A. Quirrenbach,
  • J. A. Caballero,
  • M. R. Zapatero Osorio,
  • P. J. Amado,
  • J. Aceituno,
  • N. Casasayas-Barris,
  • S. Czesla,
  • A. Kaminski,
  • M. López-Puertas,
  • D. Montes,
  • J. C. Morales,
  • G. Morello,
  • E. Nagel,
  • A. Sánchez-López,
  • E. Sedaghati,
  • M. Zechmeister
  • (less)
Astronomy and Astrophysics (01/2022) doi:10.1051/0004-6361/202142776
abstract + abstract -

Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b/MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8σ and 5.4σ, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.


CN-2
(523)Final Report for SAG 21: The Effect of Stellar Contamination on Space-based Transmission Spectroscopy
  • Benjamin V. Rackham,
  • Néstor Espinoza,
  • Svetlana V. Berdyugina,
  • Heidi Korhonen,
  • Ryan J. MacDonald
  • +56
  • Benjamin T. Montet,
  • Brett M. Morris,
  • Mahmoudreza Oshagh,
  • Alexander I. Shapiro,
  • Yvonne C. Unruh,
  • Elisa V. Quintana,
  • Robert T. Zellem,
  • Dániel Apai,
  • Thomas Barclay,
  • Joanna K. Barstow,
  • Giovanni Bruno,
  • Ludmila Carone,
  • Sarah L. Casewell,
  • Heather M. Cegla,
  • Serena Criscuoli,
  • Catherine Fischer,
  • Damien Fournier,
  • Mark S. Giampapa,
  • Helen Giles,
  • Aishwarya Iyer,
  • Greg Kopp,
  • Nadiia M. Kostogryz,
  • Natalie Krivova,
  • Matthias Mallonn,
  • Chima McGruder,
  • Karan Molaverdikhani,
  • Elisabeth R. Newton,
  • Mayukh Panja,
  • Sarah Peacock,
  • Kevin Reardon,
  • Rachael M. Roettenbacher,
  • Gaetano Scandariato,
  • Sami Solanki,
  • Keivan G. Stassun,
  • Oskar Steiner,
  • Kevin B. Stevenson,
  • Jeremy Tregloan-Reed,
  • Adriana Valio,
  • Sven Wedemeyer,
  • Luis Welbanks,
  • Jie Yu,
  • Munazza K. Alam,
  • James R. A. Davenport,
  • Drake Deming,
  • Chuanfei Dong,
  • Elsa Ducrot,
  • Chloe Fisher,
  • Emily Gilbert,
  • Veselin Kostov,
  • Mercedes López-Morales,
  • Mike Line,
  • Teo Močnik,
  • Susan Mullally,
  • Rishi R. Paudel,
  • Ignasi Ribas,
  • Jeff A. Valenti
  • (less)
arXiv e-prints (01/2022) e-Print:2201.09905
abstract + abstract -

Study Analysis Group 21 (SAG21) of the Exoplanet Exploration Program Analysis Group (ExoPAG) was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, and plages. This SAG has brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current needs that can be addressed in this context to make the most of transit studies from current NASA facilities like HST and JWST. The analysis produced 14 findings, which fall into three Science Themes encompassing (1) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities ("The Sun as the Stellar Benchmark"), (2) how stars other than the Sun extend our knowledge of heterogeneities ("Surface Heterogeneities of Other Stars") and (3) how to incorporate information gathered for the Sun and other stars into transit studies ("Mapping Stellar Knowledge to Transit Studies").


CN-7
RU-A
(522)Neutrino absorption and other physics dependencies in neutrino-cooled black hole accretion discs
  • O. Just,
  • S. Goriely,
  • H. -Th Janka,
  • S. Nagataki,
  • A. Bauswein
Monthly Notices of the Royal Astronomical Society (01/2022) doi:10.1093/mnras/stab2861
abstract + abstract -

Black hole (BH) accretion discs formed in compact-object mergers or collapsars may be major sites of the rapid-neutron-capture (r-)process, but the conditions determining the electron fraction (Ye) remain uncertain given the complexity of neutrino transfer and angular-momentum transport. After discussing relevant weak-interaction regimes, we study the role of neutrino absorption for shaping Ye using an extensive set of simulations performed with two-moment neutrino transport and again without neutrino absorption. We vary the torus mass, BH mass and spin, and examine the impact of rest-mass and weak-magnetism corrections in the neutrino rates. We also test the dependence on the angular-momentum transport treatment by comparing axisymmetric models using the standard α-viscosity with viscous models assuming constant viscous length-scales (lt) and 3D magnetohydrodynamic (MHD) simulations. Finally, we discuss the nucleosynthesis yields and basic kilonova properties. We find that absorption pushes Ye towards ~0.5 outside the torus, while inside increasing the equilibrium value $Y_\mathrm{ e}^{\mathrm{eq}}$ by ~0.05-0.2. Correspondingly, a substantial ejecta fraction is pushed above Ye = 0.25, leading to a reduced lanthanide fraction and a brighter, earlier, and bluer kilonova than without absorption. More compact tori with higher neutrino optical depth, τ, tend to have lower $Y_\mathrm{ e}^{\mathrm{eq}}$ up to τ ~ 1-10, above which absorption becomes strong enough to reverse this trend. Disc ejecta are less (more) neutron rich when employing an lt = const. viscosity (MHD treatment). The solar-like abundance pattern found for our MHD model marginally supports collapsar discs as major r-process sites, although a strong r-process may be limited to phases of high mass-infall rates, $\dot{M}\, \, \raise0.14em\rm{\gt }\lower0.28em\rm{\sim }\, \, 2\times 10^{-2}$ M s-1.


RU-D
(521)Mass determination of protoplanetary disks from dust evolution
  • Riccardo Franceschi,
  • Tilman Birnstiel,
  • Thomas Henning,
  • Paola Pinilla,
  • Dmitry Semenov
  • +1
Astronomy and Astrophysics (01/2022) doi:10.1051/0004-6361/202141705
abstract + abstract -

Context. The mass of protoplanetary disks is arguably one of their most important quantities shaping their evolution toward planetary systems, but it remains a challenge to determine this quantity. Using the high spatial resolution now available on telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA), recent studies derived a relation between the disk surface density and the location of the "dust lines". This is a new concept in the field, linking the disk size at different continuum wavelengths with the radial distribution of grain populations of different sizes.
Aims: We aim to use a dust evolution model to test the dependence of the dust line location on disk gas mass. In particular, we are interested in the reliability of the method for disks showing radial substructures, as recent high-resolution observations revealed.
Methods: We performed dust evolution calculations, which included perturbations to the gas surface density with different amplitudes at different radii, to investigate their effect on the global drift timescale of dust grains. These models were then used to calibrate the relation between the dust grain drift timescale and the disk gas mass. We investigated under which condition the dust line location is a good mass estimator and tested how different stellar and disk properties (disk mass, stellar mass, disk age, and dust-to-gas ratio) affect the dust line properties. Finally, we show the applicability of this method to disks such as TW Hya and AS 209 that have been observed at high angular resolution with ALMA and show pronounced disk structures.
Results: Our models without pressure bumps confirm a strong dependence of the dust line location on the disk gas mass and its applicability as a reliable mass estimator. The other disk properties do not significantly affect the dust line location, except for the age of the system, which is the major source of uncertainty for this mass estimator. A population of synthetic disks was used to calibrate an analytic relation between the dust line location and the disk mass for smooth disks, finding that previous mass estimates based on dust lines overestimate disk masses by about one order of magnitude. Radial pressure bumps can alter the location of the dust line by up to ~10 au, while its location is mainly determined by the disk mass. Therefore, an accurate mass estimation requires a proper evaluation of the effect of bumps. However, when radial substructures act as traps for dust grains, the relation between the dust line location and disk mass becomes weaker, and other mass estimators need to be adopted.
Conclusions: Our models show that the determination of the dust line location is a promising approach to the mass estimate of protoplanetay disks, but the exact relation between the dust line location and disk mass depends on the structure of the particular disk. We calibrated the relation for disks without evidence of radial structures, while for more complex structures we ran a simple dust evolution model. However, this method fails when there is evidence of strong dust traps. It is possible to reveal when dust evolution is dominated by traps, providing the necessary information for when the method should be applied with caution.


(520)QCD static force in gradient flow
  • Nora Brambilla,
  • Hee Sok Chung,
  • Antonio Vairo,
  • Xiang-Peng Wang
Journal of High Energy Physics (01/2022) doi:10.1007/JHEP01(2022)184
abstract + abstract -

We compute the QCD static force and potential using gradient flow at next-to-leading order in the strong coupling. The static force is the spatial derivative of the static potential: it encodes the QCD interaction at both short and long distances. While on the one side the static force has the advantage of being free of the O(ΛQCD) renormalon affecting the static potential when computed in perturbation theory, on the other side its direct lattice QCD computation suffers from poor convergence. The convergence can be improved by using gradient flow, where the gauge fields in the operator definition of a given quantity are replaced by flowed fields at flow time t, which effectively smear the gauge fields over a distance of order √{t }, while they reduce to the QCD fields in the limit t → 0. Based on our next-to-leading order calculation, we explore the properties of the static force for arbitrary values of t, as well as in the t → 0 limit, which may be useful for lattice QCD studies.


(519)Proca theory from the spinning worldline
  • Matthias Carosi,
  • Ivo Sachs
Journal of High Energy Physics (01/2022) doi:10.1007/JHEP01(2022)135
abstract + abstract -

We obtain Proca field theory from the quantisation of the N = 2 supersymmetric worldline upon supplementing the graded BRST-algebra with an extra multiplet of oscillators. The linearised theory describes the BV-extended spectrum of Proca theory, together with a Stückelberg field. When coupling the theory to background fields we derive the Proca equations, arising as consistency conditions in the BRST procedure. We also explore non-abelian modifications, complexified vector fields as well as coupling to a dilaton field. We propose a cubic action on the space of BRST-operators which reproduces the known Proca action.


RU-A
(518)Publishing statistical models: Getting the most out of particle physics experiments
  • Kyle Cranmer,
  • Sabine Kraml,
  • Harrison Prosper,
  • Philip Bechtle,
  • Florian Bernlochner
  • +28
  • Itay M. Bloch,
  • Enzo Canonero,
  • Marcin Chrzaszcz,
  • Andrea Coccaro,
  • Jan Conrad,
  • Glen Cowan,
  • Matthew Feickert,
  • Nahuel Ferreiro,
  • Andrew Fowlie,
  • Lukas A. Heinrich,
  • Alexander Held,
  • Thomas Kuhr,
  • Anders Kvellestad,
  • Maeve Madigan,
  • Farvah Nazila Mahmoudi,
  • Knut Dundas Morå,
  • Mark S. Neubauer,
  • Maurizio Pierini,
  • Juan Rojo,
  • Sezen Sekmen,
  • Luca Silvestrini,
  • Veronica Sanz,
  • Giordon H. Stark,
  • Riccardo Torre,
  • Robert Thorne,
  • Wolfgang Waltenberger,
  • Nicholas Wardle,
  • Jonas Wittbrodt
  • (less)
SciPost Physics (01/2022) doi:10.21468/SciPostPhys.12.1.037
abstract + abstract -

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -- including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -- we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.


CN-4
RU-C
(517)Production of Very Light Elements and Strontium in the Early Ejecta of Neutron Star Mergers
  • Albino Perego,
  • Diego Vescovi,
  • Achille Fiore,
  • Leonardo Chiesa,
  • Christian Vogl
  • +8
  • Stefano Benetti,
  • Sebastiano Bernuzzi,
  • Marica Branchesi,
  • Enrico Cappellaro,
  • Sergio Cristallo,
  • Andreas Flörs,
  • Wolfgang E. Kerzendorf,
  • David Radice
  • (less)
The Astrophysical Journal (01/2022) doi:10.3847/1538-4357/ac3751
abstract + abstract -

We study the production of very light elements (Z < 20) in the dynamical and spiral-wave wind ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. All our models are targeted to GW170817 and include neutrino radiation. We explore different finite-temperature, composition-dependent nuclear equations of state, and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. In particular, ~0.5-2 × 10-6 M of hydrogen are produced in the fast expanding tail of the dynamical ejecta, while ~1.5-11 × 10-6 M of helium are synthesized in the bulk of the dynamical ejecta, usually in association with heavy r-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely for fiducial masses and luminosities, even when including nonlocal thermodynamic equilibrium effects. The latter could be crucial to observe helium lines a few days after merger for faint kilonovae or for luminous kilonovae ejecting large masses of helium. Finally, we compute the amount of strontium synthesized in the dynamical and spiral-wave wind ejecta, and find that it is consistent with (or even larger than, in the case of a long-lived remnant) the one required to explain early spectral features in the kilonova of GW170817.


(516)Variable structures in M87* from space, time and frequency resolved interferometry
  • Philipp Arras,
  • Philipp Frank,
  • Philipp Haim,
  • Jakob Knollmüller,
  • Reimar Leike
  • +2
  • Martin Reinecke,
  • Torsten Enßlin
  • (less)
Nature Astronomy (01/2022) doi:10.1038/s41550-021-01548-0
abstract + abstract -

The immediate vicinity of an active supermassive black hole—with its event horizon, photon ring, accretion disk and relativistic jets—is an appropriate place to study physics under extreme conditions, particularly general relativity and magnetohydrodynamics. Observing the dynamics of such compact astrophysical objects provides insights into their inner workings, and the recent observations of M87* by the Event Horizon Telescope1-6 using very-long-baseline interferometry techniques allows us to investigate the dynamical processes of M87* on timescales of days. Compared with most radio interferometers, very-long-baseline interferometry networks typically have fewer antennas and low signal-to-noise ratios. Furthermore, the source is variable, prohibiting integration over time to improve signal-to-noise ratio. Here, we present an imaging algorithm7,8 that copes with the data scarcity and temporal evolution, while providing an uncertainty quantification. Our algorithm views the imaging task as a Bayesian inference problem of a time-varying brightness, exploits the correlation structure in time and reconstructs (2 + 1 + 1)-dimensional time-variable and spectrally resolved images. We apply this method to the Event Horizon Telescope observations of M87*9 and validate our approach on synthetic data. The time- and frequency-resolved reconstruction of M87* confirms variable structures on the emission ring and indicates extended and time-variable emission structures outside the ring itself.


RU-D
(515)Star formation near the Sun is driven by expansion of the Local Bubble
  • Catherine Zucker,
  • Alyssa A. Goodman,
  • João Alves,
  • Shmuel Bialy,
  • Michael Foley
  • +6
  • Joshua S. Speagle,
  • Josefa Groβschedl,
  • Douglas P. Finkbeiner,
  • Andreas Burkert,
  • Diana Khimey,
  • Cameren Swiggum
  • (less)
abstract + abstract -

For decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust1-3. However, the precise shape and extent of this shell4,5, the impetus and timescale for its formation6,7, and its relationship to nearby star formation8 have remained uncertain, largely due to low-resolution models of the local interstellar medium. Here we report an analysis of the three-dimensional positions, shapes and motions of dense gas and young stars within 200 pc of the Sun, using new spatial9-11 and dynamical constraints12. We find that nearly all of the star-forming complexes in the solar vicinity lie on the surface of the Local Bubble and that their young stars show outward expansion mainly perpendicular to the bubble's surface. Tracebacks of these young stars' motions support a picture in which the origin of the Local Bubble was a burst of stellar birth and then death (supernovae) taking place near the bubble's centre beginning approximately 14 Myr ago. The expansion of the Local Bubble created by the supernovae swept up the ambient interstellar medium into an extended shell that has now fragmented and collapsed into the most prominent nearby molecular clouds, in turn providing robust observational support for the theory of supernova-driven star formation.


CN-4
RU-C
(514)Intrinsic alignments of galaxies around cosmic voids
  • William d'Assignies D.,
  • Nora Elisa Chisari,
  • Nico Hamaus,
  • Sukhdeep Singh
Monthly Notices of the Royal Astronomical Society (01/2022) doi:10.1093/mnras/stab2986
abstract + abstract -

The intrinsic alignments of galaxies, i.e. the correlation between galaxy shapes and their environment, are a major source of contamination for weak gravitational lensing surveys. Most studies of intrinsic alignments have so far focused on measuring and modelling the correlations of luminous red galaxies with galaxy positions or the filaments of the cosmic web. In this work, we investigate alignments around cosmic voids. We measure the intrinsic alignments of luminous red galaxies detected by the Sloan Digital Sky Survey around a sample of voids constructed from those same tracers and with radii in the ranges: [20-30; 30-40; 40-50] h-1 Mpc and in the redshift range z = 0.4-0.8. We present fits to the measurements based on a linear model at large scales, and on a new model based on the void density profile inside the void and in its neighbourhood. We constrain the free scaling amplitude of our model at small scales, finding no significant alignment at 1σ for either sample. We observe a deviation from the null hypothesis, at large scales, of 2σ for voids with radii between 20 and 30 h-1 Mpc, and 1.5σ for voids with radii between 30 and 40 h-1 Mpc and constrain the amplitude of the model on these scales. We find no significant deviation at 1σ for larger voids. Our work is a first attempt at detecting intrinsic alignments of galaxy shapes around voids and provides a useful framework for their mitigation in future void lensing studies.


CN-2
RU-D
(513)Meridional Circulation of Dust and Gas in the Circumstellar Disk: Delivery of Solids onto the Circumplanetary Region
  • J. Szulágyi,
  • F. Binkert,
  • C. Surville
The Astrophysical Journal (01/2022) doi:10.3847/1538-4357/ac32d1
abstract + abstract -

We carried out 3D dust + gas radiative hydrodynamic simulations of forming planets. We investigated a parameter grid of a Neptune-mass, a Saturn-mass, a Jupiter-mass, and a five-Jupiter-mass planet at 5.2, 30, and 50 au distance from their star. We found that the meridional circulation (Szulágyi et al. 2014; Fung & Chiang 2016) drives a strong vertical flow for the dust as well, hence the dust is not settled in the midplane, even for millimeter-sized grains. The meridional circulation will deliver dust and gas vertically onto the circumplanetary region, efficiently bridging over the gap. The Hill-sphere accretion rates for the dust are ~10-8-10-10 M Jup yr-1, increasing with planet mass. For the gas component, the gain is 10-6-10-8 M Jup yr-1. The difference between the dust and gas-accretion rates is smaller with decreasing planetary mass. In the vicinity of the planet, the millimeter-sized grains can get trapped easier than the gas, which means the circumplanetary disk might be enriched with solids in comparison to the circumstellar disk. We calculated the local dust-to-gas ratio (DTG) everywhere in the circumstellar disk and identified the altitude above the midplane where the DTG is 1, 0.1, 0.01, and 0.001. The larger the planetary mass, the more the millimeter-sized dust is delivered and a larger fraction of the dust disk is lifted by the planet. The stirring of millimeter-sized dust is negligible for Neptune-mass planets or below, but significant above Saturn-mass planets.


CN-2
RU-E
(512)Thermally induced habitat for the emergence of life - enrichment of phosphorus, divalent salts and compact oligomer folds.
  • Christof Mast,
  • Dieter Braun,
  • Thomas Matruex,
  • Paula Aikkila,
  • Bettina Scheu
  • +3
  • Don Dingwell,
  • Kris Le Vay,
  • Hannes Mutschler
  • (less)
APS March Meeting Abstracts (2022)
abstract + abstract -

The early Earth 4 billion years ago was a scarce place for the emergence of life. After the formation of the oceans, it was most likely difficult to extract the essential ionic building blocks of life, such as phosphate or salts, from the existing geomaterial in sufficiently high concentrations and suitable mixing ratios. We show how ubiquitous heat fluxes through rock fractures implement a physical solution to this problem: Thermal convection and thermophoresis together are able to separate calcium from phosphorus and thus use ubiquitous but otherwise inert apatite as a phosphate source. Furthermore, the mixing ratio of different salts is modified according to their thermophoretic properties, providing a suitable non-equilibrium environment for the first prebiotic reactions.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 364653263 - TRR 235 (CRC235). Funding by the Volkswagen Initiative 'Life? - A Fresh Scientific Approach to the Basic Principles of Life', from the Simons Foundation and from Germany's Excellence Strategy EXC-2094-390783311 is gratefully acknowledged. We are grateful for funding by the European Research Council (ERC starting Grant, RiboLife) under 802000 and the MaxSynBio consortium, which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society. We wish to acknowledge the support of ERC ADV 2018 Grant 834225 (EAVESDROP). We thank for financial support from ERC-2017-ADG from the European Research Council. The work is supported by the Center for Nanoscience Munich (CeNS).


MIAPbP
RU-A
(511)Searching for New Physics in Rare (K) and (B) Decays without (|V_{cb}|) and (|V_{ub}|) Uncertainties
  • A. J. Buras,
  • E. Venturini
Acta Physica Polonica B (2022) doi:10.5506/APhysPolB.53.6-A1
abstract + abstract -

We reemphasize the strong dependence of the branching ratios $B(K^+\to\pi^+\nu\bar\nu)$ and $B(K_L\to\pi^0\nu\bar\nu)$ on $|V_{cb}|$ that is stronger than in rare $B$ decays, in particular for $K_L\to\pi^0\nu\bar\nu$. Thereby the persistent tension between inclusive and exclusive determinations of $|V_{cb}|$ weakens the power of these theoretically clean decays in the search for new physics (NP). We demonstrate how this uncertainty can be practically removed by considering within the SM suitable ratios of the two branching ratios between each other and with other observables like the branching ratios for $K_S\to\mu^+\mu^-$, $B_{s,d}\to\mu^+\mu^-$ and $B\to K(K^*)\nu\bar\nu$. We use as basic CKM parameters $V_{us}$, $|V_{cb}|$ and the angles $\beta$ and $\gamma$ in the unitarity triangle (UT). This avoids the use of the problematic $|V_{ub}|$. A ratio involving $B(K^+\to\pi^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ while being $|V_{cb}|$-independent exhibits sizable dependence on the angle $\gamma$. It should be of interest for several experimental groups in the coming years. We point out that the $|V_{cb}|$-independent ratio of $B(B^+\to K^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ from Belle II and LHCb signals a $1.8\sigma$ tension with its SM value. As a complementary test of the Standard Model, we propose to extract $|V_{cb}|$ from different observables as a function of $\beta$ and $\gamma$. We illustrate this with $\epsilon_K$, $\Delta M_d$ and $\Delta M_s$ finding tensions between these three determinations of $|V_{cb}|$ within the SM. From $\Delta M_s$ and $S_{\psi K_S}$ alone we find $|V_{cb}|=41.8(6)\times 10^{-3}$ and $|V_{ub}|=3.65(12)\times 10^{-3}$. We stress the importance of a precise measurement of $\gamma$. We obtain most precise SM predictions for considered branching ratios of rare K and B decays to date.


(510)Radioactive Decay
  • Roland Diehl
Handbook of X-ray and Gamma-ray Astrophysics. Edited by Cosimo Bambi and Andrea Santangelo (2022) doi:10.1007/978-981-16-4544-0_86-1
abstract + abstract -

Radioactive decay of unstable atomic nuclei leads to liberation of nuclear binding energy in the forms of gamma-ray photons and secondary particles (electrons, positrons); their energy then energises surrounding matter. Unstable nuclei are formed in nuclear reactions, which can occur either in hot and dense extremes of stellar interiors or explosions, or from cosmic-ray collisions. In high-energy astronomy, direct observations of characteristic gamma-ray lines from the decay of radioactive isotopes are important tools to study the process of cosmic nucleosynthesis and its sources, as well as tracing the flows of ejecta from such sources of nucleosynthesis. These observations provide a valuable complement to indirect observations of radioactive energy deposits, such as the measurement of supernova light in the optical. Here we present basics of radioactive decay in astrophysical context, and how gamma-ray lines reveal details about stellar interiors, about explosions on stellar surfaces or of entire stars, and about the interstellar-medium processes that direct the flow and cooling of nucleosynthesis ashes once having left their sources. We address radioisotopes such as $^{56}$Ni, $^{44}$Ti, $^{26}$Al, $^{60}$Fe, $^{22}$Na, $^{7}$Be, and also how characteristic gamma-ray emission from the annihilation of positrons is connected to these.


(509)Calculational Techniques in Particle Theory
  • L. Tancredi
The European Physical Society Conference on High Energy Physics. 26-30 July 2021. Online conference (2022)
abstract + abstract -

In this contribution, I review some of the latest advances in calculational techniques in theoretical particle physics. I focus, in particular, on their application to the calculation of highly non-trivial scattering processes, which are relevant for precision phenomenology studies at the Large Hadron Collider at CERN.


(508)Inclusive Hadroproduction of P-wave Heavy Quarkonia in pNRQCD
  • Hee Sok Chung
EPJ Web Conf. (2022) doi:10.1051/epjconf/202225804005
abstract + abstract -

We compute NRQCD long-distance matrix elements that appear in the inclusive production cross sections of P-wave heavy quarkonia in the framework of potential NRQCD. The formalism developed in this work applies to strongly coupled charmonia and bottomonia. This makes possible the determination of color-octet NRQCD long-distance matrix elements without relying on measured cross section data, which has not been possible so far. We obtain results for inclusive production cross sections of χcJ and χbJ at the LHC, which are in good agreement with measurements.


CN-7
RU-D
(507)Gamma-ray observations of cosmic nuclei
  • Roland Diehl
EPJ Web Conf. (2022) doi:10.1051/epjconf/202226010001
abstract + abstract -

Gamma rays from nuclear processes such as radioactive decay and de-excitations are among the most-direct tools to witness the production and existence of specific nuclei and isotopes in and near cosmic nucleosynthesis sites. With space-borne instrumentation such as NuSTAR and SPI/INTEGRAL, and experimental techniques to handle a substantial instrumental background from cosmic-ray activations of the spacecraft and instrument, unique results have been obtained, from diffuse emissions of nuclei and positrons in interstellar surroundings of sources, as well as from observations of cosmic explosions and their radioactive afterglows. These witness non-sphericity in supernova explosions and a flow of nucleosynthesis ejecta through superbubbles as common source environments. Next-generation experiments that are awaiting space missions promise a next level of observational nuclear astrophysics.


CN-3
RU-B
(506)Improving the Quality of CaWO$_{4}$ Target Crystals for CRESST
  • A. Kinast,
  • G. Angloher,
  • G. Benato,
  • A. Bento,
  • A. Bertolini
  • +53
  • R. Breier,
  • C. Bucci,
  • L. Canonica,
  • A. D’Addabbo,
  • S.Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F.V. Feilitzsch,
  • N.Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V.M. Ghete,
  • P. Gorla,
  • S. Gupta,
  • F. Hamilton,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • H. Kluck,
  • H. Kraus,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • V. Palušová,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
J.Low Temp.Phys. (2022) doi:10.1007/s10909-022-02743-7
abstract + abstract -

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) experiment aims at the direct detection of dark matter particles via their elastic scattering off nuclei in a scintillating CaWO$_4$ target crystal. The CaWO$_4$ crystal is operated together with a light detector at mK temperature and read out by a Transition Edge Sensor. For many years, CaWO$_4$ crystals have successfully been produced in-house at Technical University of Munich (TUM) with a focus on high radiopurity which is crucial to reduce background originating from radioactive contamination. In order to further improve the CaWO$_4$ crystals, an extensive chemical purification of the raw materials and the synthesised CaWO$_4$ powder has been performed. In addition, a temperature gradient simulation of the growth process and subsequently an optimisation of the growth furnace with the goal to reduce the intrinsic stress was carried out. We present results on the intrinsic stress in the CaWO$_4$ crystals and on the CaWO$_4$ powder radiopurity. A crystal grown from the purified material was installed in the current CRESST set-up. The detector is equipped with an instrumented holder which is used to measure the alpha decay rate of the crystal. We present a preliminary analysis showing a significantly reduced intrinsic background from natural decay chains.


(505)First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass
  • Kazunori Akiyama,
  • Antxon Alberdi,
  • Walter Alef,
  • Juan Carlos Algaba,
  • Richard Anantua
  • +264
  • Keiichi Asada,
  • Rebecca Azulay,
  • Uwe Bach,
  • Anne-Kathrin Baczko,
  • David Ball,
  • Mislav Baloković,
  • John Barrett,
  • Michi Bauböck,
  • Bradford A. Benson,
  • Dan Bintley,
  • Lindy Blackburn,
  • Raymond Blundell,
  • Katherine L. Bouman,
  • Geoffrey C. Bower,
  • Hope Boyce,
  • Michael Bremer,
  • Christiaan D. Brinkerink,
  • Roger Brissenden,
  • Silke Britzen,
  • Avery E. Broderick,
  • Dominique Broguiere,
  • Thomas Bronzwaer,
  • Sandra Bustamante,
  • Do-Young Byun,
  • John E. Carlstrom,
  • Chiara Ceccobello,
  • Andrew Chael,
  • Chi-kwan Chan,
  • Koushik Chatterjee,
  • Shami Chatterjee,
  • Ming-Tang Chen,
  • Yongjun Chen,
  • Xiaopeng Cheng,
  • Ilje Cho,
  • Pierre Christian,
  • Nicholas S. Conroy,
  • John E. Conway,
  • James M. Cordes,
  • Thomas M. Crawford,
  • Geoffrey B. Crew,
  • Alejandro Cruz-Osorio,
  • Yuzhu Cui,
  • Jordy Davelaar,
  • Mariafelicia De Laurentis,
  • Roger Deane,
  • Jessica Dempsey,
  • Gregory Desvignes,
  • Jason Dexter,
  • Vedant Dhruv,
  • Sheperd S. Doeleman,
  • Sean Dougal,
  • Sergio A. Dzib,
  • Ralph P. Eatough,
  • Razieh Emami,
  • Heino Falcke,
  • Joseph Farah,
  • Vincent L. Fish,
  • Ed Fomalont,
  • H.Alyson Ford,
  • Raquel Fraga-Encinas,
  • William T. Freeman,
  • Per Friberg,
  • Christian M. Fromm,
  • Antonio Fuentes,
  • Peter Galison,
  • Charles F. Gammie,
  • Roberto García,
  • Olivier Gentaz,
  • Boris Georgiev,
  • Ciriaco Goddi,
  • Roman Gold,
  • I. Arturo Gómez-Ruiz,
  • José L. Gómez,
  • Minfeng Gu,
  • Mark Gurwell,
  • Kazuhiro Hada,
  • Daryl Haggard,
  • Kari Haworth,
  • Michael H. Hecht,
  • Ronald Hesper,
  • Dirk Heumann,
  • Luis C. Ho,
  • Paul Ho,
  • Mareki Honma,
  • Chih-Wei L. Huang,
  • Lei Huang,
  • David H. Hughes,
  • Shiro Ikeda,
  • C.M.Violette Impellizzeri,
  • Makoto Inoue,
  • Sara Issaoun,
  • J. David James,
  • Buell T. Jannuzi,
  • Michael Janssen,
  • Britton Jeter,
  • Wu Jiang,
  • Alejandra Jiménez-Rosales,
  • Michael D. Johnson,
  • Svetlana Jorstad,
  • V. Abhishek Joshi,
  • Taehyun Jung,
  • Mansour Karami,
  • Ramesh Karuppusamy,
  • Tomohisa Kawashima,
  • Garrett K. Keating,
  • Mark Kettenis,
  • Dong-Jin Kim,
  • Jae-Young Kim,
  • Jongsoo Kim,
  • Junhan Kim,
  • Motoki Kino,
  • Jun Yi Koay,
  • Prashant Kocherlakota,
  • Yutaro Kofuji,
  • Patrick M. Koch,
  • Shoko Koyama,
  • Carsten Kramer,
  • Michael Kramer,
  • Thomas P. Krichbaum,
  • Cheng-Yu Kuo,
  • Noemi La Bella,
  • Tod R. Lauer,
  • Daeyoung Lee,
  • Sang-Sung Lee,
  • Po Kin Leung,
  • Aviad Levis,
  • Zhiyuan Li,
  • Rocco Lico,
  • Greg Lindahl,
  • Michael Lindqvist,
  • Mikhail Lisakov,
  • Jun Liu,
  • Kuo Liu,
  • Elisabetta Liuzzo,
  • Wen-Ping Lo,
  • Andrei P. Lobanov,
  • Laurent Loinard,
  • J. Colin Lonsdale,
  • Ru-Sen Lu,
  • Jirong Mao,
  • Nicola Marchili,
  • Sera Markoff,
  • Daniel P. Marrone,
  • Alan P. Marscher,
  • Iván Martí-Vidal,
  • Satoki Matsushita,
  • Lynn D. Matthews,
  • Lia Medeiros,
  • Karl M. Menten,
  • Daniel Michalik,
  • Izumi Mizuno,
  • Yosuke Mizuno,
  • James M. Moran,
  • Kotaro Moriyama,
  • Monika Moscibrodzka,
  • Cornelia Müller,
  • Alejandro Mus,
  • Gibwa Musoke,
  • Ioannis Myserlis,
  • Andrew Nadolski,
  • Hiroshi Nagai,
  • Neil M. Nagar,
  • Masanori Nakamura,
  • Ramesh Narayan,
  • Gopal Narayanan,
  • Iniyan Natarajan,
  • Antonios Nathanail,
  • Santiago Navarro Fuentes,
  • Joey Neilsen,
  • Roberto Neri,
  • Chunchong Ni,
  • Aristeidis Noutsos,
  • Michael A. Nowak,
  • Junghwan Oh,
  • Hiroki Okino,
  • Héctor Olivares,
  • Gisela N. Ortiz-León,
  • Tomoaki Oyama,
  • Daniel C.M. Palumbo,
  • Georgios Filippos Paraschos,
  • Jongho Park,
  • Harriet Parsons,
  • Nimesh Patel,
  • Ue-Li Pen,
  • Dominic W. Pesce,
  • Vincent Piétu,
  • Richard Plambeck,
  • Aleksandar PopStefanija,
  • Oliver Porth,
  • Felix M. Pötzl,
  • Ben Prather,
  • Jorge A. Preciado-López,
  • Hung-Yi Pu,
  • Venkatessh Ramakrishnan,
  • Ramprasad Rao,
  • Mark G. Rawlings,
  • Alexander W. Raymond,
  • Luciano Rezzolla,
  • Angelo Ricarte,
  • Bart Ripperda,
  • Freek Roelofs,
  • Alan Rogers,
  • Eduardo Ros,
  • Cristina Romero-Cañizales,
  • Arash Roshanineshat,
  • Helge Rottmann,
  • Alan L. Roy,
  • Ignacio Ruiz,
  • Chet Ruszczyk,
  • Kazi L.J. Rygl,
  • Salvador Sánchez,
  • David Sánchez-Argüelles,
  • Miguel Sánchez-Portal,
  • Mahito Sasada,
  • Kaushik Satapathy,
  • Tuomas Savolainen,
  • F.Peter Schloerb,
  • Jonathan Schonfeld,
  • Karl-Friedrich Schuster,
  • Lijing Shao,
  • Zhiqiang Shen,
  • Des Small,
  • Bong Won Sohn,
  • Jason SooHoo,
  • Kamal Souccar,
  • He Sun,
  • Fumie Tazaki,
  • J. Alexandra Tetarenko,
  • Paul Tiede,
  • Remo P.J. Tilanus,
  • Michael Titus,
  • Pablo Torne,
  • Efthalia Traianou,
  • Tyler Trent,
  • Sascha Trippe,
  • Matthew Turk,
  • Ilse van Bemmel,
  • Huib Jan van Langevelde,
  • Daniel R. van Rossum,
  • Jesse Vos,
  • Jan Wagner,
  • Derek Ward-Thompson,
  • John Wardle,
  • Jonathan Weintroub,
  • Norbert Wex,
  • Robert Wharton,
  • Maciek Wielgus,
  • Kaj Wiik,
  • Gunther Witzel,
  • Michael F. Wondrak,
  • George N. Wong,
  • Qingwen Wu,
  • Paul Yamaguchi,
  • Doosoo Yoon,
  • André Young,
  • Ken Young,
  • Ziri Younsi,
  • Feng Yuan,
  • Ye-Fei Yuan,
  • J.Anton Zensus,
  • Shuo Zhang,
  • Guang-Yao Zhao,
  • Shan-Shan Zhao,
  • Dominic O. Chang
  • (less)
Astrophys.J.Lett. (2022) doi:10.3847/2041-8213/ac6736
abstract + abstract -

In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be

μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be

M

$_{⊙}$.


CN-6
RU-B
(504)The EUSO@TurLab project in the framework of the JEM-EUSO program
  • P. Barrillon,
  • M. Battisti,
  • A. Belov,
  • M. Bertaina,
  • F. Bisconti
  • +31
  • S. Blin-Bondil,
  • R. Bonino,
  • F. Capel,
  • R. Caruso,
  • M. Casolino,
  • G. Contino,
  • G. Cotto,
  • S. Dagoret‑Campagne,
  • F. Fenu,
  • C. Fornaro,
  • R. Forza,
  • P. Gorodetzky,
  • N. Guardone,
  • A. Jung,
  • P. Klimov,
  • M. Manfrin,
  • L. Marcelli,
  • M. Mignone,
  • H. Miyamoto,
  • R. Mulas,
  • M. Onorato,
  • E. Parizot,
  • L. Piotrowski,
  • Z. Plebaniak,
  • G. Prevot,
  • J. Szabelski,
  • G. Suino,
  • Y. Takizawa,
  • P. Tibaldi,
  • C. Vigorito,
  • A. Youssef
  • (less)
Exper.Astron. (2022) doi:10.1007/s10686-022-09871-8
abstract + abstract -

<jats:title>Abstract</jats:title><jats:p>The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All the experiments are designed and performed based on simulations of the expected response of the detectors to be flown in space. In April 2016 the TUS detector and more recently in October 2019 the Mini-EUSO experiment, both part of the JEM-EUSO program, have been placed in orbit to map the UV Earth emissions. It is, therefore, now possible to compare the replicas performed at TurLab with the actual images detected in space to understand the level of fidelity in terms of reproduction of the expected signals. We show that the laboratory tests reproduce at the order of magnitude level the measurements from space in terms of spatial extension and time duration of the emitted UV light, as well as the intensity in terms of expected counts per pixel per unit time when atmospheric transient events, diffuse nightlow background light, and artificial light sources are considered. Therefore, TurLab is found to be a very useful facility for testing the acquisition logic of the detectors of the present and future missions of the JEM-EUSO program and beyond in order to reproduce atmospheric signals in the laboratory.</jats:p>


LRSM
(503)SDD Analog Readout System for the ComPol CubeSat Compton Polarimeter
  • L. G. Toscano,
  • G. Deda,
  • G. Di Giovanni,
  • M. Arrigucci,
  • P. King
  • +7
  • P. Lechner,
  • M. J. Losekamm,
  • M. Meier,
  • S. Mertens,
  • M. Willers,
  • M. Carminati,
  • C. Fiorini
  • (less)
2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (2022) doi:10.1109/NSS/MIC44845.2022.10398890
abstract + abstract -

Astronomical X-ray polarimetry is a powerful tool to extract information from hard X-rays spectrum of celestial bodies. In this context, the ComPol project aims to fly a Compton polarimeter in a CubeSat to investigate the emissions of the binary black hole (BBH) system Cygnus X-1. Based on Compton events detection, the CubeSat is featured by two detection systems: 1) a Silicon Drift Detector (SDD) matrix employed as scatterer and 2) a scintillator read by Silicon Photon Multiplier (SiPM) array to absorb the scattered photons. This paper focuses on the development of the first detection system for the reconstruction of Compton events. The readout electronic chain is composed of two 7-pixel SDD matrices, CUBE preamplifiers and SFERA ASIC Analog Pulse Processor (APP) handled by FPGA technology for its control and data flow management. This paper presents this readout system, composed by two boards: one housing SFERA ASIC, which includes an on-chip ADC, the other which includes the SDD matrix and the preamplifiers. In this manuscript, the test results performed with the pre-prototype system devised in the first phase of the project to characterize the SDD module and to evaluate the SFERA internal ADC performances are reported together with the ones performed with the prototype system.


CN-7
RU-A
(502)Symmetry restoration in mean-field approaches
  • J.A. Sheikh,
  • J. Dobaczewski,
  • P. Ring,
  • L. M. Robledo,
  • C. Yannouleas
Journal of Physics G: Nuclear and Particle Physics (November/2021) e-Print:1901.06992 doi:10.1088/1361-6471/ac288a
abstract + abstract -

The mean-field approximation based on effective interactions or density functionals plays a pivotal role in the description of finite quantum many-body systems that are too large to be treated by ab initio methods. Some examples are strongly interacting medium and heavy mass atomic nuclei and mesoscopic condensed matter systems. In this approach, the linear Schrödinger equation for the exact many-body wave function is mapped onto a non-linear one-body potential problem. This approximation, not only provides computationally very simple solutions even for systems with many particles, but due to the non-linearity, it also allows for obtaining solutions that break essential symmetries of the system, often connected with phase transitions. In this way, additional correlations are subsumed in the system. However, the mean-field approach suffers from the drawback that the corresponding wave functions do not have sharp quantum numbers and, therefore, many results cannot be compared directly with experimental data. In this article, we discuss general group-theory techniques to restore the broken symmetries, and provide detailed expressions on the restoration of translational, rotational, spin, isospin, parity and gauge symmetries, where the latter corresponds to the restoration of the particle number. In order to avoid the numerical complexity of exact projection techniques, various approximation methods available in the literature are examined. Applications of the projection methods are presented for simple nuclear models, realistic calculations in relatively small configuration spaces, nuclear energy density functional (EDF) theory, as well as in other mesoscopic systems. We also discuss applications of projection techniques to quantum statistics in order to treat the averaging over restricted ensembles with fixed quantum numbers. Further, unresolved problems in the application of the symmetry restoration methods to the EDF theories are highlighted in the present work.


CN-7
RU-A
(501)Nuclear matter in relativistic Brueckner-Hartree-Fock theory with Bonn potential in the full Dirac space
  • Sibo Wang,
  • Qiang Zhao,
  • Peter Ring,
  • Jie Meng
abstract + abstract -

Starting from the Bonn potential, the relativistic Brueckner-Hartree-Fock (RBHF) equations are solved for nuclear matter in the full Dirac space, which provides a unique way to determine the single-particle potentials and avoids the approximations applied in the RBHF calculations in the Dirac space with positive-energy states (PESs) only. The uncertainties of the RBHF calculations in the Dirac space with PESs only are investigated, and the importance of RBHF calculations in the full Dirac space is demonstrated. In the RBHF calculations in the full Dirac space, the empirical saturation properties of symmetric nuclear matter are reproduced, and the obtained equation of state agrees with the results based on the relativistic Green's function approach up to the saturation density.


CN-7
RU-A
(500)Finite-temperature linear response theory based on relativistic Hartree Bogoliubov model with point-coupling interaction
  • A. Ravlić,
  • Y. F. Niu,
  • T. Nikšić,
  • N. Paar,
  • P. Ring
Physical Review C (December/2021) e-Print:2108.08702 doi:10.1103/PhysRevC.104.064302
abstract + abstract -

The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin excitations. Calculations are performed self-consistently with relativistic point-coupling interactions DD-PC1 and DD-PCX. In the charge-exchange channel, the pairing interaction can be split into isovector (T=1) and isoscalar (T=0) parts. For the isovector component, the same separable form of the Gogny D1S pairing interaction is used both for the ground-state calculation as well as for the residual interaction, while the strength of the isoscalar pairing in the residual interaction is determined by comparison with experimental data on Gamow-Teller resonance (GTR) and isobaric analog resonance (IAR) centroid energy differences in even-even tin isotopes. The temperature effects are introduced by treating Bogoliubov quasiparticles within a grand-canonical ensemble. Thus, unlike the conventional formulation of the quasiparticle random-phase approximation (QRPA) based on the Bardeen-Cooper-Schrieffer (BCS) basis, our model is formulated within the Hartree-Fock-Bogoliubov (HFB) quasiparticle basis. Implementing a relativistic point-coupling interaction and a separable pairing force allows for the reduction of complicated two-body residual interaction matrix elements, which considerably decreases the dimension of the problem in the coordinate space. The main advantage of this method is to avoid the diagonalization of a large QRPA matrix, especially at finite temperature where the size of configuration space is significantly increased. The implementation of the linear response code is used to study the temperature evolution of IAR, GTR, and spin-dipole resonance (SDR) in even-even tin isotopes in the temperature range T=0–1.5 MeV.


CN-7
RU-A
(499)Study of the Strong Interaction Among Hadrons with Correlations at the LHC
  • L. Fabbietti,
  • V. Mantovani Sarti,
  • O. Vázquez Doce
Annual Review of Nuclear and Particle Science (9/2021) doi:10.1146/annurev-nucl-102419-034438
abstract + abstract -

The strong interaction among hadrons has been measured in the past by scattering experiments. Although this technique has been extremely successful in providing information about the nucleon-nucleon and pion-nucleon interactions, when unstable hadrons are considered the experiments become more challenging. In the last few years, the analysis of correlations in the momentum space for pairs of stable and unstable hadrons measured in pp and p+Pb collisions by the ALICE Collaboration at the LHC has provided a new method to investigate the strong interaction among hadrons. In this article, we review the numerous results recently achieved for hyperon-nucleon, hyperon-hyperon, and kaon-nucleon pairs, which show that this new method opens the possibility of measuring the residual strong interaction of any hadron pair.


CN-7
PhD Thesis
RU-A
(498)Analysis techniques for femtoscopy and correlation studies in small collision systems and their applications to the investigation of proton-Lambda and Lambda-Lambda interactions with ALICE
  • Dimitar Lubomirov Mihaylov - Advisor: Laura Fabbietti
Thesis (8/2021) link
abstract + abstract -

The topic of this work is the non-traditional baryon–baryon femtoscopy, the goal of which is to study the interaction potential between different baryon pairs, assuming that their emission source is known. A new analysis framework (CATS) has been developed to model the correlation function. Further, a new model to describe the emission source was created, which accounts for the modulation related to particle production through the decays of short-lived resonances. Finally, these new analysis methods were applied to study the strong interaction acting between proton-Lambda and Lambda-Lambda pairs.


CN-6
PhD Thesis
(497)The Origin of High-Energy Cosmic Particles: IceCube Neutrinos and the Blazar Case
  • Theo Glauch - Advisor: Elisa Resconi
Thesis (2/2021) link
abstract + abstract -

This thesis presents several multi-messenger analyses, searching for the long-sough sources of high-energy cosmic radiation. By combining data from the IceCube Neutrino Detector and other multi-frequency observatories, the first two significant neutrino point sources - the blazar TXS 0506+056 and the Seyfert 2 galaxy NGC 1068 - are identified. Furthermore, a correlation study of high-energy neutrinos with gamma-ray blazars finds 3.2σ evidence for an astrophysical neutrino flux contribution from IBL/HBL blazars. Finally, we present a deep neural network that helps to optimize IceCube’s event selection pipeline.


RU-C
(496)The local PNG bias of neutral Hydrogen, H$_{I}$
  • Alexandre Barreira
abstract + abstract -

We use separate universe simulations with the IllustrisTNG galaxy formation model to predict the local PNG bias parameters bΦ and bΦδ of atomic neutral hydrogen, H$_{I}$. These parameters and their relation to the linear density bias parameter b

$_{1}$ play a key role in observational constraints of the local PNG parameter f

$_{NL}$ using the H$_{I}$ power spectrum and bispectrum. Our results show that the popular calculation based on the universality of the halo mass function overpredicts the bΦ(b

$_{1}$) and bΦδ(b

$_{1}$) relations measured in the simulations. In particular, our results show that at z ≲ 1 the H$_{I}$ power spectrum is more sensitive to f

$_{NL}$ compared to previously thought (bΦ is more negative), but is less sensitive at other epochs (bΦ is less positive). We discuss how this can be explained by the competition of physical effects such as that large-scale gravitational potentials with local PNG (i) accelerate the conversion of hydrogen to heavy elements by star formation, (ii) enhance the effects of baryonic feedback that eject the gas to regions more exposed to ionizing radiation, and (iii) promote the formation of denser structures that shield the H$_{I}$ more efficiently. Our numerical results can be used to revise existing forecast studies on f

$_{NL}$ using 21 cm line-intensity mapping data. Despite this first step towards predictions for the local PNG bias parameters of H$_{I}$, we emphasize that more work is needed to assess their sensitivity on the assumed galaxy formation physics and H$_{I}$ modeling strategy.


CN-4
RU-D
(495)CLASH-VLT: Abell~S1063. Cluster assembly history and spectroscopic catalogue
  • A. Mercurio,
  • P. Rosati,
  • A. Biviano,
  • M. Annunziatella,
  • M. Girardi
  • +29
  • B. Sartoris,
  • M. Nonino,
  • M. Brescia,
  • G. Riccio,
  • C. Grillo,
  • I. Balestra,
  • G. B. Caminha,
  • G. De Lucia,
  • R. Gobat,
  • S. Seitz,
  • P. Tozzi,
  • M. Scodeggio,
  • E. Vanzella,
  • G. Angora,
  • P. Bergamini,
  • S. Borgani,
  • R. Demarco,
  • M. Meneghetti,
  • V. Strazzullo,
  • L. Tortorelli,
  • K. Umetsu,
  • A. Fritz,
  • D. Gruen,
  • D. Kelson,
  • M. Lombardi,
  • C. Maier,
  • M. Postman,
  • G. Rodighiero,
  • B. Ziegler
  • (less)
abstract + abstract -

Using the CLASH-VLT survey, we assembled an unprecedented sample of 1234 spectroscopically confirmed members in Abell~S1063, finding a dynamically complex structure at z_cl=0.3457 with a velocity dispersion \sigma_v=1380 -32 +26 km s^-1. We investigate cluster environmental and dynamical effects by analysing the projected phase-space diagram and the orbits as a function of galaxy spectral properties. We classify cluster galaxies according to the presence and strength of the [OII] emission line, the strength of the Hδ absorption line, and colours. We investigate the relationship between the spectral classes of galaxies and their position in the projected phase-space diagram. We analyse separately red and blue galaxy orbits. By correlating the observed positions and velocities with the projected phase-space constructed from simulations, we constrain the accretion redshift of galaxies with different spectral types. Passive galaxies are mainly located in the virialised region, while emission-line galaxies are outside r_200, and are accreted later into the cluster. Emission-lines and post-starbursts show an asymmetric distribution in projected phase-space within r_200, with the first being prominent at Delta_v/sigma <~-1.5$, and the second at Delta_v/ sigma >~ 1.5, suggesting that backsplash galaxies lie at large positive velocities. We find that low-mass passive galaxies are accreted in the cluster before the high-mass ones. This suggests that we observe as passives only the low-mass galaxies accreted early in the cluster as blue galaxies, that had the time to quench their star formation. We also find that red galaxies move on more radial orbits than blue galaxies. This can be explained if infalling galaxies can remain blue moving on tangential orbits.


CN-4
RU-D
(494)The PAU Survey: Measurement of Narrow-band galaxy properties with Approximate Bayesian Computation
  • Luca Tortorelli,
  • Malgorzata Siudek,
  • Beatrice Moser,
  • Tomasz Kacprzak,
  • Pascale Berner
  • +20
  • Alexandre Refregier,
  • Adam Amara,
  • Juan García-Bellido,
  • Laura Cabayol,
  • Jorge Carretero,
  • Francisco J. Castander,
  • Juan De Vicente,
  • Martin Eriksen,
  • Enrique Fernandez,
  • Enrique Gaztanaga,
  • Hendrik Hildebrandt,
  • Benjamin Joachimi,
  • Ramon Miquel,
  • Ignacio Sevilla-Noarbe,
  • Cristóbal Padilla,
  • Pablo Renard,
  • Eusebio Sanchez,
  • Santiago Serrano,
  • Pau Tallada-Crespí,
  • Angus H. Wright
  • (less)
abstract + abstract -

Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code \textsc{CIGALE}. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited (i<22.5) sample of galaxies up to redshift z∼0.8. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.


RU-C
(493)Lattice simulations of inflation
  • Angelo Caravano,
  • Eiichiro Komatsu,
  • Kaloian D. Lozanov,
  • Jochen Weller
Journal of Cosmology and Astroparticle Physics (12/2021) doi:10.1088/1475-7516/2021/12/010
abstract + abstract -

The scalar field theory of cosmological inflation constitutes nowadays one of the preferred scenarios for the physics of the early universe. In this paper we aim at studying the inflationary universe making use of a numerical lattice simulation. Various lattice codes have been written in the last decades and have been extensively used for understating the reheating phase of the universe, but they have never been used to study the inflationary phase itself far from the end of inflation (i.e. about 50 e-folds before the end of inflation). In this paper we use a lattice simulation to reproduce the well-known results of some simple models of single-field inflation, particularly for the scalar field perturbation. The main model that we consider is the standard slow-roll inflation with an harmonic potential for the inflaton field. We explore the technical aspects that need to be accounted for in order to reproduce with precision the nearly scale invariant power spectrum of inflaton perturbations. We also consider the case of a step potential, and show that the simulation is able to correctly reproduce the oscillatory features in the power spectrum of this model. Even if a lattice simulation is not needed in these cases, that are well within the regime of validity of linear perturbation theory, this sets the basis to future work on using lattice simulations to study more complicated models of inflation.


(492)The DESI N-body simulation project – I. Testing the robustness of simulations for the DESI dark time survey
  • Cameron Grove,
  • Chia-Hsun Chuang,
  • Ningombam Chandrachani Devi,
  • Lehman Garrison,
  • Benjamin L'Huillier
  • +17
  • Yu Feng,
  • John Helly,
  • César Hernández-Aguayo,
  • Shadab Alam,
  • Hanyu Zhang,
  • Yu Yu ,
  • Shaun Cole,
  • Daniel Eisenstein,
  • Peder Norberg,
  • Risa Wechsler,
  • David Brooks,
  • Kyle Dawson,
  • Martin Landriau,
  • Aaron Meisner,
  • Claire Poppett,
  • Gregory Tarlé,
  • Octavio Valenzuela
  • (less)
Mon.Not.Roy.Astron.Soc. (12/2021) e-Print:2112.09138 doi:10.1093/mnras/stac1947
abstract + abstract -

Analysis of large galaxy surveys requires confidence in the robustness of numerical simulation methods. The simulations are used to construct mock galaxy catalogues to validate data analysis pipelines and identify potential systematics. We compare three N-body simulation codes, abacus, gadget-2, and swift, to investigate the regimes in which their results agree. We run N-body simulations at three different mass resolutions, 6.25 × 10^8, 2.11 × 10^9, and 5.00 × 10^9 h^−1 M_⊙, matching phases to reduce the noise within the comparisons. We find systematic errors in the halo clustering between different codes are smaller than the Dark Energy Spectroscopic Instrument (DESI) statistical error for s > 20 h−1 Mpc in the correlation function in redshift space. Through the resolution comparison we find that simulations run with a mass resolution of 2.1 × 10^9 h^−1 M_⊙ are sufficiently converged for systematic effects in the halo clustering to be smaller than the DESI statistical error at scales larger than 20 h−1 Mpc. These findings show that the simulations are robust for extracting cosmological information from large scales which is the key goal of the DESI survey. Comparing matter power spectra, we find the codes agree to within 1 per cent for k ≤ 10 h Mpc^−1. We also run a comparison of three initial condition generation codes and find good agreement. In addition, we include a quasi-N-body code, FastPM, since we plan use it for certain DESI analyses. The impact of the halo definition and galaxy–halo relation will be presented in a follow-up study.


(491)Combining Planck and SPT cluster catalogs: cosmological analysis and impact on Planck scaling relation calibration
  • L. Salvati,
  • A. Saro,
  • S. Bocquet,
  • M. Costanzi,
  • B. Ansarinejad
  • +39
  • B.A. Benson,
  • L.E. Bleem,
  • M.S. Calzadilla,
  • J.E. Carlstrom,
  • C.L. Chang,
  • R. Chown,
  • A.T. Crites,
  • T. de Haan,
  • M.A. Dobbs,
  • W.B. Everett,
  • B. Floyd,
  • S. Grandis,
  • E.M. George,
  • N.W. Halverson,
  • G.P. Holder,
  • W.L. Holzapfel,
  • J.D. Hrubes,
  • A.T. Lee,
  • D. Luong-Van,
  • M. McDonald,
  • J.J. McMahon,
  • S.S. Meyer,
  • M. Millea,
  • L.M. Mocanu,
  • J.J. Mohr,
  • T. Natoli,
  • Y. Omori,
  • S. Padin,
  • C. Pryke,
  • C.L. Reichardt,
  • J.E. Ruhl,
  • F. Ruppin,
  • K.K. Schaffer,
  • T. Schrabback,
  • E. Shirokoff,
  • Z. Staniszewski,
  • A.A. Stark,
  • J.D. Vieira,
  • R. Williamson
  • (less)
(12/2021) e-Print:2112.03606
abstract + abstract -

We provide the first combined cosmological analysis of South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the $\nu \Lambda$CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find $\alpha_{\text{SZ}} = 1.49 _{-0.10}^{+0.07}$ and $(1-b)_{\text{SZ}} = 0.69 _{-0.14}^{+0.07}$ respectively. The results for the mass slope show a $\sim 4 \, \sigma$ departure from the self-similar evolution, $\alpha_{\text{SZ}} \sim 1.8$. This shift is mainly driven by the matter density value preferred by SPT data, $\Omega_m = 0.30 \pm 0.03$, lower than the one obtained by Planck data alone, $\Omega_m = 0.37 _{-0.06}^{+0.02}$. The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, $(1-b) \sim 0.8$, and with results required by the Planck cosmic microwave background cosmology, $(1-b) \sim 0.6$. From this analysis, we obtain a new catalog of Planck cluster masses $M_{500}$. We estimate the relation between the published Planck derived $M_{\text{SZ}}$ masses and our derived masses, as a measured mass bias. We analyse the mass, redshift and detection noise dependence of this quantity, finding an increasing trend towards high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass high-mass, low-z high-z regimes.


CN-6
(490)Observation of $\Lambda_b^0\rightarrow D^+ p \pi^-\pi^-$ and $\Lambda_b^0\rightarrow D^{*+} p \pi^-\pi^-$ decays
  • Roel Aaij,
  • Ahmed Sameh Wagih Abdelmotteleb,
  • Carlos Abellán Beteta,
  • Fernando Jesus Abudinén,
  • Thomas Ackernley
  • +1008
  • Bernardo Adeva,
  • Marco Adinolfi,
  • Hossein Afsharnia,
  • Christina Agapopoulou,
  • Christine Angela Aidala,
  • Salvatore Aiola,
  • Ziad Ajaltouni,
  • Simon Akar,
  • Johannes Albrecht,
  • Federico Alessio,
  • Michael Alexander,
  • Alejandro Alfonso Albero,
  • Zakariya Aliouche,
  • Georgy Alkhazov,
  • Paula Alvarez Cartelle,
  • Sandra Amato,
  • Jake Lewis Amey,
  • Yasmine Amhis,
  • Liupan An,
  • Lucio Anderlini,
  • Martin Andersson,
  • Aleksei Andreianov,
  • Mirco Andreotti,
  • Flavio Archilli,
  • Alexander Artamonov,
  • Marina Artuso,
  • Kenenbek Arzymatov,
  • Elie Aslanides,
  • Michele Atzeni,
  • Benjamin Audurier,
  • Sebastian Bachmann,
  • Marie Bachmayer,
  • John Back,
  • Pablo Baladron Rodriguez,
  • Vladislav Balagura,
  • Wander Baldini,
  • Juan Baptista de Souza Leite,
  • Matteo Barbetti,
  • Roger Barlow,
  • Sergey Barsuk,
  • William Barter,
  • Matteo Bartolini,
  • Fedor Baryshnikov,
  • Jan-Marc Basels,
  • Saliha Bashir,
  • Giovanni Bassi,
  • Baasansuren Batsukh,
  • Alexander Battig,
  • Aurelio Bay,
  • Anja Beck,
  • Maik Becker,
  • Franco Bedeschi,
  • Ignacio Bediaga,
  • Andrew Beiter,
  • Vladislav Belavin,
  • Samuel Belin,
  • Violaine Bellee,
  • Konstantin Belous,
  • Ilia Belov,
  • Ivan Belyaev,
  • Giovanni Bencivenni,
  • Eli Ben-Haim,
  • Alexander Berezhnoy,
  • Roland Bernet,
  • Daniel Berninghoff,
  • Harris Conan Bernstein,
  • Claudia Bertella,
  • Alessandro Bertolin,
  • Christopher Betancourt,
  • Federico Betti,
  • Ia. Bezshyiko,
  • Iaroslava Bezshyiko,
  • Srishti Bhasin,
  • Jihyun Bhom,
  • Lingzhu Bian,
  • Martin Stefan Bieker,
  • Nicolo Vladi Biesuz,
  • Simone Bifani,
  • Pierre Billoir,
  • Alice Biolchini,
  • Matthew Birch,
  • Fionn Caitlin Ros Bishop,
  • Alexander Bitadze,
  • Andrea Bizzeti,
  • Mikkel Bjørn,
  • Michele Piero Blago,
  • Thomas Blake,
  • Frederic Blanc,
  • Steven Blusk,
  • Dana Bobulska,
  • Julian Alexander Boelhauve,
  • Oscar Boente Garcia,
  • Thomas Boettcher,
  • Alexey Boldyrev,
  • Alexander Bondar,
  • Nikolay Bondar,
  • Silvia Borghi,
  • Maxim Borisyak,
  • Martino Borsato,
  • Jozef Tomasz Borsuk,
  • Sonia Amina Bouchiba,
  • Themistocles Bowcock,
  • Alexandre Boyer,
  • Concezio Bozzi,
  • Matthew John Bradley,
  • Svende Braun,
  • Alexandre Brea Rodriguez,
  • Jolanta Brodzicka,
  • Arnau Brossa Gonzalo,
  • Davide Brundu,
  • Annarita Buonaura,
  • Laura Buonincontri,
  • Aodhan Tomas Burke,
  • Christopher Burr,
  • Albert Bursche,
  • Anatoly Butkevich,
  • Jordy Sebastiaan Butter,
  • Jan Buytaert,
  • Wiktor Byczynski,
  • Sandro Cadeddu,
  • Hao Cai,
  • Roberto Calabrese,
  • Lukas Calefice,
  • Stefano Cali,
  • Ryan Calladine,
  • Marta Calvi,
  • Miriam Calvo Gomez,
  • Patricia Camargo Magalhaes,
  • Pierluigi Campana,
  • Angel Fernando Campoverde Quezada,
  • Simone Capelli,
  • Lorenzo Capriotti,
  • Angelo Carbone,
  • Giovanni Carboni,
  • Roberta Cardinale,
  • Alessandro Cardini,
  • Ina Carli,
  • Paolo Carniti,
  • Leon David Carus,
  • Kazuyoshi Carvalho Akiba,
  • Adrian Casais Vidal,
  • Rowina Caspary,
  • Gianluigi Casse,
  • Marco Cattaneo,
  • Giovanni Cavallero,
  • Sara Celani,
  • Jacopo Cerasoli,
  • Daniel Cervenkov,
  • Abbie Jane Chadwick,
  • Matthew George Chapman,
  • Matthew Charles,
  • Philippe Charpentier,
  • Ph. Charpentier,
  • Carlos Alberto Chavez Barajas,
  • Maximilien Chefdeville,
  • Chen Chen,
  • Shanzhen Chen,
  • Aleksei Chernov,
  • Veronika Chobanova,
  • Serhii Cholak,
  • Marcin Chrzaszcz,
  • Alexsei Chubykin,
  • Vladimir Chulikov,
  • Paolo Ciambrone,
  • Maria Flavia Cicala,
  • Xabier Cid Vidal,
  • Gregory Ciezarek,
  • P.E. L. Clarke,
  • Marco Clemencic,
  • Harry Cliff,
  • Joel Closier,
  • John Leslie Cobbledick,
  • Victor Coco,
  • Joao A B Coelho,
  • Julien Cogan,
  • Eric Cogneras,
  • Lucian Cojocariu,
  • Paula Collins,
  • Tommaso Colombo,
  • Liliana Congedo,
  • Andrea Contu,
  • Naomi Cooke,
  • George Coombs,
  • Imanol Corredoira,
  • Gloria Corti,
  • Cayo Mar Costa Sobral,
  • Benjamin Couturier,
  • Daniel Charles Craik,
  • Jana Crkovská,
  • Melissa Maria Cruz Torres,
  • Robert Currie,
  • Cesar Luiz Da Silva,
  • Shakhzod Dadabaev,
  • Lingyun Dai,
  • Elena Dall'Occo,
  • Jeremy Dalseno,
  • Carmelo D'Ambrosio,
  • Anna Danilina,
  • Philippe d'Argent,
  • Aigerim Dashkina,
  • Jonathan Edward Davies,
  • Adam Davis,
  • Oscar De Aguiar Francisco,
  • Kristof De Bruyn,
  • Stefano De Capua,
  • Michel De Cian,
  • Erika De Lucia,
  • Jussara De Miranda,
  • Leandro De Paula,
  • Marilisa De Serio,
  • Dario De Simone,
  • Patrizia De Simone,
  • Fabio De Vellis,
  • Jacco de Vries,
  • Cameron Thomas Dean,
  • Francesco Debernardis,
  • Daniel Decamp,
  • Vlad-George Dedu,
  • Luigi Del Buono,
  • Blaise Delaney,
  • Hans Peter Dembinski,
  • Adam Dendek,
  • Vadym Denysenko,
  • Denis Derkach,
  • Olivier Deschamps,
  • Fabrice Desse,
  • Francesco Dettori,
  • Biplab Dey,
  • Alessandro Di Cicco,
  • Pasquale Di Nezza,
  • Sergey Didenko,
  • Lorena Dieste Maronas,
  • Hans Dijkstra,
  • Vasyl Dobishuk,
  • Chenzhi Dong,
  • Amanda May Donohoe,
  • Francesca Dordei,
  • Alberto dos Reis,
  • Lauren Douglas,
  • Anatoliy Dovbnya,
  • Anthony Gavin Downes,
  • Maciej Wojciech Dudek,
  • Laurent Dufour,
  • Viacheslav Duk,
  • Paolo Durante,
  • John Matthew Durham,
  • Deepanwita Dutta,
  • Agnieszka Dziurda,
  • Alexey Dzyuba,
  • Sajan Easo,
  • Ulrik Egede,
  • Victor Egorychev,
  • Semen Eidelman,
  • Stephan Eisenhardt,
  • Surapat Ek-In,
  • Lars Eklund,
  • Scott Ely,
  • Alexandru Ene,
  • Eliane Epple,
  • Stephan Escher,
  • Jonas Nathanael Eschle,
  • Sevda Esen,
  • Timothy Evans,
  • Lucas Falcao,
  • Yanting Fan,
  • Bo Fang,
  • Stephen Farry,
  • Davide Fazzini,
  • Mauricio Féo,
  • Antonio Fernandez Prieto,
  • Alex Daniel Fernez,
  • Fabio Ferrari,
  • Lino Ferreira Lopes,
  • Fernando Ferreira Rodrigues,
  • Silvia Ferreres Sole,
  • Martina Ferrillo,
  • Massimiliano Ferro-Luzzi,
  • Sergey Filippov,
  • Rosa Anna Fini,
  • Massimiliano Fiorini,
  • Miroslaw Firlej,
  • Kamil Leszek Fischer,
  • K.M. Fischer,
  • Dillon Scott Fitzgerald,
  • Conor Fitzpatrick,
  • Tomasz Fiutowski,
  • Aristeidis Fkiaras,
  • Frederic Fleuret,
  • Marianna Fontana,
  • Flavio Fontanelli,
  • Roger Forty,
  • Daniel Foulds-Holt,
  • Vinicius Franco Lima,
  • Manuel Franco Sevilla,
  • Markus Frank,
  • Edoardo Franzoso,
  • Giulia Frau,
  • Christoph Frei,
  • David Anthony Friday,
  • Jinlin Fu,
  • Quentin Fuehring,
  • Emmy Gabriel,
  • Giuliana Galati,
  • Abraham Gallas Torreira,
  • Domenico Galli,
  • Silvia Gambetta,
  • Yuyue Gan,
  • Miriam Gandelman,
  • Paolo Gandini,
  • Yuanning Gao,
  • Michela Garau,
  • Luis Miguel Garcia Martin,
  • Paula Garcia Moreno,
  • Julián García Pardiñas,
  • Beatriz Garcia Plana,
  • Felipe Andres Garcia Rosales,
  • Lluis Garrido,
  • Clara Gaspar,
  • Robbert Erik Geertsema,
  • David Gerick,
  • Louis Lenard Gerken,
  • Evelina Gersabeck,
  • Marco Gersabeck,
  • Timothy Gershon,
  • Dawid Gerstel,
  • Luca Giambastiani,
  • Valerie Gibson,
  • Henryk Karol Giemza,
  • Alexander Leon Gilman,
  • Matteo Giovannetti,
  • Alessandra Gioventù,
  • Pere Gironella Gironell,
  • Carmen Giugliano,
  • Konstantin Gizdov,
  • Evangelos Leonidas Gkougkousis,
  • Vladimir Gligorov,
  • Carla Göbel,
  • Elisabet Golobardes,
  • Dmitry Golubkov,
  • Andrey Golutvin,
  • Alvaro Gomes,
  • Sergio Gomez Fernandez,
  • Fernanda Goncalves Abrantes,
  • Mateusz Goncerz,
  • Guanghua Gong,
  • Petr Gorbounov,
  • Igor Vladimirovich Gorelov,
  • Claudio Gotti,
  • Jascha Peter Grabowski,
  • Thomas Grammatico,
  • Luis Alberto Granado Cardoso,
  • Eugeni Graugés,
  • Elena Graverini,
  • Giacomo Graziani,
  • Alexandru Grecu,
  • Lex Marinus Greeven,
  • Nathan Allen Grieser,
  • Lucia Grillo,
  • Sergey Gromov,
  • Barak Raimond Gruberg Cazon,
  • Chenxi Gu,
  • Marco Guarise,
  • Manuel Guittiere,
  • Paul Andre Günther,
  • Abdul-Kerim Guseinov,
  • Evgeny Gushchin,
  • Andreas Guth,
  • Yury Guz,
  • Thierry Gys,
  • Thomas Hadavizadeh,
  • Guido Haefeli,
  • Christophe Haen,
  • Jakob Haimberger,
  • Tabitha Halewood-leagas,
  • Phoebe Meredith Hamilton,
  • Jan Patrick Hammerich,
  • Qundong Han,
  • Xiaoxue Han,
  • Thomas Henry Hancock,
  • Eva Brottmann Hansen,
  • Stephanie Hansmann-Menzemer,
  • Neville Harnew,
  • Thomas Harrison,
  • Christoph Hasse,
  • Mark Hatch,
  • Jibo He,
  • Malte Hecker,
  • Kevin Heijhoff,
  • Kevin Heinicke,
  • Riley Dylan Leslie Henderson,
  • Arthur Marius Hennequin,
  • Karol Hennessy,
  • Louis Henry,
  • Johannes Heuel,
  • Adlène Hicheur,
  • Donal Hill,
  • Martha Hilton,
  • Sophie Elizabeth Hollitt,
  • Ruiwe Hou,
  • Yingrui Hou,
  • Jiangqiao Hu,
  • Jifeng Hu,
  • Wenhua Hu,
  • Xiaofan Hu,
  • Wenqian Huang,
  • Xiaotao Huang,
  • Wouter Hulsbergen,
  • Ross John Hunter,
  • Mikhail Hushchyn,
  • David Hutchcroft,
  • Daniel Hynds,
  • Philipp Ibis,
  • Marek Idzik,
  • Dmitrii Ilin,
  • Philip Ilten,
  • Alexander Inglessi,
  • Artur Ishteev,
  • Kuzma Ivshin,
  • Richard Jacobsson,
  • Hendrik Jage,
  • Sune Jakobsen,
  • Eddy Jans,
  • Brij Kishor Jashal,
  • Abolhassan Jawahery,
  • Vukan Jevtic,
  • Xiaojie Jiang,
  • Malcolm John,
  • Daniel Johnson,
  • Christopher Jones,
  • Thomas Peter Jones,
  • Beat Jost,
  • Nathan Jurik,
  • Sabin Hashmi Kalavan Kadavath,
  • Sergii Kandybei,
  • Youen Kang,
  • Matthias Karacson,
  • Maksim Karpov,
  • Jacob William Kautz,
  • Floris Keizer,
  • Dustin Michael Keller,
  • Matthew Kenzie,
  • Tjeerd Ketel,
  • Basem Khanji,
  • Anastasiia Kharisova,
  • Sergei Kholodenko,
  • Thomas Kirn,
  • Veronica Soelund Kirsebom,
  • Ouail Kitouni,
  • Suzanne Klaver,
  • Nico Kleijne,
  • Konrad Klimaszewski,
  • Mateusz Rafal Kmiec,
  • Serhii Koliiev,
  • Almagul Kondybayeva,
  • Anatoly Konoplyannikov,
  • Pawel Kopciewicz,
  • Renata Kopecna,
  • Patrick Koppenburg,
  • Mikhail Korolev,
  • Igor Kostiuk,
  • Oleksander Kot,
  • Sofia Kotriakhova,
  • Polina Kravchenko,
  • Leonid Kravchuk,
  • Rafal Dominik Krawczyk,
  • Michal Kreps,
  • Felix Johannes Kress,
  • Sophie Katharina Kretzschmar,
  • Pavel Krokovny,
  • Wojciech Krupa,
  • Wojciech Krzemien,
  • Jakub Kubat,
  • Marcin Kucharczyk,
  • Vasily Kudryavtsev,
  • Hilbrand Steffen Kuindersma,
  • Gerd Joachim Kunde,
  • Tengiz Kvaratskheliya,
  • Daniel Lacarrere,
  • George Lafferty,
  • Adriano Lai,
  • Andrea Lampis,
  • Davide Lancierini,
  • John Jake Lane,
  • Richard Lane,
  • Gaia Lanfranchi,
  • Christoph Langenbruch,
  • Jan Langer,
  • Oliver Lantwin,
  • Thomas Latham,
  • Federico Lazzari,
  • Renaud Le Gac,
  • Sook Hyun Lee,
  • Regis Lefèvre,
  • Alexander Leflat,
  • Sergey Legotin,
  • Olivier Leroy,
  • Tadeusz Lesiak,
  • Blake Leverington,
  • Hengne Li,
  • Peilian Li,
  • Shiyang Li,
  • Yiming Li,
  • Yutong Li,
  • Zhuoming Li,
  • Xixin Liang,
  • Tai-hua Lin,
  • Rolf Lindner,
  • Vitalii Lisovskyi,
  • Roman Litvinov,
  • Guoming Liu,
  • Huanhuan Liu,
  • Qian Liu,
  • Shuaiyi Liu,
  • Aniol Lobo Salvia,
  • Angelo Loi,
  • Julian Lomba Castro,
  • Iain Longstaff,
  • Jose Lopes,
  • Saúl López Soliño,
  • George Holger Lovell,
  • Yu Lu,
  • Chiara Lucarelli,
  • Donatella Lucchesi,
  • Stanislav Luchuk,
  • Miriam Lucio Martinez,
  • Valeriia Lukashenko,
  • Yiheng Luo,
  • Anna Lupato,
  • Eleonora Luppi,
  • Oliver Lupton,
  • Alberto Lusiani,
  • Xiao-Rui Lyu,
  • Lishuang Ma,
  • Ruiting Ma,
  • Serena Maccolini,
  • Frederic Machefert,
  • Florin Maciuc,
  • Vladimir Macko,
  • Patrick Mackowiak,
  • Samuel Maddrell-Mander,
  • Olga Madejczyk,
  • Lakshan Ram Madhan Mohan,
  • Oleg Maev,
  • Artem Maevskiy,
  • Maciej Witold Majewski,
  • Jakub Jacek Malczewski,
  • Sneha Malde,
  • Bartosz Malecki,
  • Alexander Malinin,
  • Timofei Maltsev,
  • Hanna Malygina,
  • Giulia Manca,
  • Giampiero Mancinelli,
  • Daniele Manuzzi,
  • Daniele Marangotto,
  • Jan Maratas,
  • Jean François Marchand,
  • Umberto Marconi,
  • Saverio Mariani,
  • Carla Marin Benito,
  • Matthieu Marinangeli,
  • Jörg Marks,
  • Alexander Mclean Marshall,
  • Phillip John Marshall,
  • Gabriele Martelli,
  • Giuseppe Martellotti,
  • Loris Martinazzoli,
  • Maurizio Martinelli,
  • Diego Martinez Santos,
  • Fernando Martinez Vidal,
  • André Massafferri,
  • Marcel Materok,
  • Rosen Matev,
  • Abhijit Mathad,
  • Viacheslav Matiunin,
  • Clara Matteuzzi,
  • Kara Renee Mattioli,
  • Andrea Mauri,
  • Emilie Maurice,
  • Juan Mauricio,
  • Michal Kazimierz Mazurek,
  • Michael McCann,
  • Lucas Mcconnell,
  • Tamaki Holly Mcgrath,
  • Niall Thomas Mchugh,
  • Andrew McNab,
  • Ronan McNulty,
  • James Vincent Mead,
  • Brian Meadows,
  • Gerwin Meier,
  • Dmytro Melnychuk,
  • Simone Meloni,
  • Marcel Merk,
  • Andrea Merli,
  • Lucas Meyer Garcia,
  • Mikhail Mikhasenko,
  • Diego Alejandro Milanes,
  • Edward James Millard,
  • Marko Milovanovic,
  • Marie-Noelle Minard,
  • Alessandro Minotti,
  • Luca Minzoni,
  • Sara Elizabeth Mitchell,
  • Biljana Mitreska,
  • Dominik Stefan Mitzel,
  • Antje Mödden,
  • Rizwaan Adeeb Mohammed,
  • Razvan Daniel Moise,
  • Sergei Mokhnenko,
  • Titus Mombächer,
  • Igancio Alberto Monroy,
  • Stephane Monteil,
  • Mauro Morandin,
  • Gianfranco Morello,
  • Michael Joseph Morello,
  • Jakub Moron,
  • Adam Benjamin Morris,
  • Andrew George Morris,
  • Raymond Mountain,
  • Hongjie Mu,
  • Franz Muheim,
  • Mick Mulder,
  • Dominik Müller,
  • Katharina Müller,
  • Colm Harold Murphy,
  • Donal Murray,
  • Rebecca Murta,
  • Piera Muzzetto,
  • Paras Naik,
  • Tatsuya Nakada,
  • Raja Nandakumar,
  • Tara Nanut,
  • Irina Nasteva,
  • Matthew Needham,
  • Nicola Neri,
  • Sebastian Neubert,
  • Niko Neufeld,
  • Ryan Newcombe,
  • Elisabeth Maria Niel,
  • Simon Nieswand,
  • Nikolay Nikitin,
  • Niklas Stefan Nolte,
  • Camille Normand,
  • Cynthia Nunez,
  • Agnieszka Oblakowska-Mucha,
  • Vladimir Obraztsov,
  • Thomas Oeser,
  • Daniel Patrick O'Hanlon,
  • Shinichi Okamura,
  • Rudolf Oldeman,
  • Federica Oliva,
  • Mario Edgardo Olivares,
  • C.J. G. Onderwater,
  • Ryunosuke Hugo O'Neil,
  • Juan Martin Otalora Goicochea,
  • Tatiana Ovsiannikova,
  • Patrick Owen,
  • Maria Aranzazu Oyanguren,
  • Klaas Ole Padeken,
  • Bhagyashree Pagare,
  • Preema Rennee Pais,
  • Tommaso Pajero,
  • Antimo Palano,
  • Matteo Palutan,
  • Yue Pan,
  • Gennady Panshin,
  • Antonios Papanestis,
  • Marco Pappagallo,
  • Luciano Pappalardo,
  • Cheryl Pappenheimer,
  • William Parker,
  • Christopher Parkes,
  • Barbara Passalacqua,
  • Giovanni Passaleva,
  • Alessandra Pastore,
  • Mitesh Patel,
  • Claudia Patrignani,
  • Christopher James Pawley,
  • Alex Pearce,
  • Antonio Pellegrino,
  • Monica Pepe Altarelli,
  • Stefano Perazzini,
  • Dmitrii Pereima,
  • Asier Pereiro Castro,
  • Pascal Perret,
  • Marko Petric,
  • Konstantinos Petridis,
  • Alessandro Petrolini,
  • Aleksandr Petrov,
  • Stefano Petrucci,
  • Marco Petruzzo,
  • Thi Thuy Hang Pham,
  • Anton Philippov,
  • Roberto Piandani,
  • Lorenzo Pica,
  • Mauro Piccini,
  • Boleslaw Pietrzyk,
  • Guillaume Pietrzyk,
  • Martina Pili,
  • Davide Pinci,
  • Flavio Pisani,
  • Marco Pizzichemi,
  • P.K. Resmi,
  • Vlad-Mihai Placinta,
  • Jonathan Plews,
  • Maximo Plo Casasus,
  • Francesco Polci,
  • Marco Poli Lener,
  • Mariia Poliakova,
  • Anton Poluektov,
  • Natalia Polukhina,
  • Ivan Polyakov,
  • Erica Polycarpo,
  • Sebastien Ponce,
  • Dmitry Popov,
  • Sergei Popov,
  • Stanislav Poslavskii,
  • Kodassery Prasanth,
  • Laura Promberger,
  • Claire Prouve,
  • Valery Pugatch,
  • Veronique Puill,
  • Giovanni Punzi,
  • Hongrong Qi,
  • Wenbin Qian,
  • Ning Qin,
  • Renato Quagliani,
  • Naomi Veronika Raab,
  • Raul Iraq Rabadan Trejo,
  • Bartlomiej Rachwal,
  • Jonas Rademacker,
  • Matteo Rama,
  • Miguel Ramos Pernas,
  • Murilo Rangel,
  • Fedor Ratnikov,
  • Gerhard Raven,
  • Meril Reboud,
  • Federico Redi,
  • Florian Reiss,
  • Clara Remon Alepuz,
  • Zan Ren,
  • Victor Renaudin,
  • Roberto Ribatti,
  • Alessandro Maria Ricci,
  • Stefania Ricciardi,
  • Kurt Rinnert,
  • Patrick Robbe,
  • Gary Robertson,
  • Ana Barbara Rodrigues,
  • Eduardo Rodrigues,
  • Jairo Alexis Rodriguez Lopez,
  • E.R. R. Rodriguez Rodriguez,
  • Alexandra Paige Rollings,
  • Philipp Roloff,
  • Vladimir Romanovskiy,
  • Marcos Romero Lamas,
  • Antonio Romero Vidal,
  • Jordan Daniel Roth,
  • Marcello Rotondo,
  • Matthew Scott Rudolph,
  • Thomas Ruf,
  • Ramon Angel Ruiz Fernandez,
  • Joan Ruiz Vidal,
  • Artem Ryzhikov,
  • Jakub Ryzka,
  • Juan Jose Saborido Silva,
  • Naylya Sagidova,
  • Niladribihari Sahoo,
  • Biagio Saitta,
  • Matteo Salomoni,
  • Cristina Sanchez Gras,
  • Roberta Santacesaria,
  • Cibran Santamarina Rios,
  • Marco Santimaria,
  • Emanuele Santovetti,
  • Danila Saranin,
  • Gediminas Sarpis,
  • Minaugas Sarpis,
  • Alessio Sarti,
  • Celestina Satriano,
  • Alessia Satta,
  • Miroslav Saur,
  • Darya Savrina,
  • Halime Sazak,
  • Luke George Scantlebury Smead,
  • Alessandro Scarabotto,
  • Stefan Schael,
  • Sigrid Scherl,
  • Manuel Schiller,
  • Heinrich Schindler,
  • Michael Schmelling,
  • Burkhard Schmidt,
  • Sebastian Schmitt,
  • Olivier Schneider,
  • Andreas Schopper,
  • Maxime Schubiger,
  • Sebastian Schulte,
  • Marie Helene Schune,
  • Rainer Schwemmer,
  • Barbara Sciascia,
  • Sara Sellam,
  • Alexander Semennikov,
  • Mara Senghi Soares,
  • Antonino Sergi,
  • Nicola Serra,
  • Lorenzo Sestini,
  • Alex Seuthe,
  • Yiduo Shang,
  • Desmond Mzamo Shangase,
  • Mikhail Shapkin,
  • Ivan Shchemerov,
  • Lesya Shchutska,
  • Tara Shears,
  • Lev Shekhtman,
  • Zhihong Shen,
  • Shuqi Sheng,
  • Vladimir Shevchenko,
  • Edward Brendan Shields,
  • Yuya Shimizu,
  • Evgenii Shmanin,
  • Joseph David Shupperd,
  • Benedetto Gianluca Siddi,
  • Rafael Silva Coutinho,
  • Gabriele Simi,
  • Saverio Simone,
  • Nicola Skidmore,
  • Tomasz Skwarnicki,
  • Mark Slater,
  • Igor Slazyk,
  • Jennifer Clare Smallwood,
  • John Gordon Smeaton,
  • Anastasia Smetkina,
  • Eluned Smith,
  • Mark Smith,
  • Aleksandra Snoch,
  • Lais Soares Lavra,
  • Michael Sokoloff,
  • F.J. P. Soler,
  • Aleksandr Solovev,
  • Ivan Solovyev,
  • Felipe Luan Souza De Almeida,
  • Bruno Souza De Paula,
  • Bernhard Spaan,
  • Elisabetta Spadaro Norella,
  • Patrick Spradlin,
  • Federico Stagni,
  • Marian Stahl,
  • Sascha Stahl,
  • Seophine Stanislaus,
  • Olaf Steinkamp,
  • Oleg Stenyakin,
  • Holger Stevens,
  • Sheldon Stone,
  • Daria Strekalina,
  • Fidan Suljik,
  • Jiayin Sun,
  • Liang Sun,
  • Yipeng Sun,
  • Peter Svihra,
  • Paul Nathaniel Swallow,
  • Krzysztof Swientek,
  • Adam Szabelski,
  • Tomasz Szumlak,
  • Maciej Pawel Szymanski,
  • Shantam Taneja,
  • Alastair Roger Tanner,
  • Martin Duy Tat,
  • Aleksandr Terentev,
  • Frederic Teubert,
  • Eric Thomas,
  • Daniel James David Thompson,
  • Kayleigh Anne Thomson,
  • Hanae Tilquin,
  • Vincent Tisserand,
  • Stephane T'Jampens,
  • Mark Tobin,
  • Luca Tomassetti,
  • Xingyu Tong,
  • Diego Torres Machado,
  • Da Yu Tou,
  • Ekaterina Trifonova,
  • Stoyan Miroslavov Trilov,
  • Carina Trippl,
  • Giulia Tuci,
  • Alison Tully,
  • Niels Tuning,
  • Artur Ukleja,
  • Daniel Joachim Unverzagt,
  • Eduard Ursov,
  • Andrii Usachov,
  • Andrey Ustyuzhanin,
  • Ulrich Uwer,
  • Alexander Vagner,
  • Vincenzo Vagnoni,
  • Andrea Valassi,
  • Giovanni Valenti,
  • Nuria Valls Canudas,
  • Martinus van Beuzekom,
  • Maarten Van Dijk,
  • Hubert Van Hecke,
  • Eric van Herwijnen,
  • Maarten van Veghel,
  • Ricardo Vazquez Gomez,
  • Pablo Vazquez Regueiro,
  • Carlos Vázquez Sierra,
  • Stefania Vecchi,
  • Jaap Velthuis,
  • Michele Veltri,
  • Aravindhan Venkateswaran,
  • Michele Veronesi,
  • Mika Vesterinen,
  • Daniel Vieira,
  • Maria Vieites Diaz,
  • Harald Viemann,
  • Xavier Vilasis-Cardona,
  • Eva Vilella Figueras,
  • Andrea Villa,
  • Pascal Vincent,
  • Felicia Carolin Volle,
  • Dorothea Vom Bruch,
  • Alexey Vorobyev,
  • Vitaly Vorobyev,
  • Nikolai Voropaev,
  • Kimberley Vos,
  • Roland Waldi,
  • John Walsh,
  • Chishuai Wang,
  • Jialu Wang,
  • Jianchun Wang,
  • Jianqiao Wang,
  • Jike Wang,
  • Mengzhen Wang,
  • Rui Wang,
  • Yilong Wang,
  • Zhenzi Wang,
  • Zirui Wang,
  • Ziyi Wang,
  • Jake Alexander Ward,
  • Nigel Watson,
  • Steffen Georg Weber,
  • David Websdale,
  • Constantin Weisser,
  • Benedict Donald C Westhenry,
  • Dylan Jaide White,
  • Mark Whitehead,
  • Aidan Richard Wiederhold,
  • Dirk Wiedner,
  • Guy Wilkinson,
  • Michael Wilkinson,
  • Ifan Williams,
  • Mike Williams,
  • Mark Richard James Williams,
  • Fergus Wilson,
  • Wojciech Wislicki,
  • Mariusz Witek,
  • Lukas Witola,
  • Guy Wormser,
  • Stephen Wotton,
  • Hangyi Wu,
  • Kenneth Wyllie,
  • Zhiyu Xiang,
  • Dong Xiao,
  • Yuehong Xie,
  • Ao Xu,
  • Jingyi Xu,
  • Li Xu,
  • Menglin Xu,
  • Qingnian Xu,
  • Zehua Xu,
  • Zhihao Xu,
  • Di Yang,
  • Shuangli Yang,
  • Youhua Yang,
  • Zhenwei Yang,
  • Zishuo Yang,
  • Yuezhe Yao,
  • Lauren Emma Yeomans,
  • Hang Yin,
  • Jiesheng Yu,
  • Xuhao Yuan,
  • Oleg Yushchenko,
  • Ettore Zaffaroni,
  • Mikhail Zavertyaev,
  • Milosz Zdybal,
  • Oleksandr Zenaiev,
  • Ming Zeng,
  • Dongliang Zhang,
  • Liming Zhang,
  • Shulei Zhang,
  • Shunan Zhang,
  • Yanxi Zhang,
  • Yu Zhang,
  • Alina Zharkova,
  • Alexey Zhelezov,
  • Yangheng Zheng,
  • Tianwen Zhou,
  • Xiaokang Zhou,
  • Yixiong Zhou,
  • Valeriia Zhovkovska,
  • Xianglei Zhu,
  • Xiaoyu Zhu,
  • Zhanwen Zhu,
  • Valery Zhukov,
  • Jennifer Brigitta Zonneveld,
  • Quan Zou,
  • Stefano Zucchelli,
  • Davide Zuliani,
  • Gianluca Zunica
  • (less)
abstract + abstract -

The multihadron decays $ {\Lambda}_b^0 $ → D+pπ−π− and $ {\Lambda}_b^0 $ → D$^{*}$+pπ−π− are observed in data corresponding to an integrated luminosity of 3 fb$^{−1}$, collected in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV by the LHCb detector. Using the decay $ {\Lambda}_b^0 $ → $ {\Lambda}_c^{+} $π$^{+}$π$^{−}$π$^{−}$ as a normalisation channel, the ratio of branching fractions is measured to be$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {\Lambda}_c^0{\pi}^{+}{\pi}^{-}{\pi}^{-}\right)}\times \frac{\mathcal{B}\left({D}^{+}\to {K}^{-}{\pi}^{+}{\pi}^{+}\right)}{\mathcal{B}\left({\Lambda}_c^0\to {pK}^{-}{\pi}^{-}\right)}=\left(5.35\pm 0.21\pm 0.16\right)\%, $where the first uncertainty is statistical and the second systematic. The ratio of branching fractions for the $ {\Lambda}_b^0 $ → D$^{*+}$pπ$^{−}$π$^{−}$ and $ {\Lambda}_b^0 $ → D$^{+}$pπ$^{−}$π$^{−}$ decays is found to be$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{\ast +}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}\times \left(\mathcal{B}\left({D}^{\ast +}\to {D}^{+}{\pi}^0\right)+\mathcal{B}\left({D}^{\ast +}\to {D}^{+}\gamma \right)\right)=\left(61.3\pm 4.3\pm 4.0\right)\%. $[graphic not available: see fulltext]


RU-C
(489)The SHiP experiment at the proposed CERN SPS Beam Dump Facility
  • C. Ahdida,
  • A. Akmete,
  • R. Albanese,
  • J. Alt,
  • A. Alexandrov
  • +340
  • A. Anokhina,
  • S. Aoki,
  • G. Arduini,
  • E. Atkin,
  • N. Azorskiy,
  • J.J. Back,
  • A. Bagulya,
  • F. Baaltasar Dos Santos,
  • A. Baranov,
  • F. Bardou,
  • G.J. Barker,
  • M. Battistin,
  • J. Bauche,
  • A. Bay,
  • V. Bayliss,
  • G. Bencivenni,
  • A.Y. Berdnikov,
  • Y.A. Berdnikov,
  • M. Bertani,
  • C. Betancourt,
  • I. Bezshyiko,
  • O. Bezshyyko,
  • D. Bick,
  • S. Bieschke,
  • A. Blanco,
  • J. Boehm,
  • M. Bogomilov,
  • I. Boiarska,
  • K. Bondarenko,
  • W.M. Bonivento,
  • J. Borburgh,
  • A. Boyarsky,
  • R. Brenner,
  • D. Breton,
  • A. Brignoli,
  • V. Büscher,
  • A. Buonaura,
  • S. Buontempo,
  • S. Cadeddu,
  • A. Calcaterra,
  • M. Calviani,
  • M. Campanelli,
  • M. Casolino,
  • N. Charitonidis,
  • P. Chau,
  • J. Chauveau,
  • A. Chepurnov,
  • M. Chernyavskiy,
  • K.-Y. Choi,
  • A. Chumakov,
  • P. Ciambrone,
  • V. Cicero,
  • M. Climescu,
  • A. Conaboy,
  • L. Congedo,
  • K. Cornelis,
  • M. Cristinziani,
  • A. Crupano,
  • G.M. Dallavalle,
  • A. Datwyler,
  • N. D'Ambrosio,
  • G. D'Appollonio,
  • R. de Asmundis,
  • J. De Carvalho Saraiva,
  • G. De Lellis,
  • M. de Magistris,
  • A. De Roeck,
  • M. De Serio,
  • D. De Simone,
  • L. Dedenko,
  • P. Dergachev,
  • A. Di Crescenzo,
  • L. Di Giulio,
  • N. Di Marco,
  • C. Dib,
  • H. Dijkstra,
  • V. Dmitrenko,
  • L.A. Dougherty,
  • A. Dolmatov,
  • D. Domenici,
  • S. Donskov,
  • V. Drohan,
  • A. Dubreuil,
  • O. Durhan,
  • M. Ehlert,
  • E. Elikkaya,
  • T. Enik,
  • A. Etenko,
  • F. Fabbri,
  • O. Fedin,
  • F. Fedotovs,
  • G. Felici,
  • M. Ferrillo,
  • M. Ferro-Luzzi,
  • K. Filippov,
  • R.A. Fini,
  • H. Fischer,
  • P. Fonte,
  • C. Franco,
  • M. Fraser,
  • R. Fresa,
  • R. Froeschl,
  • T. Fukuda,
  • G. Galati,
  • J. Gall,
  • L. Gatignon,
  • G. Gavrilov,
  • V. Gentile,
  • B. Goddard,
  • L. Golinka-Bezshyyko,
  • A. Golovatiuk,
  • V. Golovtsov,
  • D. Golubkov,
  • A. Golutvin,
  • P. Gorbounov,
  • D. Gorbunov,
  • S. Gorbunov,
  • V. Gorkavenko,
  • M. Gorshenkov,
  • V. Grachev,
  • A.L. Grandchamp,
  • E. Graverini,
  • J.-L. Grenard,
  • D. Grenier,
  • V. Grichine,
  • N. Gruzinskii,
  • A.M. Guler,
  • Yu. Guz,
  • G.J. Haefeli,
  • C. Hagner,
  • H. Hakobyan,
  • I.W. Harris,
  • E. van Herwijnen,
  • C. Hessler,
  • A. Hollnagel,
  • B. Hosseini,
  • M. Hushchyn,
  • G. Iaselli,
  • A. Iuliano,
  • R. Jacobsson,
  • D. Jokovic,
  • M. Jonker,
  • I. Kadenko,
  • V. Kain,
  • B. Kaiser,
  • C. Kamiscioglu,
  • D. Karpenkov,
  • K. Kershaw,
  • M. Khabibullin,
  • E. Khalikov,
  • G. Khaustov,
  • G. Khoriauli,
  • A. Khotyantsev,
  • Y.G. Kim,
  • V. Kim,
  • N. Kitagawa,
  • J.-W. Ko,
  • K. Kodama,
  • A. Kolesnikov,
  • D.I. Kolev,
  • V. Kolosov,
  • M. Komatsu,
  • A. Kono,
  • N. Konovalova,
  • S. Kormannshaus,
  • I. Korol,
  • I. Korol'ko,
  • A. Korzenev,
  • V. Kostyukhin,
  • E. Koukovini Platia,
  • S. Kovalenko,
  • I. Krasilnikova,
  • Y. Kudenko,
  • E. Kurbatov,
  • P. Kurbatov,
  • V. Kurochka,
  • E. Kuznetsova,
  • H.M. Lacker,
  • M. Lamont,
  • G. Lanfranchi,
  • O. Lantwin,
  • A. Lauria,
  • K.S. Lee,
  • K.Y. Lee,
  • N. Leonardo,
  • J.-M. Lévy,
  • V.P. Loschiavo,
  • L. Lopes,
  • E. Lopez Sola,
  • F. Lyons,
  • V. Lyubovitskij,
  • J. Maalmi,
  • A.-M. Magnan,
  • V. Maleev,
  • A. Malinin,
  • Y. Manabe,
  • A.K. Managadze,
  • M. Manfredi,
  • S. Marsh,
  • A.M. Marshall,
  • A. Mefodev,
  • P. Mermod,
  • A. Miano,
  • S. Mikado,
  • Yu. Mikhaylov,
  • A. Mikulenko,
  • D.A. Milstead,
  • O. Mineev,
  • A. Montanari,
  • M.C. Montesi,
  • K. Morishima,
  • S. Movchan,
  • Y. Muttoni,
  • N. Naganawa,
  • M. Nakamura,
  • T. Nakano,
  • S. Nasybulin,
  • P. Ninin,
  • A. Nishio,
  • B. Obinyakov,
  • S. Ogawa,
  • N. Okateva,
  • J. Osborne,
  • M. Ovchynnikov,
  • N. Owtscharenko,
  • P.H. Owen,
  • P. Pacholek,
  • A. Paoloni,
  • B.D. Park,
  • A. Pastore,
  • M. Patel,
  • D. Pereyma,
  • A. Perillo-Marcone,
  • G.L. Petkov,
  • K. Petridis,
  • A. Petrov,
  • D. Podgrudkov,
  • V. Poliakov,
  • N. Polukhina,
  • J. Prieto Prieto,
  • M. Prokudin,
  • A. Prota,
  • A. Quercia,
  • A. Rademakers,
  • A. Rakai,
  • F. Ratnikov,
  • T. Rawlings,
  • F. Redi,
  • A. Reghunath,
  • S. Ricciardi,
  • M. Rinaldesi,
  • Volodymyr Rodin,
  • Viktor Rodin,
  • P. Robbe,
  • A.B. Rodrigues Cavalcante,
  • T. Roganova,
  • H. Rokujo,
  • G. Rosa,
  • T. Rovelli,
  • O. Ruchayskiy,
  • T. Ruf,
  • V. Samoylenko,
  • V. Samsonov,
  • F. Sanchez Galan,
  • P. Santos Diaz,
  • A. Sanz Ull,
  • A. Saputi,
  • O. Sato,
  • E.S. Savchenko,
  • J.S. Schliwinski,
  • W. Schmidt-Parzefall,
  • M. Schumann,
  • N. Serra,
  • S. Sgobba,
  • O. Shadura,
  • A. Shakin,
  • M. Shaposhnikov,
  • P. Shatalov,
  • T. Shchedrina,
  • L. Shchutska,
  • V. Shevchenko,
  • H. Shibuya,
  • L. Shihora,
  • S. Shirobokov,
  • A. Shustov,
  • S.B. Silverstein,
  • S. Simone,
  • R. Simoniello,
  • M. Skorokhvatov,
  • S. Smirnov,
  • G. Soares,
  • J.Y. Sohn,
  • A. Sokolenko,
  • E. Solodko,
  • N. Starkov,
  • L. Stoel,
  • M.E. Stramaglia,
  • D. Sukhonos,
  • Y. Suzuki,
  • S. Takahashi,
  • J.L. Tastet,
  • P. Teterin,
  • S. Than Naing,
  • I. Timiryasov,
  • V. Tioukov,
  • D. Tommasini,
  • M. Torii,
  • N. Tosi,
  • D. Treille,
  • R. Tsenov,
  • S. Ulin,
  • E. Ursov,
  • A. Ustyuzhanin,
  • Z. Uteshev,
  • L. Uvarov,
  • G. Vankova-Kirilova,
  • F. Vannucci,
  • P. Venkova,
  • V. Venturi,
  • I. Vidulin,
  • S. Vilchinski,
  • Heinz Vincke,
  • Helmut Vincke,
  • C. Visone,
  • K. Vlasik,
  • A. Volkov,
  • R. Voronkov,
  • S. van Waasen,
  • R. Wanke,
  • P. Wertelaers,
  • O. Williams,
  • J.-K. Woo,
  • M. Wurm,
  • S. Xella,
  • D. Yilmaz,
  • A.U. Yilmazer,
  • C.S. Yoon,
  • Yu. Zaytsev,
  • A. Zelenov,
  • J. Zimmerman
  • (less)
abstract + abstract -

The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50$\mathrm { \,m}$ long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400$\,\mathrm {GeV}$ protons, the experiment aims at profiting from the $4\times 10^{19}$ protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few ${\mathrm {\,MeV\!/}c^2}$ up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.


CN-1
PhD Thesis
RU-D
(488)Accretion onto black holes across the mass scale.
  • Riccardo Arcodia - Advisor: Kirpal Nandra
Thesis (12/2021) doi:10.5282/edoc.28675
abstract + abstract -

Black holes are amongst the most fascinating concepts both for (astro-) physicists and the public. However, they are not only intriguing objects lurking in the cosmic shadows. Many of the most luminous phenomena, both persistent and transient, that we know in the Universe are somehow related to accretion of matter onto them. Black holes are predicted and inferred to exist in different mass ranges, with two main populations consisting of stellar-mass and supermassive

black holes (SMBHs). [...]


CN-6
(487)Constraints on the CKM angle $\gamma$ from $B^\pm\rightarrow Dh^\pm$ decays using $D\rightarrow h^\pm h^{\prime\mp}\pi^0$ final states
  • Roel Aaij,
  • Ahmed Sameh Wagih Abdelmotteleb,
  • Carlos Abellán Beteta,
  • Fernando Jesus Abudinén,
  • Thomas Ackernley
  • +1010
  • Bernardo Adeva,
  • Marco Adinolfi,
  • Hossein Afsharnia,
  • Christina Agapopoulou,
  • Christine Angela Aidala,
  • Salvatore Aiola,
  • Ziad Ajaltouni,
  • Simon Akar,
  • Johannes Albrecht,
  • Federico Alessio,
  • Michael Alexander,
  • Alejandro Alfonso Albero,
  • Zakariya Aliouche,
  • Georgy Alkhazov,
  • Paula Alvarez Cartelle,
  • Sandra Amato,
  • Jake Lewis Amey,
  • Yasmine Amhis,
  • Liupan An,
  • Lucio Anderlini,
  • N. Andersson,
  • Martin Andersson,
  • Aleksei Andreianov,
  • Mirco Andreotti,
  • Flavio Archilli,
  • Alexander Artamonov,
  • Marina Artuso,
  • Kenenbek Arzymatov,
  • Elie Aslanides,
  • Michele Atzeni,
  • Benjamin Audurier,
  • Sebastian Bachmann,
  • Marie Bachmayer,
  • John Back,
  • Pablo Baladron Rodriguez,
  • Vladislav Balagura,
  • Wander Baldini,
  • Juan Baptista de Souza Leite,
  • Matteo Barbetti,
  • Roger Barlow,
  • Sergey Barsuk,
  • William Barter,
  • Matteo Bartolini,
  • Fedor Baryshnikov,
  • Jan-Marc Basels,
  • S. Bashir,
  • Giovanni Bassi,
  • Baasansuren Batsukh,
  • Alexander Battig,
  • Aurelio Bay,
  • Anja Beck,
  • Maik Becker,
  • Franco Bedeschi,
  • Ignacio Bediaga,
  • Andrew Beiter,
  • Vladislav Belavin,
  • Samuel Belin,
  • Violaine Bellee,
  • Konstantin Belous,
  • Ilia Belov,
  • Ivan Belyaev,
  • Giovanni Bencivenni,
  • Eli Ben-Haim,
  • Alexander Berezhnoy,
  • Roland Bernet,
  • Daniel Berninghoff,
  • Harris Conan Bernstein,
  • Claudia Bertella,
  • Alessandro Bertolin,
  • Christopher Betancourt,
  • Federico Betti,
  • Iaroslava Bezshyiko,
  • Ia. Bezshyiko,
  • Srishti Bhasin,
  • Jihyun Bhom,
  • Lingzhu Bian,
  • Martin Stefan Bieker,
  • Nicolo Vladi Biesuz,
  • Simone Bifani,
  • Pierre Billoir,
  • Alice Biolchini,
  • Matthew Birch,
  • Fionn Caitlin Ros Bishop,
  • Alexander Bitadze,
  • Andrea Bizzeti,
  • Mikkel Bjørn,
  • Michele Piero Blago,
  • Thomas Blake,
  • Frederic Blanc,
  • Steven Blusk,
  • Dana Bobulska,
  • Julian Alexander Boelhauve,
  • Oscar Boente Garcia,
  • Thomas Boettcher,
  • Alexey Boldyrev,
  • Alexander Bondar,
  • Nikolay Bondar,
  • Silvia Borghi,
  • Maxim Borisyak,
  • Martino Borsato,
  • Jozef Tomasz Borsuk,
  • Sonia Amina Bouchiba,
  • Themistocles Bowcock,
  • Alexandre Boyer,
  • Concezio Bozzi,
  • Matthew John Bradley,
  • Svende Braun,
  • Alexandre Brea Rodriguez,
  • Jolanta Brodzicka,
  • Arnau Brossa Gonzalo,
  • Davide Brundu,
  • Annarita Buonaura,
  • Laura Buonincontri,
  • Aodhan Tomas Burke,
  • Christopher Burr,
  • Albert Bursche,
  • Anatoly Butkevich,
  • Jordy Sebastiaan Butter,
  • Jan Buytaert,
  • Wiktor Byczynski,
  • Sandro Cadeddu,
  • Hao Cai,
  • Roberto Calabrese,
  • Lukas Calefice,
  • Stefano Cali,
  • Ryan Calladine,
  • Marta Calvi,
  • Miriam Calvo Gomez,
  • Patricia Camargo Magalhaes,
  • Pierluigi Campana,
  • Angel Fernando Campoverde Quezada,
  • Simone Capelli,
  • Lorenzo Capriotti,
  • Angelo Carbone,
  • Giovanni Carboni,
  • Roberta Cardinale,
  • Alessandro Cardini,
  • Ina Carli,
  • Paolo Carniti,
  • Leon David Carus,
  • Kazuyoshi Carvalho Akiba,
  • Adrian Casais Vidal,
  • Rowina Caspary,
  • Gianluigi Casse,
  • Marco Cattaneo,
  • Giovanni Cavallero,
  • Sara Celani,
  • Jacopo Cerasoli,
  • Daniel Cervenkov,
  • Abbie Jane Chadwick,
  • Matthew George Chapman,
  • Matthew Charles,
  • Philippe Charpentier,
  • Ph. Charpentier,
  • Georgios Chatzikonstantinidis,
  • Carlos Alberto Chavez Barajas,
  • Maximilien Chefdeville,
  • Chen Chen,
  • Shanzhen Chen,
  • Aleksei Chernov,
  • Veronika Chobanova,
  • Serhii Cholak,
  • Marcin Chrzaszcz,
  • Alexsei Chubykin,
  • Vladimir Chulikov,
  • Paolo Ciambrone,
  • Maria Flavia Cicala,
  • Xabier Cid Vidal,
  • Gregory Ciezarek,
  • P.E. L. Clarke,
  • Marco Clemencic,
  • Harry Cliff,
  • Joel Closier,
  • John Leslie Cobbledick,
  • Victor Coco,
  • Joao A.B. Coelho,
  • Julien Cogan,
  • Eric Cogneras,
  • Lucian Cojocariu,
  • Paula Collins,
  • Tommaso Colombo,
  • Liliana Congedo,
  • Andrea Contu,
  • Naomi Cooke,
  • George Coombs,
  • Imanol Corredoira,
  • Gloria Corti,
  • Cayo Mar Costa Sobral,
  • Benjamin Couturier,
  • Daniel Charles Craik,
  • Jana Crkovská,
  • Melissa Maria Cruz Torres,
  • Robert Currie,
  • Cesar Luiz Da Silva,
  • Shakhzod Dadabaev,
  • Lingyun Dai,
  • Elena Dall'Occo,
  • Jeremy Dalseno,
  • Carmelo D'Ambrosio,
  • Anna Danilina,
  • Philippe d'Argent,
  • Aigerim Dashkina,
  • Jonathan Edward Davies,
  • Adam Davis,
  • Oscar De Aguiar Francisco,
  • Kristof De Bruyn,
  • Stefano De Capua,
  • Michel De Cian,
  • Erika De Lucia,
  • Jussara De Miranda,
  • Leandro De Paula,
  • Marilisa De Serio,
  • Dario De Simone,
  • Patrizia De Simone,
  • Fabio De Vellis,
  • Jacco de Vries,
  • Cameron Thomas Dean,
  • Francesco Debernardis,
  • Daniel Decamp,
  • Vlad-George Dedu,
  • Luigi Del Buono,
  • Blaise Delaney,
  • Hans Peter Dembinski,
  • Adam Dendek,
  • Vadym Denysenko,
  • Denis Derkach,
  • Olivier Deschamps,
  • Fabrice Desse,
  • Francesco Dettori,
  • Biplab Dey,
  • Alessandro Di Cicco,
  • Pasquale Di Nezza,
  • Sergey Didenko,
  • Lorena Dieste Maronas,
  • Hans Dijkstra,
  • Vasyl Dobishuk,
  • Chenzhi Dong,
  • Amanda May Donohoe,
  • Francesca Dordei,
  • Alberto dos Reis,
  • Lauren Douglas,
  • Anatoliy Dovbnya,
  • Anthony Gavin Downes,
  • Maciej Wojciech Dudek,
  • Laurent Dufour,
  • Viacheslav Duk,
  • Paolo Durante,
  • John Matthew Durham,
  • Deepanwita Dutta,
  • Agnieszka Dziurda,
  • Alexey Dzyuba,
  • Sajan Easo,
  • Ulrik Egede,
  • Victor Egorychev,
  • Semen Eidelman,
  • Stephan Eisenhardt,
  • Surapat Ek-In,
  • Lars Eklund,
  • Scott Ely,
  • Alexandru Ene,
  • Eliane Epple,
  • Stephan Escher,
  • Jonas Nathanael Eschle,
  • Sevda Esen,
  • Timothy Evans,
  • Lucas Falcao,
  • Yanting Fan,
  • Bo Fang,
  • Stephen Farry,
  • Davide Fazzini,
  • Mauricio Féo,
  • Antonio Fernandez Prieto,
  • Alex Daniel Fernez,
  • Fabio Ferrari,
  • Lino Ferreira Lopes,
  • Fernando Ferreira Rodrigues,
  • Silvia Ferreres Sole,
  • Martina Ferrillo,
  • Massimiliano Ferro-Luzzi,
  • Sergey Filippov,
  • Rosa Anna Fini,
  • Massimiliano Fiorini,
  • Miroslaw Firlej,
  • Kamil Leszek Fischer,
  • M. Fischer,
  • Dillon Scott Fitzgerald,
  • Conor Fitzpatrick,
  • Tomasz Fiutowski,
  • Aristeidis Fkiaras,
  • Frederic Fleuret,
  • Marianna Fontana,
  • Flavio Fontanelli,
  • Roger Forty,
  • Daniel Foulds-Holt,
  • Vinicius Franco Lima,
  • Manuel Franco Sevilla,
  • Markus Frank,
  • Edoardo Franzoso,
  • Giulia Frau,
  • Christoph Frei,
  • David Anthony Friday,
  • Jinlin Fu,
  • Quentin Fuehring,
  • Emmy Gabriel,
  • Giuliana Galati,
  • Abraham Gallas Torreira,
  • Domenico Galli,
  • Silvia Gambetta,
  • Yuyue Gan,
  • Miriam Gandelman,
  • Paolo Gandini,
  • Yuanning Gao,
  • Michela Garau,
  • Luis Miguel Garcia Martin,
  • Paula Garcia Moreno,
  • Julián García Pardiñas,
  • Beatriz Garcia Plana,
  • Felipe Andres Garcia Rosales,
  • Lluis Garrido,
  • Clara Gaspar,
  • Robbert Erik Geertsema,
  • David Gerick,
  • Louis Lenard Gerken,
  • Evelina Gersabeck,
  • Marco Gersabeck,
  • Timothy Gershon,
  • Dawid Gerstel,
  • Luca Giambastiani,
  • Valerie Gibson,
  • Henryk Karol Giemza,
  • Alexander Leon Gilman,
  • Matteo Giovannetti,
  • Alessandra Gioventù,
  • Pere Gironella Gironell,
  • Carmen Giugliano,
  • Konstantin Gizdov,
  • Evangelos Leonidas Gkougkousis,
  • Vladimir Gligorov,
  • Carla Göbel,
  • Elisabet Golobardes,
  • Dmitry Golubkov,
  • Andrey Golutvin,
  • Alvaro Gomes,
  • Sergio Gomez Fernandez,
  • Fernanda Goncalves Abrantes,
  • Mateusz Goncerz,
  • Guanghua Gong,
  • Petr Gorbounov,
  • Igor Vladimirovich Gorelov,
  • Claudio Gotti,
  • Ekaterina Govorkova,
  • Jascha Peter Grabowski,
  • Thomas Grammatico,
  • Luis Alberto Granado Cardoso,
  • Eugeni Graugés,
  • Elena Graverini,
  • Giacomo Graziani,
  • Alexandru Grecu,
  • Lex Marinus Greeven,
  • Nathan Allen Grieser,
  • Lucia Grillo,
  • Sergey Gromov,
  • Barak Raimond Gruberg Cazon,
  • Chenxi Gu,
  • Marco Guarise,
  • Manuel Guittiere,
  • Paul Andre Günther,
  • Evgeny Gushchin,
  • Andreas Guth,
  • Yury Guz,
  • Thierry Gys,
  • Thomas Hadavizadeh,
  • Guido Haefeli,
  • Christophe Haen,
  • Jakob Haimberger,
  • Tabitha Halewood-leagas,
  • Phoebe Meredith Hamilton,
  • Jan Patrick Hammerich,
  • Qundong Han,
  • Xiaoxue Han,
  • Thomas Henry Hancock,
  • Eva Brottmann Hansen,
  • Stephanie Hansmann-Menzemer,
  • Neville Harnew,
  • Thomas Harrison,
  • Christoph Hasse,
  • Mark Hatch,
  • Jibo He,
  • Malte Hecker,
  • Kevin Heijhoff,
  • Kevin Heinicke,
  • Riley Dylan Leslie Henderson,
  • Arthur Marius Hennequin,
  • Karol Hennessy,
  • Louis Henry,
  • Johannes Heuel,
  • Adlène Hicheur,
  • Donal Hill,
  • Martha Hilton,
  • Sophie Elizabeth Hollitt,
  • Ruiwe Hou,
  • Yingrui Hou,
  • Jiangqiao Hu,
  • Jifeng Hu,
  • Wenhua Hu,
  • Xiaofan Hu,
  • Wenqian Huang,
  • Xiaotao Huang,
  • Wouter Hulsbergen,
  • Ross John Hunter,
  • Mikhail Hushchyn,
  • David Hutchcroft,
  • Daniel Hynds,
  • Philipp Ibis,
  • Marek Idzik,
  • Dmitrii Ilin,
  • Philip Ilten,
  • Alexander Inglessi,
  • Artur Ishteev,
  • Kuzma Ivshin,
  • Richard Jacobsson,
  • Hendrik Jage,
  • Sune Jakobsen,
  • Eddy Jans,
  • Brij Kishor Jashal,
  • Abolhassan Jawahery,
  • Vukan Jevtic,
  • Xiaojie Jiang,
  • Malcolm John,
  • Daniel Johnson,
  • Christopher Jones,
  • Thomas Peter Jones,
  • Beat Jost,
  • Nathan Jurik,
  • S.H. Kalavan Kadavath,
  • Sergii Kandybei,
  • Youen Kang,
  • Matthias Karacson,
  • Maksim Karpov,
  • Jacob William Kautz,
  • Floris Keizer,
  • Dustin Michael Keller,
  • Matthew Kenzie,
  • Tjeerd Ketel,
  • Basem Khanji,
  • Anastasiia Kharisova,
  • Sergei Kholodenko,
  • Thomas Kirn,
  • Veronica Soelund Kirsebom,
  • Ouail Kitouni,
  • Suzanne Klaver,
  • Nico Kleijne,
  • Konrad Klimaszewski,
  • Mateusz Rafal Kmiec,
  • Serhii Koliiev,
  • Almagul Kondybayeva,
  • Anatoly Konoplyannikov,
  • Pawel Kopciewicz,
  • Renata Kopecna,
  • Patrick Koppenburg,
  • Mikhail Korolev,
  • Igor Kostiuk,
  • Oleksander Kot,
  • Sofia Kotriakhova,
  • Polina Kravchenko,
  • Leonid Kravchuk,
  • Rafal Dominik Krawczyk,
  • Michal Kreps,
  • Felix Johannes Kress,
  • Sophie Katharina Kretzschmar,
  • Pavel Krokovny,
  • Wojciech Krupa,
  • Wojciech Krzemien,
  • Jakub Kubat,
  • Marcin Kucharczyk,
  • Vasily Kudryavtsev,
  • Hilbrand Steffen Kuindersma,
  • Gerd Joachim Kunde,
  • Tengiz Kvaratskheliya,
  • Daniel Lacarrere,
  • George Lafferty,
  • Adriano Lai,
  • Andrea Lampis,
  • Davide Lancierini,
  • John Jake Lane,
  • Richard Lane,
  • Gaia Lanfranchi,
  • Christoph Langenbruch,
  • Jan Langer,
  • Oliver Lantwin,
  • Thomas Latham,
  • Federico Lazzari,
  • Renaud Le Gac,
  • Sook Hyun Lee,
  • Regis Lefèvre,
  • Alexander Leflat,
  • Sergey Legotin,
  • Olivier Leroy,
  • Tadeusz Lesiak,
  • Blake Leverington,
  • Hengne Li,
  • Peilian Li,
  • Shiyang Li,
  • Yiming Li,
  • Yutong Li,
  • Zhuoming Li,
  • Xixin Liang,
  • Tai-hua Lin,
  • Rolf Lindner,
  • Vitalii Lisovskyi,
  • Roman Litvinov,
  • Guoming Liu,
  • Huanhuan Liu,
  • Qian Liu,
  • Shuaiyi Liu,
  • Aniol Lobo Salvia,
  • Angelo Loi,
  • Julian Lomba Castro,
  • Iain Longstaff,
  • Jose Lopes,
  • Saúl López Soliño,
  • George Holger Lovell,
  • Yu Lu,
  • Chiara Lucarelli,
  • Donatella Lucchesi,
  • Stanislav Luchuk,
  • Miriam Lucio Martinez,
  • Valeriia Lukashenko,
  • Yiheng Luo,
  • Anna Lupato,
  • Eleonora Luppi,
  • Oliver Lupton,
  • Alberto Lusiani,
  • Xiao-Rui Lyu,
  • Lishuang Ma,
  • Ruiting Ma,
  • Serena Maccolini,
  • Frederic Machefert,
  • Florin Maciuc,
  • Vladimir Macko,
  • Patrick Mackowiak,
  • Samuel Maddrell-Mander,
  • O. Madejczyk,
  • Lakshan Ram Madhan Mohan,
  • Oleg Maev,
  • Artem Maevskiy,
  • Maciej Witold Majewski,
  • Jakub Jacek Malczewski,
  • Sneha Malde,
  • Bartosz Malecki,
  • Alexander Malinin,
  • Timofei Maltsev,
  • Hanna Malygina,
  • Giulia Manca,
  • Giampiero Mancinelli,
  • Daniele Manuzzi,
  • Daniele Marangotto,
  • Jan Maratas,
  • Jean François Marchand,
  • Umberto Marconi,
  • Saverio Mariani,
  • Carla Marin Benito,
  • Matthieu Marinangeli,
  • Jörg Marks,
  • Alexander Mclean Marshall,
  • Phillip John Marshall,
  • Gabriele Martelli,
  • Giuseppe Martellotti,
  • Loris Martinazzoli,
  • Maurizio Martinelli,
  • Diego Martinez Santos,
  • Fernando Martinez Vidal,
  • André Massafferri,
  • Marcel Materok,
  • Rosen Matev,
  • Abhijit Mathad,
  • Viacheslav Matiunin,
  • Clara Matteuzzi,
  • Kara Renee Mattioli,
  • Andrea Mauri,
  • Emilie Maurice,
  • Juan Mauricio,
  • Michal Kazimierz Mazurek,
  • Michael McCann,
  • Lucas Mcconnell,
  • Tamaki Holly Mcgrath,
  • Niall Thomas Mchugh,
  • Andrew McNab,
  • Ronan McNulty,
  • James Vincent Mead,
  • Brian Meadows,
  • Gerwin Meier,
  • Dmytro Melnychuk,
  • Simone Meloni,
  • Marcel Merk,
  • Andrea Merli,
  • Lucas Meyer Garcia,
  • Mikhail Mikhasenko,
  • Diego Alejandro Milanes,
  • Edward James Millard,
  • Marko Milovanovic,
  • Marie-Noelle Minard,
  • Alessandro Minotti,
  • Luca Minzoni,
  • Sara Elizabeth Mitchell,
  • Biljana Mitreska,
  • Dominik Stefan Mitzel,
  • Antje Mödden,
  • Rizwaan Adeeb Mohammed,
  • Razvan Daniel Moise,
  • Sergei Mokhnenko,
  • Titus Mombächer,
  • Igancio Alberto Monroy,
  • Stephane Monteil,
  • Mauro Morandin,
  • Gianfranco Morello,
  • Michael Joseph Morello,
  • Jakub Moron,
  • Adam Benjamin Morris,
  • Andrew George Morris,
  • Raymond Mountain,
  • Hongjie Mu,
  • Franz Muheim,
  • Mick Mulder,
  • Dominik Müller,
  • Katharina Müller,
  • Colm Harold Murphy,
  • Donal Murray,
  • Rebecca Murta,
  • Piera Muzzetto,
  • Paras Naik,
  • Tatsuya Nakada,
  • Raja Nandakumar,
  • Tara Nanut,
  • Irina Nasteva,
  • Matthew Needham,
  • Nicola Neri,
  • Sebastian Neubert,
  • Niko Neufeld,
  • Ryan Newcombe,
  • Elisabeth Maria Niel,
  • Simon Nieswand,
  • Nikolay Nikitin,
  • Niklas Stefan Nolte,
  • Camille Normand,
  • Cynthia Nunez,
  • Agnieszka Oblakowska-Mucha,
  • Vladimir Obraztsov,
  • Thomas Oeser,
  • Daniel Patrick O'Hanlon,
  • Shinichi Okamura,
  • Rudolf Oldeman,
  • Federica Oliva,
  • Mario Edgardo Olivares,
  • C.J. G. Onderwater,
  • Ryunosuke Hugo O'Neil,
  • Juan Martin Otalora Goicochea,
  • Tatiana Ovsiannikova,
  • Patrick Owen,
  • Maria Aranzazu Oyanguren,
  • Klaas Ole Padeken,
  • Bhagyashree Pagare,
  • Preema Rennee Pais,
  • Tommaso Pajero,
  • Antimo Palano,
  • Matteo Palutan,
  • Yue Pan,
  • Gennady Panshin,
  • Antonios Papanestis,
  • Marco Pappagallo,
  • Luciano Pappalardo,
  • Cheryl Pappenheimer,
  • William Parker,
  • Christopher Parkes,
  • Barbara Passalacqua,
  • Giovanni Passaleva,
  • Alessandra Pastore,
  • Mitesh Patel,
  • Claudia Patrignani,
  • Christopher James Pawley,
  • Alex Pearce,
  • Antonio Pellegrino,
  • Monica Pepe Altarelli,
  • Stefano Perazzini,
  • Dmitrii Pereima,
  • Asier Pereiro Castro,
  • Pascal Perret,
  • Marko Petric,
  • Konstantinos Petridis,
  • Alessandro Petrolini,
  • Aleksandr Petrov,
  • Stefano Petrucci,
  • Marco Petruzzo,
  • Thi Thuy Hang Pham,
  • Anton Philippov,
  • Roberto Piandani,
  • Lorenzo Pica,
  • Mauro Piccini,
  • Boleslaw Pietrzyk,
  • Guillaume Pietrzyk,
  • Martina Pili,
  • Davide Pinci,
  • Flavio Pisani,
  • Marco Pizzichemi,
  • P.K. Resmi,
  • Vlad-Mihai Placinta,
  • Jonathan Plews,
  • Maximo Plo Casasus,
  • Francesco Polci,
  • Marco Poli Lener,
  • Mariia Poliakova,
  • Anton Poluektov,
  • Natalia Polukhina,
  • Ivan Polyakov,
  • Erica Polycarpo,
  • Sebastien Ponce,
  • Dmitry Popov,
  • Sergei Popov,
  • Stanislav Poslavskii,
  • Kodassery Prasanth,
  • Laura Promberger,
  • Claire Prouve,
  • Valery Pugatch,
  • Veronique Puill,
  • Hannah Louise Pullen,
  • Giovanni Punzi,
  • Hongrong Qi,
  • Wenbin Qian,
  • Ning Qin,
  • Renato Quagliani,
  • Naomi Veronika Raab,
  • Raul Iraq Rabadan Trejo,
  • Bartlomiej Rachwal,
  • Jonas Rademacker,
  • Matteo Rama,
  • Miguel Ramos Pernas,
  • Murilo Rangel,
  • Fedor Ratnikov,
  • Gerhard Raven,
  • Meril Reboud,
  • Federico Redi,
  • Florian Reiss,
  • Clara Remon Alepuz,
  • Zan Ren,
  • Victor Renaudin,
  • Roberto Ribatti,
  • Stefania Ricciardi,
  • Kurt Rinnert,
  • Patrick Robbe,
  • Gary Robertson,
  • Ana Barbara Rodrigues,
  • Eduardo Rodrigues,
  • Jairo Alexis Rodriguez Lopez,
  • E.R. R. Rodriguez Rodriguez,
  • Alexandra Paige Rollings,
  • Philipp Roloff,
  • Vladimir Romanovskiy,
  • Marcos Romero Lamas,
  • Antonio Romero Vidal,
  • Jordan Daniel Roth,
  • Marcello Rotondo,
  • Matthew Scott Rudolph,
  • Thomas Ruf,
  • Ramon Angel Ruiz Fernandez,
  • Joan Ruiz Vidal,
  • Artem Ryzhikov,
  • Jakub Ryzka,
  • Juan Jose Saborido Silva,
  • Naylya Sagidova,
  • Niladribihari Sahoo,
  • Biagio Saitta,
  • Matteo Salomoni,
  • Cristina Sanchez Gras,
  • Roberta Santacesaria,
  • Cibran Santamarina Rios,
  • Marco Santimaria,
  • Emanuele Santovetti,
  • Danila Saranin,
  • Gediminas Sarpis,
  • Minaugas Sarpis,
  • Alessio Sarti,
  • Celestina Satriano,
  • Alessia Satta,
  • Miroslav Saur,
  • Darya Savrina,
  • Halime Sazak,
  • Luke George Scantlebury Smead,
  • Alessandro Scarabotto,
  • Stefan Schael,
  • Sigrid Scherl,
  • Manuel Schiller,
  • Heinrich Schindler,
  • Michael Schmelling,
  • Burkhard Schmidt,
  • Sebastian Schmitt,
  • Olivier Schneider,
  • Andreas Schopper,
  • Maxime Schubiger,
  • Sebastian Schulte,
  • Marie Helene Schune,
  • Rainer Schwemmer,
  • Barbara Sciascia,
  • Sara Sellam,
  • Alexander Semennikov,
  • Mara Senghi Soares,
  • Antonino Sergi,
  • Nicola Serra,
  • Lorenzo Sestini,
  • Alex Seuthe,
  • Yiduo Shang,
  • Desmond Mzamo Shangase,
  • Mikhail Shapkin,
  • Ivan Shchemerov,
  • Lesya Shchutska,
  • Tara Shears,
  • Lev Shekhtman,
  • Zhihong Shen,
  • Shuqi Sheng,
  • Vladimir Shevchenko,
  • Edward Brendan Shields,
  • Yuya Shimizu,
  • Evgenii Shmanin,
  • Joseph David Shupperd,
  • Benedetto Gianluca Siddi,
  • Rafael Silva Coutinho,
  • Gabriele Simi,
  • Saverio Simone,
  • Nicola Skidmore,
  • Tomasz Skwarnicki,
  • Mark Slater,
  • Igor Slazyk,
  • Jennifer Clare Smallwood,
  • John Gordon Smeaton,
  • Anastasia Smetkina,
  • Eluned Smith,
  • Mark Smith,
  • Aleksandra Snoch,
  • Lais Soares Lavra,
  • Michael Sokoloff,
  • F.J. P. Soler,
  • Aleksandr Solovev,
  • Ivan Solovyev,
  • Felipe Luan Souza De Almeida,
  • Bruno Souza De Paula,
  • Bernhard Spaan,
  • Elisabetta Spadaro Norella,
  • Patrick Spradlin,
  • Federico Stagni,
  • Marian Stahl,
  • Sascha Stahl,
  • Seophine Stanislaus,
  • Olaf Steinkamp,
  • Oleg Stenyakin,
  • Holger Stevens,
  • Sheldon Stone,
  • Daria Strekalina,
  • Fidan Suljik,
  • Jiayin Sun,
  • Liang Sun,
  • Yipeng Sun,
  • Peter Svihra,
  • Paul Nathaniel Swallow,
  • Krzysztof Swientek,
  • Adam Szabelski,
  • Tomasz Szumlak,
  • Maciej Pawel Szymanski,
  • Shantam Taneja,
  • Alastair Roger Tanner,
  • Martin Duy Tat,
  • Aleksandr Terentev,
  • Frederic Teubert,
  • Eric Thomas,
  • Daniel James David Thompson,
  • Kayleigh Anne Thomson,
  • Hanae Tilquin,
  • Vincent Tisserand,
  • Stephane T'Jampens,
  • Mark Tobin,
  • Luca Tomassetti,
  • Xingyu Tong,
  • Diego Torres Machado,
  • Da Yu Tou,
  • Ekaterina Trifonova,
  • Stoyan Miroslavov Trilov,
  • Carina Trippl,
  • Giulia Tuci,
  • Alison Tully,
  • Niels Tuning,
  • Artur Ukleja,
  • Daniel Joachim Unverzagt,
  • Eduard Ursov,
  • Andrii Usachov,
  • Andrey Ustyuzhanin,
  • Ulrich Uwer,
  • Alexander Vagner,
  • Vincenzo Vagnoni,
  • Andrea Valassi,
  • Giovanni Valenti,
  • Nuria Valls Canudas,
  • Martinus van Beuzekom,
  • Maarten Van Dijk,
  • Hubert Van Hecke,
  • Eric van Herwijnen,
  • Maarten van Veghel,
  • Ricardo Vazquez Gomez,
  • Pablo Vazquez Regueiro,
  • Carlos Vázquez Sierra,
  • Stefania Vecchi,
  • Jaap Velthuis,
  • Michele Veltri,
  • Aravindhan Venkateswaran,
  • Michele Veronesi,
  • Mika Vesterinen,
  • Daniel Vieira,
  • Maria Vieites Diaz,
  • Harald Viemann,
  • Xavier Vilasis-Cardona,
  • Eva Vilella Figueras,
  • Andrea Villa,
  • Pascal Vincent,
  • Felicia Carolin Volle,
  • Dorothea Vom Bruch,
  • Alexey Vorobyev,
  • Vitaly Vorobyev,
  • Nikolai Voropaev,
  • Kimberley Vos,
  • Roland Waldi,
  • John Walsh,
  • Chishuai Wang,
  • Jialu Wang,
  • Jianchun Wang,
  • Jianqiao Wang,
  • Jike Wang,
  • Mengzhen Wang,
  • Rui Wang,
  • Yilong Wang,
  • Zhenzi Wang,
  • Zirui Wang,
  • Ziyi Wang,
  • Jake Alexander Ward,
  • Nigel Watson,
  • Steffen Georg Weber,
  • David Websdale,
  • Constantin Weisser,
  • Benedict Donald C. Westhenry,
  • Dylan Jaide White,
  • Mark Whitehead,
  • Aidan Richard Wiederhold,
  • Dirk Wiedner,
  • Guy Wilkinson,
  • Michael Kent Wilkinson,
  • Ifan Williams,
  • Mike Williams,
  • Mark Richard James Williams,
  • Fergus Wilson,
  • Wojciech Wislicki,
  • Mariusz Witek,
  • Lukas Witola,
  • Guy Wormser,
  • Stephen Wotton,
  • Hangyi Wu,
  • Kenneth Wyllie,
  • Zhiyu Xiang,
  • Dong Xiao,
  • Yuehong Xie,
  • Ao Xu,
  • Jingyi Xu,
  • Li Xu,
  • Menglin Xu,
  • Qingnian Xu,
  • Zehua Xu,
  • Zhihao Xu,
  • Di Yang,
  • Shuangli Yang,
  • Youhua Yang,
  • Zhenwei Yang,
  • Zishuo Yang,
  • Yuezhe Yao,
  • Lauren Emma Yeomans,
  • Hang Yin,
  • Jiesheng Yu,
  • Xuhao Yuan,
  • Oleg Yushchenko,
  • Ettore Zaffaroni,
  • Mikhail Zavertyaev,
  • Milosz Zdybal,
  • Oleksandr Zenaiev,
  • Ming Zeng,
  • Dongliang Zhang,
  • Liming Zhang,
  • Shulei Zhang,
  • Shunan Zhang,
  • Yanxi Zhang,
  • Yu Zhang,
  • Alina Zharkova,
  • Alexey Zhelezov,
  • Yangheng Zheng,
  • Tianwen Zhou,
  • Xiaokang Zhou,
  • Yixiong Zhou,
  • Valeriia Zhovkovska,
  • Xianglei Zhu,
  • Xiaoyu Zhu,
  • Zhanwen Zhu,
  • Valery Zhukov,
  • Jennifer Brigitta Zonneveld,
  • Quan Zou,
  • Stefano Zucchelli,
  • Davide Zuliani,
  • Gianluca Zunica
  • (less)
abstract + abstract -

A data sample collected with the LHCb detector corresponding to an integrated luminosity of 9 fb$^{-1}$ is used to measure eleven $CP$ violation observables in $B^\pm\to Dh^\pm$ decays, where $h$ is either a kaon or a pion. The neutral $D$ meson decay is reconstructed in the three-body final states: $K^\pm\pi^\mp\pi^0$; $\pi^+\pi^-\pi^0$; $K^+K^-\pi^0$ and the suppressed $\pi^\pm K^\mp\pi^0$ combination. The mode where a large $CP$ asymmetry is expected, $B^\pm\to [\pi^\pm K^\mp\pi^0]_DK^\pm$, is observed with a significance greater than seven standard deviations. The ratio of the partial width of this mode relative to that of the favoured mode, $B^\pm\to [K^\pm\pi^\mp\pi^0]_D K^\pm$, is $R_{{\rm ADS}(K)} = (1.27\pm0.16\pm0.02)\times 10^{-2}$. Evidence for a large $CP$ asymmetry is also seen: $A_{{\rm ADS}(K)} = -0.38\pm0.12\pm0.02$. Constraints on the CKM angle $\gamma$ are calculated from the eleven reported observables.


(486)Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory
  • Fabrizio Caola,
  • Amlan Chakraborty,
  • Giulio Gambuti,
  • Andreas von Manteuffel,
  • Lorenzo Tancredi
abstract + abstract -

We compute the three-loop helicity amplitudes for the scattering of four gluons in QCD. We employ projectors in the ’t Hooft-Veltman scheme and construct the amplitudes from a minimal set of physical building blocks, which allows us to keep the computational complexity under control. We obtain relatively compact results that can be expressed in terms of harmonic polylogarithms. In addition, we consider the Regge limit of our amplitude and extract the gluon Regge trajectory in full three-loop QCD. This is the last missing ingredient required for studying single-Reggeon exchanges at next-to-next-to-leading logarithmic accuracy.


(485)CLMM: a LSST-DESC cluster weak lensing mass modeling library for cosmology
  • M. Aguena,
  • C. Avestruz,
  • C. Combet,
  • S. Fu,
  • R. Herbonnet
  • +20
  • A. I. Malz,
  • M. Penna-Lima,
  • M. Ricci,
  • S. D. P. Vitenti,
  • L. Baumont,
  • H. Fan,
  • M. Fong,
  • M. Ho,
  • M. Kirby,
  • C. Payerne,
  • D. Boutigny,
  • B. Lee,
  • B. Liu,
  • T. McClintock,
  • H. Miyatake,
  • C. Sifón,
  • A. von der Linden,
  • H. Wu,
  • M. Yoon,
  • LSST Dark Energy Science Collaboration
  • (less)
Monthly Notices of the Royal Astronomical Society (12/2021) doi:10.1093/mnras/stab2764
abstract + abstract -

We present the v1.0 release of CLMM, an open source PYTHON library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a stand-alone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the Vera C. Rubin Legacy Survey of Space and Time-Dark Energy Science Collaboration (LSST-DESC). Its purpose is to serve as a flexible, easy-to-install, and easy-to-use interface for both weak lensing simulators and observers and can be applied to real and mock data to study the systematics affecting weak lensing mass reconstruction. At the core of CLMM are routines to model the weak lensing shear signal given the underlying mass distribution of galaxy clusters and a set of data operations to prepare the corresponding data vectors. The theoretical predictions rely on existing software, used as backends in the code, that have been thoroughly tested and cross-checked. Combined theoretical predictions and data can be used to constrain the mass distribution of galaxy clusters as demonstrated in a suite of example Jupyter Notebooks shipped with the software and also available in the extensive online documentation.


(484)Quantum probing of null singularities
  • Ivo Sachs,
  • Marc Schneider,
  • Maximilian Urban
Physical Review D (12/2021) doi:10.1103/PhysRevD.104.125020
abstract + abstract -

We adapt the dual-null foliation to the functional Schrödinger representation of quantum field theory and study the behavior of quantum probes in plane-wave space-times near the null singularity. A comparison between the Einstein-Rosen and the Brinkmann patch, where the latter extends beyond the first, shows a seeming tension that can be resolved by comparing the configuration spaces. Our analysis concludes that Einstein-Rosen space-times support exclusively configurations with nonempty gravitational memory that are focused to a set of measure zero in the focal plane with respect to a Brinkmann observer. To conclude, we provide a rough framework to estimate the qualitative influence of backreactions on these results.


CN-7
RU-A
(483)Charge radii in covariant density functional theory: A global view
  • U. C. Perera,
  • A. V. Afanasjev,
  • P. Ring
Physical Review C (12/2021) doi:10.1103/PhysRevC.104.064313
abstract + abstract -

A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and the separable pairing interaction of Tian et al. [Phys. Lett. B 676, 44 (2009), 10.1016/j.physletb.2009.04.067] are compared with experimental differential charge radii in the regions of the nuclear chart in which available experimental data crosses the neutron shell closures at N =28 ,50 ,82 , and 126. The analysis of absolute differential radii of different isotopic chains and their relative properties indicate clearly that such properties are reasonably well described in model calculations in the cases when the mean-field approximation is justified. However, while the observed clusterization of differential charge radii of different isotopic chains is well described above the N =50 and N =126 shell closures, it is more difficult to reproduce it above the N =28 and N =82 shell closures because of possible deficiencies in the underlying single-particle structure. The impact of the latter has been evaluated for spherical shapes and it was shown that the relative energies of the single-particle states and the patterns of their occupation with increasing neutron number have an appreciable impact on the evolution of the δ «r2»N ,N' values. These factors also limit the predictive power of model calculations in the regions of high densities of the single-particle states of different origin. It is shown that the kinks in the charge radii at neutron shell closures are due to the underlying single-particle structure and due to weakening or collapse of pairing at these closures. The regions of the nuclear chart in which the correlations beyond mean field are expected to have an impact on charge radii are indicated; the analysis shows that the assignment of a calculated excited prolate minimum to the experimental ground state allows us to understand the trends of the evolution of differential charge radii with neutron number in many cases of shape coexistence even at the mean-field level. It is usually assumed that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis paints a more complicated picture. It suggests a new mechanism in which the fragmentation of the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling provides a significant contribution to OES in charge radii.


CN-5
(482)The angular momentum structure of CR-driven galactic outflows triggered by stream accretion
  • N. Peschken,
  • M. Hanasz,
  • T. Naab,
  • D. Wóltański,
  • A. Gawryszczak
Monthly Notices of the Royal Astronomical Society (12/2021) doi:10.1093/mnras/stab2784
abstract + abstract -

We investigate the impact of gas accretion in streams on the evolution of disc galaxies, using magnetohydrodynamic simulations including advection and anisotropic diffusion of cosmic rays (CRs) generated by supernovae as the only source of feedback. Stream accretion has been suggested as an important galaxy growth mechanism in cosmological simulations and we vary their orientation and angular momentum in idealized setups. We find that accretion streams trigger the formation of galactic rings and enhanced star formation. The star formation rates and consequently the CR-driven outflow rates are higher for low angular momentum accretion streams, which also result in more compact, lower angular momentum discs. The CR generated outflows show a characteristic structure. At low outflow velocities (<50 km s-1), the angular momentum distribution is similar to the disc and the gas is in a fountain flow. Gas at high outflow velocities (>200 km s-1), penetrating deep into the halo, has close to zero angular momentum, and originates from the centre of the galaxies. As the mass loading factors of the CR-driven outflows are of the order of unity and higher, we conclude that this process is important for the removal of low angular momentum gas from evolving disc galaxies and the transport of, potentially metal enriched, material from galactic centres far into the galactic haloes.


(481)Interplanetary Dust as a Foreground for the LiteBIRD CMB Satellite Mission
  • Ken Ganga,
  • Michele Maris,
  • Mathieu Remazeilles,
  • LiteBIRD Collaboration
The Open Journal of Astrophysics (12/2021) doi:10.21105/astro.2110.13856
abstract + abstract -

As ever-more sensitive experiments are made in the quest for primordial CMB B Modes, the number of potentially significant astrophysical contaminants becomes larger as well. Thermal emission from interplanetary dust, for example, has been detected by the Planck satellite. While the polarization fraction of this Zodiacal, or interplanetary dust emission (IPDE) is expected to be low, it is bright enough to be detected in total power. Here, estimates of the magnitude of the effect as it might be seen by the LiteBIRD satellite are made. The COBE IPDE model from Kelsall et al. (1998) is combined with a model of the LiteBIRD experiment's scanning strategy to estimate potential contamination of the CMB in both total power and in polarization power spectra. LiteBIRD should detect IPDE in temperature across all of its bands, from 40 through 402 GHz, and should improve limits on the polarization fraction of IPDE at the higher end of this frequency range. If the polarization fraction of IPDE is of order 1%, the current limit from ISO/CAM measurements in the mid-infrared, it may induce large-scale polarization B Modes comparable to cosmological models with an r of order 0.001. In this case, the polarized IPDE would also need to be modeled and removed. As a CMB foreground, IPDE will always be subdominant to Galactic emissions, though because it caused by emission from grains closer to us, it appears variable as the Earth travels around the Sun, and may thereby complicate the data analysis somewhat. But with an understanding of some of the symmetries of the emission and some flexibility in the data processing, it should not be the primary impediment to the CMB polarization measurement.


CN-2
RU-D
(480)The dispersal of protoplanetary discs - III. Influence of stellar mass on disc photoevaporation
  • Giovanni Picogna,
  • Barbara Ercolano,
  • Catherine C. Espaillat
Monthly Notices of the Royal Astronomical Society (12/2021) doi:10.1093/mnras/stab2883
abstract + abstract -

The strong X-ray irradiation from young solar-type stars may play a crucial role in the thermodynamics and chemistry of circumstellar discs, driving their evolution in the last stages of disc dispersal as well as shaping the atmospheres of newborn planets. In this paper, we study the influence of stellar mass on circumstellar disc mass-loss rates due to X-ray irradiation, extending our previous study of the mass-loss rate's dependence on the X-ray luminosity and spectrum hardness. We focus on stars with masses between 0.1 and 1 M, which are the main target of current and future missions to find potentially habitable planets. We find a linear relationship between the mass-loss rates and the stellar masses when changing the X-ray luminosity accordingly with the stellar mass. This linear increase is observed also when the X-ray luminosity is kept fixed because of the lower disc aspect ratio which allows the X-ray irradiation to reach larger radii. We provide new analytical relations for the mass-loss rates and profiles of photoevaporative winds as a function of the stellar mass that can be used in disc and planet population synthesis models. Our photoevaporative models correctly predict the observed trend of inner-disc lifetime as a function of stellar mass with an increased steepness for stars smaller than 0.3 M, indicating that X-ray photoevaporation is a good candidate to explain the observed disc dispersal process.


CN-2
RU-D
(479)The dispersal of protoplanetary discs - II: photoevaporation models with observationally derived irradiating spectra
  • Barbara Ercolano,
  • Giovanni Picogna,
  • Kristina Monsch,
  • Jeremy J. Drake,
  • Thomas Preibisch
Monthly Notices of the Royal Astronomical Society (12/2021) doi:10.1093/mnras/stab2590
abstract + abstract -

Young solar-type stars are known to be strong X-ray emitters and their X-ray spectra have been widely studied. X-rays from the central star may play a crucial role in the thermodynamics and chemistry of the circumstellar material as well as in the atmospheric evolution of young planets. In this paper, we present model spectra based on spectral parameters derived from the observations of young stars in the Orion nebula cluster from the Chandra Orion Ultradeep Project (COUP). The spectra are then used to calculate new photoevaporation prescriptions that can be used in disc and planet population synthesis models. Our models clearly show that disc wind mass loss rates are controlled by the stellar luminosity in the soft ($100\, \mathrm{eV}$ to $1\, \mathrm{keV}$) X-ray band. New analytical relations are provided for the mass loss rates and profiles of photoevaporative winds as a function of the luminosity in the soft X-ray band. The agreement between observed and predicted transition disc statistics moderately improved using the new spectra, but the observed population of strongly accreting large cavity discs can still not be reproduced by these models. Furthermore, our models predict a population of non-accreting transition discs that are not observed. This highlights the importance of considering the depletion of millimetre-sized dust grains from the outer disc, which is a likely reason why such discs have not been detected yet.


CN-2
RU-E
(478)From amino acid mixtures to peptides in liquid sulphur dioxide on early Earth
  • Fabian Sauer,
  • Maren Haas,
  • Constanze Sydow,
  • Alexander F. Siegle,
  • Christoph A. Lauer
  • +1
Nature Communications (12/2021) doi:10.1038/s41467-021-27527-7
abstract + abstract -

The formation of peptide bonds is one of the most important biochemical reaction steps. Without the development of structurally and catalytically active polymers, there would be no life on our planet. However, the formation of large, complex oligomer systems is prevented by the high thermodynamic barrier of peptide condensation in aqueous solution. Liquid sulphur dioxide proves to be a superior alternative for copper-catalyzed peptide condensations. Compared to water, amino acids are activated in sulphur dioxide, leading to the incorporation of all 20 proteinogenic amino acids into proteins. Strikingly, even extremely low initial reactant concentrations of only 50 mM are sufficient for extensive peptide formation, yielding up to 2.9% of dialanine in 7 days. The reactions carried out at room temperature and the successful use of the Hadean mineral covellite (CuS) as a catalyst, suggest a volcanic environment for the formation of the peptide world on early Earth.


RU-A
(477)BSM master formula for ε'/ε in the WET basis at NLO in QCD
  • Jason Aebischer,
  • Christoph Bobeth,
  • Andrzej J. Buras,
  • Jacky Kumar
Journal of High Energy Physics (12/2021) doi:10.1007/JHEP12(2021)043
abstract + abstract -

As an important step towards a complete next-to-leading (NLO) QCD analysis of the ratio ε'/ε within the Standard Model Effective Field Theory (SMEFT), we present for the first time the NLO master formula for the BSM part of this ratio expressed in terms of the Wilson coefficients of all contributing operators evaluated at the electroweak scale. To this end we use the common Weak Effective Theory (WET) basis (the so-called JMS basis) for which tree-level and one-loop matching to the SMEFT are already known. The relevant hadronic matrix elements of BSM operators at the electroweak scale are taken from Dual QCD approach and the SM ones from lattice QCD. It includes the renormalization group evolution and quark-flavour threshold effects at NLO in QCD from hadronic scales, at which these matrix elements have been calculated, to the electroweak scale.


CN-3
RU-D
(476)Rotation Curves in z 1-2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods
  • S. H. Price,
  • T. T. Shimizu,
  • R. Genzel,
  • H. Übler,
  • N. M. Förster Schreiber
  • +20
  • L. J. Tacconi,
  • R. I. Davies,
  • R. T. Coogan,
  • D. Lutz,
  • S. Wuyts,
  • E. Wisnioski,
  • A. Nestor,
  • A. Sternberg,
  • A. Burkert,
  • R. Bender,
  • A. Contursi,
  • R. L. Davies,
  • R. Herrera-Camus,
  • M. -J. Lee,
  • T. Naab,
  • R. Neri,
  • A. Renzini,
  • R. Saglia,
  • A. Schruba,
  • K. Schuster
  • (less)
The Astrophysical Journal (12/2021) doi:10.3847/1538-4357/ac22ad
abstract + abstract -

We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z ~ 0.67 - 2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, turbulent disk, and an NFW dark matter halo, using code that fully forward-models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I: the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of noncircular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z ~ 1 - 2 are baryon-dominated on galactic scales, with lower dark matter fractions toward higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis.


MIAPbP
(475)Mass-ratio and Magnetic Flux Dependence of Modulated Accretion from Circumbinary Disks
  • Scott C. Noble,
  • Julian H. Krolik,
  • Manuela Campanelli,
  • Yosef Zlochower,
  • Bruno C. Mundim
  • +2
  • Hiroyuki Nakano,
  • Miguel Zilhão
  • (less)
The Astrophysical Journal (12/2021) doi:10.3847/1538-4357/ac2229
abstract + abstract -

Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an "overdensity" or "lump;" this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.


RU-D
(474)The formation of wide exoKuiper belts from migrating dust traps
  • E. Miller,
  • S. Marino,
  • S. M. Stammler,
  • P. Pinilla,
  • C. Lenz
  • +2
Monthly Notices of the Royal Astronomical Society (12/2021) doi:10.1093/mnras/stab2935
abstract + abstract -

The question of what determines the width of Kuiper belt analogues (exoKuiper belts) is an open one. If solved, this understanding would provide valuable insights into the architecture, dynamics, and formation of exoplanetary systems. Recent observations by ALMA have revealed an apparent paradox in this field, the presence of radially narrow belts in protoplanetary discs that are likely the birthplaces of planetesimals, and exoKuiper belts nearly four times as wide in mature systems. If the parent planetesimals of this type of debris disc indeed form in these narrow protoplanetary rings via streaming instability where dust is trapped, we propose that this width dichotomy could naturally arise if these dust traps form planetesimals whilst migrating radially, e.g. as caused by a migrating planet. Using the dust evolution software DUSTPY, we find that if the initial protoplanetary disc and trap conditions favour planetesimal formation, dust can still effectively accumulate and form planetesimals as the trap moves. This leads to a positive correlation between the inward radial speed and final planetesimal belt width, forming belts up to ~100AU over 10 Myr of evolution. We show that although planetesimal formation is most efficient in low-viscosity (α = 10-4) discs with steep dust traps to trigger the streaming instability, the large widths of most observed planetesimal belts constrain α to values ≥4 × 10-4 at tens of AU, otherwise the traps cannot migrate far enough. Additionally, the large spread in the widths and radii of exoKuiper belts could be due to different trap migration speeds (or protoplanetary disc lifetimes) and different starting locations, respectively. Our work serves as a first step to link exoKuiper belts and rings in protoplanetary discs.


CN-3
RU-C
(473)Two-loop bispectrum of large-scale structure
  • Tobias Baldauf,
  • Mathias Garny,
  • Petter Taule,
  • Theo Steele
Physical Review D (12/2021) doi:10.1103/PhysRevD.104.123551
abstract + abstract -

The bispectrum is the leading non-Gaussian statistic in large-scale structure, carrying valuable information on cosmology that is complementary to the power spectrum. To access this information, we need to model the bispectrum in the weakly nonlinear regime. In this work we present the first two-loop, i.e. next-to-next-to-leading order perturbative description of the bispectrum within an effective field theory (EFT) framework. Using an analytic expansion of the perturbative kernels up to F6 we derive a renormalized bispectrum that is demonstrated to be independent of the UV cutoff. We show that the EFT parameters associated with the four independent second-order EFT operators known from the one-loop bispectrum are sufficient to absorb the UV sensitivity of the two-loop contributions in the double-hard region. In addition, we employ a simplified treatment of the single-hard region, introducing one extra EFT parameter at two-loop order. We compare our results to N -body simulations using the realization-based grid perturbation theory method and find good agreement within the expected range, as well as consistent values for the EFT parameters. The two-loop terms start to become relevant at k ≈0.07 h Mpc-1. The range of wave numbers with percent-level agreement, independently of the shape, extends from 0.08 to 0.15 h Mpc-1 when going from one to two loops at z =0 . In addition, we quantify the impact of using exact instead of Einstein-de-Sitter kernels for the one-loop bispectrum, and discuss in how far their impact can be absorbed into a shift of the EFT parameters.


IDSL
RU-E
(472)Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells
  • Alan Ianeselli,
  • Damla Tetiker,
  • Julian Stein,
  • Alexandra Kühnlein,
  • Christof B. Mast
  • +2
Nature Chemistry (12/2021) doi:10.1038/s41557-021-00830-y
abstract + abstract -

Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.


CN-8
RU-E
(471)Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes
  • Yusuf Qutbuddin,
  • Jan-Hagen Krohn,
  • Gereon A. Brüggenthies,
  • Johannes Stein,
  • Svetozar Gavrilovic
  • +2
  • Florian Stehr,
  • and Petra Schwille
  • (less)
J. Phys. Chem. B (11/2021) doi:10.1021/acs.jpcb.1c07694
abstract + abstract -

Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.


CN-7
RU-A
(470)Global performance of covariant density functional theory in description of charge radii and related indicators
  • A. V. Afanasjev,
  • U. C. Perera,
  • P. Ring
Bulgarian Journal of Physics (11/2021) e-Print:2111.04782 doi:10.48550/arXiv.2111.04782
abstract + abstract -

A short review of existing efforts to understand charge radii and related indicators on a global scale within the covariant density functional theory (CDFT) is presented. Using major classes of covariant energy density functionals (CEDFs), the global accuracy of the description of experimental absolute and differential charge radii within the CDFT framework has been established. This assessment is supplemented by an evaluation of theoretical statistical and systematic uncertainties in the description of charge radii. New results on the accuracy of the description of differential charge radii in deformed actinides and light superheavy nuclei are presented and the role of octupole deformation in their reproduction is evaluated. Novel mechanisms leading to odd-even staggering in charge radii are discussed. Finally, we analyze the role of self-consistency effects in an accurate description of differential charge radii.


(469)Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements
  • Shadab Alam,
  • Christian Arnold,
  • Alejandro Aviles,
  • Rachel Bean,
  • Yan-Chuan Cai
  • +31
  • Marius Cautun,
  • Jorge L. Cervantes-Cota,
  • Carolina Cuesta-Lazaro,
  • N. Chandrachani Devi,
  • Alexander Eggemeier,
  • Sebastien Fromenteau,
  • Alma X. Gonzalez-Morales,
  • Vitali Halenka,
  • Jian-hua He,
  • Wojciech A. Hellwing,
  • César Hernández-Aguayo,
  • Mustapha Ishak,
  • Kazuya Koyama,
  • Baojiu Li,
  • Axel de la Macorra,
  • Jennifer Meneses Rizo,
  • Christopher Miller,
  • Eva-Maria Mueller,
  • Gustavo Niz,
  • Pierros Ntelis,
  • Matia Rodríguez Otero,
  • Cristiano G. Sabiu,
  • Zachary Slepian,
  • Alejo Stark,
  • Octavio Valenzuela,
  • Georgios Valogiannis,
  • Mariana Vargas-Magaña,
  • Hans A. Winther,
  • Pauline Zarrouk,
  • Gong-Bo Zhao,
  • Yi Zheng
  • (less)
Journal of Cosmology and Astroparticle Physics (11/2021) doi:10.1088/1475-7516/2021/11/050
abstract + abstract -

Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for - its applications on those scales being largely based on extrapolation and its validity there sometimes questioned in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR.


CN-6
(468)The Pacific Ocean Neutrino Experiment
  • Elisa Resconi
abstract + abstract -

Neutrino telescopes are unrivaled tools to explore the Universe at its most extreme. The current generation of telescopes has shown that very high energy neutrinos are produced in the cosmos, even with hints of their possible origin, and that these neutrinos can be used to probe our understanding of particle physics at otherwise inaccessible regimes. The fluxes, however, are low, which means newer, larger telescopes are needed. Here we present the Pacific Ocean Neutrino Experiment, a proposal to build a multi-cubic-kilometer neutrino telescope off the coast of Canada. The idea builds on the experience accumulated by previous sea-water missions, and the technical expertise of Ocean Networks Canada that would facilitate deploying such a large infrastructure. The design and physics potential of the first stage and a full-scale P-ONE are discussed.


CN-6
(467)Searches for rare $ {B}_s^0 $ and B$^{0}$ decays into four muons
  • R. Aaij,
  • A.S.W. Abdelmotteleb,
  • C. Abellán Beteta,
  • F. Abudinén,
  • T. Ackernley
  • +1009
  • B. Adeva,
  • M. Adinolfi,
  • H. Afsharnia,
  • C. Agapopoulou,
  • C.A. Aidala,
  • S. Aiola,
  • Z. Ajaltouni,
  • S. Akar,
  • J. Albrecht,
  • F. Alessio,
  • M. Alexander,
  • A. Alfonso Albero,
  • Z. Aliouche,
  • G. Alkhazov,
  • P. Alvarez Cartelle,
  • S. Amato,
  • J.L. Amey,
  • Y. Amhis,
  • L. An,
  • L. Anderlini,
  • M. Andersson,
  • A. Andreianov,
  • M. Andreotti,
  • F. Archilli,
  • A. Artamonov,
  • M. Artuso,
  • K. Arzymatov,
  • E. Aslanides,
  • M. Atzeni,
  • B. Audurier,
  • S. Bachmann,
  • M. Bachmayer,
  • J.J. Back,
  • P. Baladron Rodriguez,
  • V. Balagura,
  • W. Baldini,
  • J. Baptista de Souza Leite,
  • M. Barbetti,
  • R.J. Barlow,
  • S. Barsuk,
  • W. Barter,
  • M. Bartolini,
  • F. Baryshnikov,
  • J.M. Basels,
  • S. Bashir,
  • G. Bassi,
  • B. Batsukh,
  • A. Battig,
  • A. Bay,
  • A. Beck,
  • M. Becker,
  • F. Bedeschi,
  • I. Bediaga,
  • A. Beiter,
  • V. Belavin,
  • S. Belin,
  • V. Bellee,
  • K. Belous,
  • I. Belov,
  • I. Belyaev,
  • G. Bencivenni,
  • E. Ben-Haim,
  • A. Berezhnoy,
  • R. Bernet,
  • D. Berninghoff,
  • H.C. Bernstein,
  • C. Bertella,
  • A. Bertolin,
  • C. Betancourt,
  • F. Betti,
  • Ia. Bezshyiko,
  • Iaroslava Bezshyiko,
  • S. Bhasin,
  • J. Bhom,
  • L. Bian,
  • M.S. Bieker,
  • N.V. Biesuz,
  • S. Bifani,
  • P. Billoir,
  • A. Biolchini,
  • M. Birch,
  • F.C.R. Bishop,
  • A. Bitadze,
  • A. Bizzeti,
  • M. Bjørn,
  • M.P. Blago,
  • T. Blake,
  • F. Blanc,
  • S. Blusk,
  • D. Bobulska,
  • J.A. Boelhauve,
  • O. Boente Garcia,
  • T. Boettcher,
  • A. Boldyrev,
  • A. Bondar,
  • N. Bondar,
  • S. Borghi,
  • M. Borisyak,
  • M. Borsato,
  • J.T. Borsuk,
  • S.A. Bouchiba,
  • T.J.V. Bowcock,
  • A. Boyer,
  • C. Bozzi,
  • M.J. Bradley,
  • S. Braun,
  • A. Brea Rodriguez,
  • J. Brodzicka,
  • A. Brossa Gonzalo,
  • D. Brundu,
  • A. Buonaura,
  • L. Buonincontri,
  • A.T. Burke,
  • C. Burr,
  • A. Bursche,
  • A. Butkevich,
  • J.S. Butter,
  • J. Buytaert,
  • W. Byczynski,
  • S. Cadeddu,
  • H. Cai,
  • R. Calabrese,
  • L. Calefice,
  • S. Cali,
  • R. Calladine,
  • M. Calvi,
  • M. Calvo Gomez,
  • P. Camargo Magalhaes,
  • P. Campana,
  • A.F. Campoverde Quezada,
  • S. Capelli,
  • L. Capriotti,
  • A. Carbone,
  • G. Carboni,
  • R. Cardinale,
  • A. Cardini,
  • I. Carli,
  • P. Carniti,
  • L. Carus,
  • K. Carvalho Akiba,
  • A. Casais Vidal,
  • R. Caspary,
  • G. Casse,
  • M. Cattaneo,
  • G. Cavallero,
  • S. Celani,
  • J. Cerasoli,
  • D. Cervenkov,
  • A.J. Chadwick,
  • M.G. Chapman,
  • M. Charles,
  • Philippe Charpentier,
  • Ph. Charpentier,
  • G. Chatzikonstantinidis,
  • C.A. Chavez Barajas,
  • M. Chefdeville,
  • C. Chen,
  • S. Chen,
  • A. Chernov,
  • V. Chobanova,
  • S. Cholak,
  • M. Chrzaszcz,
  • A. Chubykin,
  • V. Chulikov,
  • P. Ciambrone,
  • M.F. Cicala,
  • X. Cid Vidal,
  • G. Ciezarek,
  • P.E. L. Clarke,
  • M. Clemencic,
  • H.V. Cliff,
  • J. Closier,
  • J.L. Cobbledick,
  • V. Coco,
  • J.A.B. Coelho,
  • J. Cogan,
  • E. Cogneras,
  • L. Cojocariu,
  • P. Collins,
  • T. Colombo,
  • L. Congedo,
  • A. Contu,
  • N. Cooke,
  • G. Coombs,
  • I. Corredoira,
  • G. Corti,
  • C.M. Costa Sobral,
  • B. Couturier,
  • D.C. Craik,
  • J. Crkovská,
  • M. Cruz Torres,
  • R. Currie,
  • C.L. Da Silva,
  • S. Dadabaev,
  • L. Dai,
  • E. Dall'Occo,
  • J. Dalseno,
  • C. D'Ambrosio,
  • A. Danilina,
  • P. d'Argent,
  • A. Dashkina,
  • J.E. Davies,
  • A. Davis,
  • O. De Aguiar Francisco,
  • K. De Bruyn,
  • S. De Capua,
  • M. De Cian,
  • E. De Lucia,
  • J.M. De Miranda,
  • L. De Paula,
  • M. De Serio,
  • D. De Simone,
  • P. De Simone,
  • F. De Vellis,
  • J.A. de Vries,
  • C.T. Dean,
  • F. Debernardis,
  • D. Decamp,
  • V. Dedu,
  • L. Del Buono,
  • B. Delaney,
  • H.-P. Dembinski,
  • A. Dendek,
  • V. Denysenko,
  • D. Derkach,
  • O. Deschamps,
  • F. Desse,
  • F. Dettori,
  • B. Dey,
  • A. Di Cicco,
  • P. Di Nezza,
  • S. Didenko,
  • L. Dieste Maronas,
  • H. Dijkstra,
  • V. Dobishuk,
  • C. Dong,
  • A.M. Donohoe,
  • F. Dordei,
  • A.C. dos Reis,
  • L. Douglas,
  • A. Dovbnya,
  • A.G. Downes,
  • M.W. Dudek,
  • L. Dufour,
  • V. Duk,
  • P. Durante,
  • J.M. Durham,
  • D. Dutta,
  • A. Dziurda,
  • A. Dzyuba,
  • S. Easo,
  • U. Egede,
  • V. Egorychev,
  • S. Eidelman,
  • S. Eisenhardt,
  • S. Ek-In,
  • L. Eklund,
  • S. Ely,
  • A. Ene,
  • E. Epple,
  • S. Escher,
  • J. Eschle,
  • S. Esen,
  • T. Evans,
  • L.N. Falcao,
  • Y. Fan,
  • B. Fang,
  • S. Farry,
  • D. Fazzini,
  • M. Féo,
  • A. Fernandez Prieto,
  • A.D. Fernez,
  • F. Ferrari,
  • L. Ferreira Lopes,
  • F. Ferreira Rodrigues,
  • S. Ferreres Sole,
  • M. Ferrillo,
  • M. Ferro-Luzzi,
  • S. Filippov,
  • R.A. Fini,
  • M. Fiorini,
  • M. Firlej,
  • Kamil Leszek Fischer,
  • K.M. Fischer,
  • D.S. Fitzgerald,
  • C. Fitzpatrick,
  • T. Fiutowski,
  • A. Fkiaras,
  • F. Fleuret,
  • M. Fontana,
  • F. Fontanelli,
  • R. Forty,
  • D. Foulds-Holt,
  • V. Franco Lima,
  • M. Franco Sevilla,
  • M. Frank,
  • E. Franzoso,
  • G. Frau,
  • C. Frei,
  • D.A. Friday,
  • J. Fu,
  • Q. Fuehring,
  • E. Gabriel,
  • G. Galati,
  • A. Gallas Torreira,
  • D. Galli,
  • S. Gambetta,
  • Y. Gan,
  • M. Gandelman,
  • P. Gandini,
  • Y. Gao,
  • M. Garau,
  • L.M. Garcia Martin,
  • P. Garcia Moreno,
  • J. García Pardiñas,
  • B. Garcia Plana,
  • F.A. Garcia Rosales,
  • L. Garrido,
  • C. Gaspar,
  • R.E. Geertsema,
  • D. Gerick,
  • L.L. Gerken,
  • E. Gersabeck,
  • M. Gersabeck,
  • T. Gershon,
  • D. Gerstel,
  • L. Giambastiani,
  • V. Gibson,
  • H.K. Giemza,
  • A.L. Gilman,
  • M. Giovannetti,
  • A. Gioventù,
  • P. Gironella Gironell,
  • C. Giugliano,
  • K. Gizdov,
  • E.L. Gkougkousis,
  • V.V. Gligorov,
  • C. Göbel,
  • E. Golobardes,
  • D. Golubkov,
  • A. Golutvin,
  • A. Gomes,
  • S. Gomez Fernandez,
  • F. Goncalves Abrantes,
  • M. Goncerz,
  • G. Gong,
  • P. Gorbounov,
  • I.V. Gorelov,
  • C. Gotti,
  • E. Govorkova,
  • J.P. Grabowski,
  • T. Grammatico,
  • L.A. Granado Cardoso,
  • E. Graugés,
  • E. Graverini,
  • G. Graziani,
  • A. Grecu,
  • L.M. Greeven,
  • N.A. Grieser,
  • L. Grillo,
  • S. Gromov,
  • B.R. Gruberg Cazon,
  • C. Gu,
  • M. Guarise,
  • M. Guittiere,
  • P.A. Günther,
  • E. Gushchin,
  • A. Guth,
  • Y. Guz,
  • T. Gys,
  • T. Hadavizadeh,
  • G. Haefeli,
  • C. Haen,
  • J. Haimberger,
  • T. Halewood-leagas,
  • P.M. Hamilton,
  • J.P. Hammerich,
  • Q. Han,
  • X. Han,
  • T.H. Hancock,
  • E.B. Hansen,
  • S. Hansmann-Menzemer,
  • N. Harnew,
  • T. Harrison,
  • C. Hasse,
  • M. Hatch,
  • J. He,
  • M. Hecker,
  • K. Heijhoff,
  • K. Heinicke,
  • R.D.L. Henderson,
  • A.M. Hennequin,
  • K. Hennessy,
  • L. Henry,
  • J. Heuel,
  • A. Hicheur,
  • D. Hill,
  • M. Hilton,
  • S.E. Hollitt,
  • R. Hou,
  • Y. Hou,
  • Jiangqiao Hu,
  • Jifeng Hu,
  • W. Hu,
  • X. Hu,
  • W. Huang,
  • X. Huang,
  • W. Hulsbergen,
  • R.J. Hunter,
  • M. Hushchyn,
  • D. Hutchcroft,
  • D. Hynds,
  • P. Ibis,
  • M. Idzik,
  • D. Ilin,
  • P. Ilten,
  • A. Inglessi,
  • A. Ishteev,
  • K. Ivshin,
  • R. Jacobsson,
  • H. Jage,
  • S. Jakobsen,
  • E. Jans,
  • B.K. Jashal,
  • A. Jawahery,
  • V. Jevtic,
  • X. Jiang,
  • M. John,
  • D. Johnson,
  • C.R. Jones,
  • T.P. Jones,
  • B. Jost,
  • N. Jurik,
  • S.H. Kalavan Kadavath,
  • S. Kandybei,
  • Y. Kang,
  • M. Karacson,
  • M. Karpov,
  • J.W. Kautz,
  • F. Keizer,
  • D.M. Keller,
  • M. Kenzie,
  • T. Ketel,
  • B. Khanji,
  • A. Kharisova,
  • S. Kholodenko,
  • T. Kirn,
  • V.S. Kirsebom,
  • O. Kitouni,
  • S. Klaver,
  • N. Kleijne,
  • K. Klimaszewski,
  • M.R. Kmiec,
  • S. Koliiev,
  • A. Kondybayeva,
  • A. Konoplyannikov,
  • P. Kopciewicz,
  • R. Kopecna,
  • P. Koppenburg,
  • M. Korolev,
  • I. Kostiuk,
  • O. Kot,
  • S. Kotriakhova,
  • P. Kravchenko,
  • L. Kravchuk,
  • R.D. Krawczyk,
  • M. Kreps,
  • F. Kress,
  • S. Kretzschmar,
  • P. Krokovny,
  • W. Krupa,
  • W. Krzemien,
  • J. Kubat,
  • M. Kucharczyk,
  • V. Kudryavtsev,
  • H.S. Kuindersma,
  • G.J. Kunde,
  • T. Kvaratskheliya,
  • D. Lacarrere,
  • G. Lafferty,
  • A. Lai,
  • A. Lampis,
  • D. Lancierini,
  • J.J. Lane,
  • R. Lane,
  • G. Lanfranchi,
  • C. Langenbruch,
  • J. Langer,
  • O. Lantwin,
  • T. Latham,
  • F. Lazzari,
  • R. Le Gac,
  • S.H. Lee,
  • R. Lefèvre,
  • A. Leflat,
  • S. Legotin,
  • O. Leroy,
  • T. Lesiak,
  • B. Leverington,
  • H. Li,
  • P. Li,
  • S. Li,
  • Yiming Li,
  • Yutong Li,
  • Z. Li,
  • X. Liang,
  • T. Lin,
  • R. Lindner,
  • V. Lisovskyi,
  • R. Litvinov,
  • G. Liu,
  • H. Liu,
  • Q. Liu,
  • S. Liu,
  • A. Lobo Salvia,
  • A. Loi,
  • J. Lomba Castro,
  • I. Longstaff,
  • J.H. Lopes,
  • S. López Soliño,
  • G.H. Lovell,
  • Y. Lu,
  • C. Lucarelli,
  • D. Lucchesi,
  • S. Luchuk,
  • M. Lucio Martinez,
  • V. Lukashenko,
  • Y. Luo,
  • A. Lupato,
  • E. Luppi,
  • O. Lupton,
  • A. Lusiani,
  • X. Lyu,
  • L. Ma,
  • R. Ma,
  • S. Maccolini,
  • F. Machefert,
  • F. Maciuc,
  • V. Macko,
  • P. Mackowiak,
  • S. Maddrell-Mander,
  • O. Madejczyk,
  • L.R. Madhan Mohan,
  • O. Maev,
  • A. Maevskiy,
  • M.W. Majewski,
  • J.J. Malczewski,
  • S. Malde,
  • B. Malecki,
  • A. Malinin,
  • T. Maltsev,
  • H. Malygina,
  • G. Manca,
  • G. Mancinelli,
  • D. Manuzzi,
  • D. Marangotto,
  • J. Maratas,
  • J.F. Marchand,
  • U. Marconi,
  • S. Mariani,
  • C. Marin Benito,
  • M. Marinangeli,
  • J. Marks,
  • A.M. Marshall,
  • P.J. Marshall,
  • G. Martelli,
  • G. Martellotti,
  • L. Martinazzoli,
  • M. Martinelli,
  • D. Martinez Santos,
  • F. Martinez Vidal,
  • A. Massafferri,
  • M. Materok,
  • R. Matev,
  • A. Mathad,
  • V. Matiunin,
  • C. Matteuzzi,
  • K.R. Mattioli,
  • A. Mauri,
  • E. Maurice,
  • J. Mauricio,
  • M. Mazurek,
  • M. McCann,
  • L. Mcconnell,
  • T.H. Mcgrath,
  • N.T. Mchugh,
  • A. McNab,
  • R. McNulty,
  • J.V. Mead,
  • B. Meadows,
  • G. Meier,
  • D. Melnychuk,
  • S. Meloni,
  • M. Merk,
  • A. Merli,
  • L. Meyer Garcia,
  • M. Mikhasenko,
  • D.A. Milanes,
  • E. Millard,
  • M. Milovanovic,
  • M.-N. Minard,
  • A. Minotti,
  • L. Minzoni,
  • S.E. Mitchell,
  • B. Mitreska,
  • D.S. Mitzel,
  • A. Mödden,
  • R.A. Mohammed,
  • R.D. Moise,
  • S. Mokhnenko,
  • T. Mombächer,
  • I.A. Monroy,
  • S. Monteil,
  • M. Morandin,
  • G. Morello,
  • M.J. Morello,
  • J. Moron,
  • A.B. Morris,
  • A.G. Morris,
  • R. Mountain,
  • H. Mu,
  • F. Muheim,
  • M. Mulder,
  • D. Müller,
  • K. Müller,
  • C.H. Murphy,
  • D. Murray,
  • R. Murta,
  • P. Muzzetto,
  • P. Naik,
  • T. Nakada,
  • R. Nandakumar,
  • T. Nanut,
  • I. Nasteva,
  • M. Needham,
  • N. Neri,
  • S. Neubert,
  • N. Neufeld,
  • R. Newcombe,
  • E.M. Niel,
  • S. Nieswand,
  • N. Nikitin,
  • N.S. Nolte,
  • C. Normand,
  • C. Nunez,
  • A. Oblakowska-Mucha,
  • V. Obraztsov,
  • T. Oeser,
  • D.P. O'Hanlon,
  • S. Okamura,
  • R. Oldeman,
  • F. Oliva,
  • M.E. Olivares,
  • C.J. G. Onderwater,
  • R.H. O'Neil,
  • J.M. Otalora Goicochea,
  • T. Ovsiannikova,
  • P. Owen,
  • A. Oyanguren,
  • K.O. Padeken,
  • B. Pagare,
  • P.R. Pais,
  • T. Pajero,
  • A. Palano,
  • M. Palutan,
  • Y. Pan,
  • G. Panshin,
  • A. Papanestis,
  • M. Pappagallo,
  • L.L. Pappalardo,
  • C. Pappenheimer,
  • W. Parker,
  • C. Parkes,
  • B. Passalacqua,
  • G. Passaleva,
  • A. Pastore,
  • M. Patel,
  • C. Patrignani,
  • C.J. Pawley,
  • A. Pearce,
  • A. Pellegrino,
  • M. Pepe Altarelli,
  • S. Perazzini,
  • D. Pereima,
  • A. Pereiro Castro,
  • P. Perret,
  • M. Petric,
  • K. Petridis,
  • A. Petrolini,
  • A. Petrov,
  • S. Petrucci,
  • M. Petruzzo,
  • T.T.H. Pham,
  • A. Philippov,
  • R. Piandani,
  • L. Pica,
  • M. Piccini,
  • B. Pietrzyk,
  • G. Pietrzyk,
  • M. Pili,
  • D. Pinci,
  • F. Pisani,
  • M. Pizzichemi,
  • P.K. Resmi,
  • V. Placinta,
  • J. Plews,
  • M. Plo Casasus,
  • F. Polci,
  • M. Poli Lener,
  • M. Poliakova,
  • A. Poluektov,
  • N. Polukhina,
  • I. Polyakov,
  • E. Polycarpo,
  • S. Ponce,
  • D. Popov,
  • S. Popov,
  • S. Poslavskii,
  • K. Prasanth,
  • L. Promberger,
  • C. Prouve,
  • V. Pugatch,
  • V. Puill,
  • G. Punzi,
  • H. Qi,
  • W. Qian,
  • N. Qin,
  • R. Quagliani,
  • N.V. Raab,
  • R.I. Rabadan Trejo,
  • B. Rachwal,
  • J.H. Rademacker,
  • M. Rama,
  • M. Ramos Pernas,
  • M.S. Rangel,
  • F. Ratnikov,
  • G. Raven,
  • M. Reboud,
  • F. Redi,
  • F. Reiss,
  • C. Remon Alepuz,
  • Z. Ren,
  • V. Renaudin,
  • R. Ribatti,
  • A.M. Ricci,
  • S. Ricciardi,
  • K. Rinnert,
  • P. Robbe,
  • G. Robertson,
  • A.B. Rodrigues,
  • E. Rodrigues,
  • J.A. Rodriguez Lopez,
  • E.R. R. Rodriguez Rodriguez,
  • A. Rollings,
  • P. Roloff,
  • V. Romanovskiy,
  • M. Romero Lamas,
  • A. Romero Vidal,
  • J.D. Roth,
  • M. Rotondo,
  • M.S. Rudolph,
  • T. Ruf,
  • R.A. Ruiz Fernandez,
  • J. Ruiz Vidal,
  • A. Ryzhikov,
  • J. Ryzka,
  • J.J. Saborido Silva,
  • N. Sagidova,
  • N. Sahoo,
  • B. Saitta,
  • M. Salomoni,
  • C. Sanchez Gras,
  • R. Santacesaria,
  • C. Santamarina Rios,
  • M. Santimaria,
  • E. Santovetti,
  • D. Saranin,
  • G. Sarpis,
  • M. Sarpis,
  • A. Sarti,
  • C. Satriano,
  • A. Satta,
  • M. Saur,
  • D. Savrina,
  • H. Sazak,
  • L.G. Scantlebury Smead,
  • A. Scarabotto,
  • S. Schael,
  • S. Scherl,
  • M. Schiller,
  • H. Schindler,
  • M. Schmelling,
  • B. Schmidt,
  • S. Schmitt,
  • O. Schneider,
  • A. Schopper,
  • M. Schubiger,
  • S. Schulte,
  • M.H. Schune,
  • R. Schwemmer,
  • B. Sciascia,
  • S. Sellam,
  • A. Semennikov,
  • M. Senghi Soares,
  • A. Sergi,
  • N. Serra,
  • L. Sestini,
  • A. Seuthe,
  • Y. Shang,
  • D.M. Shangase,
  • M. Shapkin,
  • I. Shchemerov,
  • L. Shchutska,
  • T. Shears,
  • L. Shekhtman,
  • Z. Shen,
  • S. Sheng,
  • V. Shevchenko,
  • E.B. Shields,
  • Y. Shimizu,
  • E. Shmanin,
  • J.D. Shupperd,
  • B.G. Siddi,
  • R. Silva Coutinho,
  • G. Simi,
  • S. Simone,
  • N. Skidmore,
  • T. Skwarnicki,
  • M.W. Slater,
  • I. Slazyk,
  • J.C. Smallwood,
  • J.G. Smeaton,
  • A. Smetkina,
  • E. Smith,
  • M. Smith,
  • A. Snoch,
  • L. Soares Lavra,
  • M.D. Sokoloff,
  • F.J. P. Soler,
  • A. Solovev,
  • I. Solovyev,
  • F.L. Souza De Almeida,
  • B. Souza De Paula,
  • B. Spaan,
  • E. Spadaro Norella,
  • P. Spradlin,
  • F. Stagni,
  • M. Stahl,
  • S. Stahl,
  • S. Stanislaus,
  • O. Steinkamp,
  • O. Stenyakin,
  • H. Stevens,
  • S. Stone,
  • D. Strekalina,
  • F. Suljik,
  • J. Sun,
  • L. Sun,
  • Y. Sun,
  • P. Svihra,
  • P.N. Swallow,
  • K. Swientek,
  • A. Szabelski,
  • T. Szumlak,
  • M. Szymanski,
  • S. Taneja,
  • A.R. Tanner,
  • M.D. Tat,
  • A. Terentev,
  • F. Teubert,
  • E. Thomas,
  • D.J.D. Thompson,
  • K.A. Thomson,
  • H. Tilquin,
  • V. Tisserand,
  • S. T'Jampens,
  • M. Tobin,
  • L. Tomassetti,
  • X. Tong,
  • D. Torres Machado,
  • D.Y. Tou,
  • E. Trifonova,
  • S.M. Trilov,
  • C. Trippl,
  • G. Tuci,
  • A. Tully,
  • N. Tuning,
  • A. Ukleja,
  • D.J. Unverzagt,
  • E. Ursov,
  • A. Usachov,
  • A. Ustyuzhanin,
  • U. Uwer,
  • A. Vagner,
  • V. Vagnoni,
  • A. Valassi,
  • G. Valenti,
  • N. Valls Canudas,
  • M. van Beuzekom,
  • M. Van Dijk,
  • H. Van Hecke,
  • E. van Herwijnen,
  • M. van Veghel,
  • R. Vazquez Gomez,
  • P. Vazquez Regueiro,
  • C. Vázquez Sierra,
  • S. Vecchi,
  • J.J. Velthuis,
  • M. Veltri,
  • A. Venkateswaran,
  • M. Veronesi,
  • M. Vesterinen,
  • D. Vieira,
  • M. Vieites Diaz,
  • H. Viemann,
  • X. Vilasis-Cardona,
  • E. Vilella Figueras,
  • A. Villa,
  • P. Vincent,
  • F.C. Volle,
  • D. Vom Bruch,
  • A. Vorobyev,
  • V. Vorobyev,
  • N. Voropaev,
  • K. Vos,
  • R. Waldi,
  • J. Walsh,
  • C. Wang,
  • Jialu Wang,
  • Jianchun Wang,
  • Jianqiao Wang,
  • Jike Wang,
  • M. Wang,
  • R. Wang,
  • Y. Wang,
  • Zhenzi Wang,
  • Zirui Wang,
  • Ziyi Wang,
  • J.A. Ward,
  • N.K. Watson,
  • S.G. Weber,
  • D. Websdale,
  • C. Weisser,
  • B.D.C. Westhenry,
  • D.J. White,
  • M. Whitehead,
  • A.R. Wiederhold,
  • D. Wiedner,
  • G. Wilkinson,
  • M. Wilkinson,
  • I. Williams,
  • Mike Williams,
  • Mark Richard James Williams,
  • F.F. Wilson,
  • W. Wislicki,
  • M. Witek,
  • L. Witola,
  • G. Wormser,
  • S.A. Wotton,
  • H. Wu,
  • K. Wyllie,
  • Z. Xiang,
  • D. Xiao,
  • Y. Xie,
  • A. Xu,
  • J. Xu,
  • L. Xu,
  • M. Xu,
  • Q. Xu,
  • Zehua Xu,
  • Zhihao Xu,
  • D. Yang,
  • S. Yang,
  • Y. Yang,
  • Zhenwei Yang,
  • Zishuo Yang,
  • Y. Yao,
  • L.E. Yeomans,
  • H. Yin,
  • J. Yu,
  • X. Yuan,
  • O. Yushchenko,
  • E. Zaffaroni,
  • M. Zavertyaev,
  • M. Zdybal,
  • O. Zenaiev,
  • M. Zeng,
  • D. Zhang,
  • L. Zhang,
  • Shulei Zhang,
  • Shunan Zhang,
  • Yanxi Zhang,
  • Yu Zhang,
  • A. Zharkova,
  • A. Zhelezov,
  • Y. Zheng,
  • T. Zhou,
  • X. Zhou,
  • Y. Zhou,
  • V. Zhovkovska,
  • Xianglei Zhu,
  • Xiaoyu Zhu,
  • Z. Zhu,
  • V. Zhukov,
  • J.B. Zonneveld,
  • Q. Zou,
  • S. Zucchelli,
  • D. Zuliani,
  • G. Zunica
  • (less)
abstract + abstract -

Searches for rare $ {B}_s^0 $ and B$^{0}$ decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb$^{−1}$. Direct decays and decays via light scalar and J/ψ resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 × 10$^{−10}$ and 2.6 × 10$^{−9}$ are set.[graphic not available: see fulltext]


(466)Operation of an archaeological lead PbWO$_4$ crystal to search for neutrinos from astrophysical sources with a Transition Edge Sensor
  • N. Ferreiro Iachellini,
  • L. Pattavina,
  • A.H. Abdelhameed,
  • A. Bento,
  • L. Canonica
  • +7
  • F. Danevich,
  • O.M. Dubovik,
  • D. Fuchs,
  • A. Garai,
  • M. Mancuso,
  • F. Petricca,
  • I.A. Tupitsyna
  • (less)
(11/2021) e-Print:2111.07638
abstract + abstract -

The experimental detection of the CE$\nu$NS allows the investigation of neutrinos and neutrino sources with all-flavor sensitivity. Given its large content in neutrons and stability, Pb is a very appealing choice as target element. The presence of the radioisotope $^{210}$Pb (T$_{1/2}\sim$22 yrs) makes natural Pb unsuitable for low-background, low-energy event searches. This limitation can be overcome employing Pb of archaeological origin, where several half-lives of $^{210}$Pb have gone by. We present results of a cryogenic measurement of a 15g PbWO$_4$ crystal, grown with archaeological Pb (older than $\sim$2000 yrs) that achieved a sub-keV nuclear recoil detection threshold. A ton-scale experiment employing such material, with a detection threshold for nuclear recoils of just 1 keV would probe the entire Milky Way for SuperNovae, with equal sensitivity for all neutrino flavors, allowing the study of the core of such exceptional events.


(465)Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • A. Addazi,
  • J. Alvarez-Muniz,
  • R. Alves Batista,
  • G. Amelino-Camelia,
  • V. Antonelli
  • +157
  • M. Arzano,
  • M. Asorey,
  • J.-L. Atteia,
  • S. Bahamonde,
  • F. Bajardi,
  • A. Ballesteros,
  • B. Baret,
  • D.M. Barreiros,
  • S. Basilakos,
  • D. Benisty,
  • O. Birnholtz,
  • J.J. Blanco-Pillado,
  • D. Blas,
  • J. Bolmont,
  • D. Boncioli,
  • P. Bosso,
  • G. Calcagni,
  • S. Capozziello,
  • J.M. Carmona,
  • S. Cerci,
  • M. Chernyakova,
  • S. Clesse,
  • J.A.B. Coelho,
  • S.M. Colak,
  • J.L. Cortes,
  • S. Das,
  • V. D'Esposito,
  • M. Demirci,
  • M.G. Di Luca,
  • A. di Matteo,
  • D. Dimitrijevic,
  • G. Djordjevic,
  • D. Dominis Prester,
  • A. Eichhorn,
  • J. Ellis,
  • C. Escamilla-Rivera,
  • G. Fabiano,
  • S.A. Franchino-Viñas,
  • A.M. Frassino,
  • D. Frattulillo,
  • S. Funk,
  • A. Fuster,
  • J. Gamboa,
  • A. Gent,
  • L.Á. Gergely,
  • M. Giammarchi,
  • K. Giesel,
  • J.-F. Glicenstein,
  • J. Gracia-Bondía,
  • R. Gracia-Ruiz,
  • G. Gubitosi,
  • E.I. Guendelman,
  • I. Gutierrez-Sagredo,
  • L. Haegel,
  • S. Heefer,
  • A. Held,
  • F.J. Herranz,
  • T. Hinderer,
  • J.I. Illana,
  • A. Ioannisian,
  • P. Jetzer,
  • F.R. Joaquim,
  • K.-H. Kampert,
  • A. Karasu Uysal,
  • T. Katori,
  • N. Kazarian,
  • D. Kerszberg,
  • J. Kowalski-Glikman,
  • S. Kuroyanagi,
  • C. Lämmerzahl,
  • J. Levi Said,
  • S. Liberati,
  • E. Lim,
  • I.P. Lobo,
  • M. López-Moya,
  • G.G. Luciano,
  • M. Manganaro,
  • A. Marcianò,
  • P. Martín-Moruno,
  • Manel Martinez,
  • Mario Martinez,
  • H. Martínez-Huerta,
  • P. Martínez-Miravé,
  • M. Masip,
  • D. Mattingly,
  • N. Mavromatos,
  • A. Mazumdar,
  • F. Méndez,
  • F. Mercati,
  • S. Micanovic,
  • J. Mielczarek,
  • A.L. Miller,
  • M. Milosevic,
  • D. Minic,
  • L. Miramonti,
  • V.A. Mitsou,
  • P. Moniz,
  • S. Mukherjee,
  • G. Nardini,
  • S. Navas,
  • M. Niechciol,
  • A.B. Nielsen,
  • N.A. Obers,
  • F. Oikonomou,
  • D. Oriti,
  • C.F. Paganini,
  • S. Palomares-Ruiz,
  • R. Pasechnik,
  • V. Pasic,
  • C. Pérez de los Heros,
  • C. Pfeifer,
  • M.P. Pieroni,
  • T. Piran,
  • A. Platania,
  • S. Rastgoo,
  • J.J. Relancio,
  • M.A. Reyes,
  • A. Ricciardone,
  • M. Risse,
  • M.D. Rodriguez Frias,
  • G. Rosati,
  • D. Rubiera-Garcia,
  • H. Sahlmann,
  • M. Sakellariadou,
  • F. Salamida,
  • E.N. Saridakis,
  • P. Satunin,
  • M. Schiffer,
  • F. Schüssler,
  • G. Sigl,
  • J. Sitarek,
  • J. Solà Peracaula,
  • C.F. Sopuerta,
  • T.P. Sotiriou,
  • M. Spurio,
  • D. Staicova,
  • N. Stergioulas,
  • S. Stoica,
  • J. Strišković,
  • T. Stuttard,
  • D. Sunar Cerci,
  • Y. Tavakoli,
  • C.A. Ternes,
  • T. Terzić,
  • T. Thiemann,
  • P. Tinyakov,
  • M.D.C. Torri,
  • M. Tórtola,
  • C. Trimarelli,
  • T. Trześniewski,
  • A. Tureanu,
  • F.R. Urban,
  • E.C. Vagenas,
  • D. Vernieri,
  • V. Vitagliano,
  • J.-C. Wallet,
  • J.D. Zornoza
  • (less)
Prog.Part.Nucl.Phys. (11/2021) e-Print:2111.05659 doi:10.1016/j.ppnp.2022.103948
abstract + abstract -

The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.


(464)Shocks in the Stacked Sunyaev-Zel'dovich Profiles of Clusters II: Measurements from SPT-SZ + Planck Compton-y Map
  • D. Anbajagane,
  • C. Chang,
  • B. Jain,
  • S. Adhikari,
  • E.J. Baxter
  • +41
  • B.A. Benson,
  • L.E. Bleem,
  • S. Bocquet,
  • M.S. Calzadilla,
  • J.E. Carlstrom,
  • C.L. Chang,
  • R. Chown,
  • T.M. Crawford,
  • A.T. Crites,
  • W. Cui,
  • T. de Haan,
  • L. Di Mascolo,
  • M.A. Dobbs,
  • W.B. Everett,
  • E.M. George,
  • S. Grandis,
  • N.W. Halverson,
  • G.P. Holder,
  • W.L. Holzapfel,
  • J.D. Hrubes,
  • A.T. Lee,
  • D. Luong-Van,
  • M.A. McDonald,
  • J.J. McMahon,
  • S.S. Meyer,
  • M. Millea,
  • L.M. Mocanu,
  • J.J. Mohr,
  • T. Natoli,
  • Y. Omori,
  • S. Padin,
  • C. Pryke,
  • C.L. Reichardt,
  • J.E. Ruhl,
  • A. Saro,
  • K.K. Schaffer,
  • E. Shirokoff,
  • Z. Staniszewski,
  • A.A. Stark,
  • J.D. Vieira,
  • R. Williamson
  • (less)
(11/2021) e-Print:2111.04778
abstract + abstract -

We search for the signature of shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the recently released Compton-y maps from the 2500 deg^2 SPT-SZ survey on the locations of clusters identified in that same dataset. The sample contains 516 clusters with mean mass <M200m> = 1e14.9 msol and redshift <z> = 0.55. We analyze in parallel a set of zoom-in hydrodynamical simulations from The Three Hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = $1.08 \pm 0.09$, measured at $3.1\sigma$ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = $4.58 \pm 1.24$ at $2.0\sigma$ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyze clusters from the Planck and Atacama Cosmology Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius (Rsh_acc) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, Rsh_acc/Rsp > $2.16 \pm 0.59$.


CN-6
(463)Study of $ {\mathrm{B}}_{\mathrm{c}}^{+} $ decays to charmonia and three light hadrons
  • Roel Aaij,
  • Ahmed Sameh Wagih Abdelmotteleb,
  • Carlos Abellán Beteta,
  • Fernando Jesus Abudinen Gallego,
  • Thomas Ackernley
  • +1008
  • Bernardo Adeva,
  • Marco Adinolfi,
  • Hossein Afsharnia,
  • Christina Agapopoulou,
  • Christine Angela Aidala,
  • Salvatore Aiola,
  • Ziad Ajaltouni,
  • Simon Akar,
  • Johannes Albrecht,
  • Federico Alessio,
  • Michael Alexander,
  • Alejandro Alfonso Albero,
  • Zakariya Aliouche,
  • Georgy Alkhazov,
  • Paula Alvarez Cartelle,
  • Sandra Amato,
  • Jake Lewis Amey,
  • Yasmine Amhis,
  • Liupan An,
  • Lucio Anderlini,
  • Aleksei Andreianov,
  • Mirco Andreotti,
  • Flavio Archilli,
  • Alexander Artamonov,
  • Marina Artuso,
  • Kenenbek Arzymatov,
  • Elie Aslanides,
  • Michele Atzeni,
  • Benjamin Audurier,
  • Sebastian Bachmann,
  • Marie Bachmayer,
  • John Back,
  • Pablo Baladron Rodriguez,
  • Vladislav Balagura,
  • Wander Baldini,
  • Juan Baptista Leite,
  • Matteo Barbetti,
  • Roger Barlow,
  • Sergey Barsuk,
  • William Barter,
  • Matteo Bartolini,
  • Fedor Baryshnikov,
  • Jan-Marc Basels,
  • Saliha Bashir,
  • Giovanni Bassi,
  • Baasansuren Batsukh,
  • Alexander Battig,
  • Aurelio Bay,
  • Anja Beck,
  • Maik Becker,
  • Franco Bedeschi,
  • Ignacio Bediaga,
  • Andrew Beiter,
  • Vladislav Belavin,
  • Samuel Belin,
  • Violaine Bellee,
  • Konstantin Belous,
  • Ilia Belov,
  • Ivan Belyaev,
  • Giovanni Bencivenni,
  • Eli Ben-Haim,
  • Alexander Berezhnoy,
  • Roland Bernet,
  • Daniel Berninghoff,
  • Harris Conan Bernstein,
  • Claudia Bertella,
  • Alessandro Bertolin,
  • Christopher Betancourt,
  • Federico Betti,
  • Ia. Bezshyiko,
  • Iaroslava Bezshyiko,
  • Srishti Bhasin,
  • Jihyun Bhom,
  • Lingzhu Bian,
  • Martin Stefan Bieker,
  • Simone Bifani,
  • Pierre Billoir,
  • Alice Biolchini,
  • Matthew Birch,
  • Fionn Caitlin Ros Bishop,
  • Alexander Bitadze,
  • Andrea Bizzeti,
  • Mikkel Bjørn,
  • Michele Piero Blago,
  • Thomas Blake,
  • Frederic Blanc,
  • Steven Blusk,
  • Dana Bobulska,
  • Julian Alexander Boelhauve,
  • Oscar Boente Garcia,
  • Thomas Boettcher,
  • Alexey Boldyrev,
  • Alexander Bondar,
  • Nikolay Bondar,
  • Silvia Borghi,
  • Maxim Borisyak,
  • Martino Borsato,
  • Jozef Tomasz Borsuk,
  • Sonia Amina Bouchiba,
  • Themistocles Bowcock,
  • Alexandre Boyer,
  • Concezio Bozzi,
  • Matthew John Bradley,
  • Svende Braun,
  • Alexandre Brea Rodriguez,
  • Jolanta Brodzicka,
  • Arnau Brossa Gonzalo,
  • Davide Brundu,
  • Annarita Buonaura,
  • Laura Buonincontri,
  • Aodhan Tomas Burke,
  • Christopher Burr,
  • Albert Bursche,
  • Anatoly Butkevich,
  • Jordy Sebastiaan Butter,
  • Jan Buytaert,
  • Wiktor Byczynski,
  • Sandro Cadeddu,
  • Hao Cai,
  • Roberto Calabrese,
  • Lukas Calefice,
  • Stefano Cali,
  • Ryan Calladine,
  • Marta Calvi,
  • Miriam Calvo Gomez,
  • Patricia Camargo Magalhaes,
  • Pierluigi Campana,
  • Angel Fernando Campoverde Quezada,
  • Simone Capelli,
  • Lorenzo Capriotti,
  • Angelo Carbone,
  • Giovanni Carboni,
  • Roberta Cardinale,
  • Alessandro Cardini,
  • Ina Carli,
  • Paolo Carniti,
  • Leon David Carus,
  • Kazuyoshi Carvalho Akiba,
  • Adrian Casais Vidal,
  • Rowina Caspary,
  • Gianluigi Casse,
  • Marco Cattaneo,
  • Giovanni Cavallero,
  • Sara Celani,
  • Jacopo Cerasoli,
  • Daniel Cervenkov,
  • Abbie Jane Chadwick,
  • Matthew George Chapman,
  • Matthew Charles,
  • Philippe Charpentier,
  • Ph. Charpentier,
  • Georgios Chatzikonstantinidis,
  • Carlos Alberto Chavez Barajas,
  • Maximilien Chefdeville,
  • Chen Chen,
  • Shanzhen Chen,
  • Aleksei Chernov,
  • Veronika Chobanova,
  • Serhii Cholak,
  • Marcin Chrzaszcz,
  • Alexsei Chubykin,
  • Vladimir Chulikov,
  • Paolo Ciambrone,
  • Maria Flavia Cicala,
  • Xabier Cid Vidal,
  • Gregory Ciezarek,
  • P.E. L. Clarke,
  • Marco Clemencic,
  • Harry Cliff,
  • Joel Closier,
  • John Leslie Cobbledick,
  • Victor Coco,
  • Joao A B Coelho,
  • Julien Cogan,
  • Eric Cogneras,
  • Lucian Cojocariu,
  • Paula Collins,
  • Tommaso Colombo,
  • Liliana Congedo,
  • Andrea Contu,
  • Naomi Cooke,
  • George Coombs,
  • Imanol Corredoira,
  • Gloria Corti,
  • Cayo Mar Costa Sobral,
  • Benjamin Couturier,
  • Daniel Charles Craik,
  • Jana Crkovská,
  • Melissa Maria Cruz Torres,
  • Robert Currie,
  • Cesar Luiz Da Silva,
  • Shakhzod Dadabaev,
  • Lingyun Dai,
  • Elena Dall'Occo,
  • Jeremy Dalseno,
  • Carmelo D'Ambrosio,
  • Anna Danilina,
  • Philippe d'Argent,
  • Aigerim Dashkina,
  • Jonathan Edward Davies,
  • Adam Davis,
  • Oscar De Aguiar Francisco,
  • Kristof De Bruyn,
  • Stefano De Capua,
  • Michel De Cian,
  • Erika De Lucia,
  • Jussara De Miranda,
  • Leandro De Paula,
  • Marilisa De Serio,
  • Dario De Simone,
  • Patrizia De Simone,
  • Fabio De Vellis,
  • Jacco de Vries,
  • Cameron Thomas Dean,
  • Francesco Debernardis,
  • Daniel Decamp,
  • Vlad-George Dedu,
  • Luigi Del Buono,
  • Blaise Delaney,
  • Hans Peter Dembinski,
  • Adam Dendek,
  • Vadym Denysenko,
  • Denis Derkach,
  • Olivier Deschamps,
  • Fabrice Desse,
  • Francesco Dettori,
  • Biplab Dey,
  • Alessandro Di Cicco,
  • Pasquale Di Nezza,
  • Sergey Didenko,
  • Lorena Dieste Maronas,
  • Hans Dijkstra,
  • Vasyl Dobishuk,
  • Chenzhi Dong,
  • Amanda May Donohoe,
  • Francesca Dordei,
  • Alberto dos Reis,
  • Lauren Douglas,
  • Anatoliy Dovbnya,
  • Anthony Gavin Downes,
  • Maciej Wojciech Dudek,
  • Laurent Dufour,
  • Viacheslav Duk,
  • Paolo Durante,
  • John Matthew Durham,
  • Deepanwita Dutta,
  • Agnieszka Dziurda,
  • Alexey Dzyuba,
  • Sajan Easo,
  • Ulrik Egede,
  • Artem Egorychev,
  • Victor Egorychev,
  • Semen Eidelman,
  • Stephan Eisenhardt,
  • Surapat Ek-In,
  • Lars Eklund,
  • Scott Ely,
  • Alexandru Ene,
  • Eliane Epple,
  • Stephan Escher,
  • Jonas Nathanael Eschle,
  • Sevda Esen,
  • Timothy Evans,
  • Yanting Fan,
  • Bo Fang,
  • Stephen Farry,
  • Davide Fazzini,
  • Mauricio Féo,
  • Antonio Fernandez Prieto,
  • Alex Daniel Fernez,
  • Fabio Ferrari,
  • Lino Ferreira Lopes,
  • Fernando Ferreira Rodrigues,
  • Silvia Ferreres Sole,
  • Martina Ferrillo,
  • Massimiliano Ferro-Luzzi,
  • Sergey Filippov,
  • Rosa Anna Fini,
  • Massimiliano Fiorini,
  • Miroslaw Firlej,
  • Kamil Leszek Fischer,
  • K.M. Fischer,
  • Dillon Scott Fitzgerald,
  • Conor Fitzpatrick,
  • Tomasz Fiutowski,
  • Aristeidis Fkiaras,
  • Frederic Fleuret,
  • Marianna Fontana,
  • Flavio Fontanelli,
  • Roger Forty,
  • Daniel Foulds-Holt,
  • Vinicius Franco Lima,
  • Manuel Franco Sevilla,
  • Markus Frank,
  • Edoardo Franzoso,
  • Giulia Frau,
  • Christoph Frei,
  • David Anthony Friday,
  • Jinlin Fu,
  • Quentin Fuehring,
  • Emmy Gabriel,
  • Giuliana Galati,
  • Abraham Gallas Torreira,
  • Domenico Galli,
  • Silvia Gambetta,
  • Yuyue Gan,
  • Miriam Gandelman,
  • Paolo Gandini,
  • Yuanning Gao,
  • Michela Garau,
  • Luis Miguel Garcia Martin,
  • Paula Garcia Moreno,
  • Julián García Pardiñas,
  • Beatriz Garcia Plana,
  • Felipe Andres Garcia Rosales,
  • Lluis Garrido,
  • Clara Gaspar,
  • Robbert Erik Geertsema,
  • David Gerick,
  • Louis Lenard Gerken,
  • Evelina Gersabeck,
  • Marco Gersabeck,
  • Timothy Gershon,
  • Dawid Gerstel,
  • Luca Giambastiani,
  • Valerie Gibson,
  • Henryk Karol Giemza,
  • Alexander Leon Gilman,
  • Matteo Giovannetti,
  • Alessandra Gioventù,
  • Pere Gironella Gironell,
  • Carmen Giugliano,
  • Konstantin Gizdov,
  • Evangelos Leonidas Gkougkousis,
  • Vladimir Gligorov,
  • Carla Göbel,
  • Elisabet Golobardes,
  • Dmitry Golubkov,
  • Andrey Golutvin,
  • Alvaro Gomes,
  • Sergio Gomez Fernandez,
  • Fernanda Goncalves Abrantes,
  • Mateusz Goncerz,
  • Guanghua Gong,
  • Petr Gorbounov,
  • Igor Vladimirovich Gorelov,
  • Claudio Gotti,
  • Ekaterina Govorkova,
  • Jascha Peter Grabowski,
  • Thomas Grammatico,
  • Luis Alberto Granado Cardoso,
  • Eugeni Graugés,
  • Elena Graverini,
  • Giacomo Graziani,
  • Alexandru Grecu,
  • Lex Marinus Greeven,
  • Nathan Allen Grieser,
  • Lucia Grillo,
  • Sergey Gromov,
  • Barak Raimond Gruberg Cazon,
  • Chenxi Gu,
  • Marco Guarise,
  • Manuel Guittiere,
  • Paul Andre Günther,
  • Evgeny Gushchin,
  • Andreas Guth,
  • Yury Guz,
  • Thierry Gys,
  • Thomas Hadavizadeh,
  • Guido Haefeli,
  • Christophe Haen,
  • Jakob Haimberger,
  • Tabitha Halewood-leagas,
  • Phoebe Meredith Hamilton,
  • Jan Patrick Hammerich,
  • Qundong Han,
  • Xiaoxue Han,
  • Thomas Henry Hancock,
  • Eva Brottmann Hansen,
  • Stephanie Hansmann-Menzemer,
  • Neville Harnew,
  • Thomas Harrison,
  • Christoph Hasse,
  • Mark Hatch,
  • Jibo He,
  • Malte Hecker,
  • Kevin Heijhoff,
  • Kevin Heinicke,
  • Riley Dylan Leslie Henderson,
  • Arthur Marius Hennequin,
  • Karol Hennessy,
  • Louis Henry,
  • Johannes Heuel,
  • Adlène Hicheur,
  • Donal Hill,
  • Martha Hilton,
  • Sophie Elizabeth Hollitt,
  • Ruiwe Hou,
  • Yingrui Hou,
  • Jiangqiao Hu,
  • Jifeng Hu,
  • Wenhua Hu,
  • Xiaofan Hu,
  • Wenqian Huang,
  • Xiaotao Huang,
  • Wouter Hulsbergen,
  • Ross John Hunter,
  • Mikhail Hushchyn,
  • David Hutchcroft,
  • Daniel Hynds,
  • Philipp Ibis,
  • Marek Idzik,
  • Dmitrii Ilin,
  • Philip Ilten,
  • Alexander Inglessi,
  • Artur Ishteev,
  • Kuzma Ivshin,
  • Richard Jacobsson,
  • Hendrik Jage,
  • Sune Jakobsen,
  • Eddy Jans,
  • Brij Kishor Jashal,
  • Abolhassan Jawahery,
  • Vukan Jevtic,
  • Xiaojie Jiang,
  • Malcolm John,
  • Daniel Johnson,
  • Christopher Jones,
  • Thomas Peter Jones,
  • Beat Jost,
  • Nathan Jurik,
  • Sabin Hashmi Kalavan Kadavath,
  • Sergii Kandybei,
  • Youen Kang,
  • Matthias Karacson,
  • Maksim Karpov,
  • Floris Keizer,
  • Dustin Michael Keller,
  • Matthew Kenzie,
  • Tjeerd Ketel,
  • Basem Khanji,
  • Anastasiia Kharisova,
  • Sergei Kholodenko,
  • Thomas Kirn,
  • Veronica Soelund Kirsebom,
  • Ouail Kitouni,
  • Suzanne Klaver,
  • Nico Kleijne,
  • Konrad Klimaszewski,
  • Mateusz Rafal Kmiec,
  • Serhii Koliiev,
  • Almagul Kondybayeva,
  • Anatoly Konoplyannikov,
  • Pawel Kopciewicz,
  • Renata Kopecna,
  • Patrick Koppenburg,
  • Mikhail Korolev,
  • Igor Kostiuk,
  • Oleksander Kot,
  • Sofia Kotriakhova,
  • Polina Kravchenko,
  • Leonid Kravchuk,
  • Rafal Dominik Krawczyk,
  • Michal Kreps,
  • Felix Johannes Kress,
  • Sophie Katharina Kretzschmar,
  • Pavel Krokovny,
  • Wojciech Krupa,
  • Wojciech Krzemien,
  • Jakub Kubat,
  • Marcin Kucharczyk,
  • Vasily Kudryavtsev,
  • Hilbrand Steffen Kuindersma,
  • Gerd Joachim Kunde,
  • Tengiz Kvaratskheliya,
  • Daniel Lacarrere,
  • George Lafferty,
  • Adriano Lai,
  • Andrea Lampis,
  • Davide Lancierini,
  • John Jake Lane,
  • Richard Lane,
  • Gaia Lanfranchi,
  • Christoph Langenbruch,
  • Jan Langer,
  • Oliver Lantwin,
  • Thomas Latham,
  • Federico Lazzari,
  • Renaud Le Gac,
  • Sook Hyun Lee,
  • Regis Lefèvre,
  • Alexander Leflat,
  • Sergey Legotin,
  • Olivier Leroy,
  • Tadeusz Lesiak,
  • Blake Leverington,
  • Hengne Li,
  • Peilian Li,
  • Shiyang Li,
  • Yiming Li,
  • Yutong Li,
  • Zhuoming Li,
  • Xixin Liang,
  • Tai-hua Lin,
  • Rolf Lindner,
  • Vitalii Lisovskyi,
  • Roman Litvinov,
  • Guoming Liu,
  • Huanhuan Liu,
  • Qian Liu,
  • Shuaiyi Liu,
  • Aniol Lobo Salvia,
  • Angelo Loi,
  • Julian Lomba Castro,
  • Iain Longstaff,
  • Jose Lopes,
  • Saul Lopez Solino,
  • George Holger Lovell,
  • Yu Lu,
  • Chiara Lucarelli,
  • Donatella Lucchesi,
  • Stanislav Luchuk,
  • Miriam Lucio Martinez,
  • Valeriia Lukashenko,
  • Yiheng Luo,
  • Anna Lupato,
  • Eleonora Luppi,
  • Oliver Lupton,
  • Alberto Lusiani,
  • Xiao-Rui Lyu,
  • Lishuang Ma,
  • Ruiting Ma,
  • Serena Maccolini,
  • Frederic Machefert,
  • Florin Maciuc,
  • Vladimir Macko,
  • Patrick Mackowiak,
  • Samuel Maddrell-Mander,
  • Olga Madejczyk,
  • Lakshan Ram Madhan Mohan,
  • Oleg Maev,
  • Artem Maevskiy,
  • Dmitrii Maisuzenko,
  • Maciej Witold Majewski,
  • Jakub Jacek Malczewski,
  • Sneha Malde,
  • Bartosz Malecki,
  • Alexander Malinin,
  • Timofei Maltsev,
  • Hanna Malygina,
  • Giulia Manca,
  • Giampiero Mancinelli,
  • Daniele Manuzzi,
  • Daniele Marangotto,
  • Jan Maratas,
  • Jean François Marchand,
  • Umberto Marconi,
  • Saverio Mariani,
  • Carla Marin Benito,
  • Matthieu Marinangeli,
  • Jörg Marks,
  • Alexander Mclean Marshall,
  • Phillip John Marshall,
  • Gabriele Martelli,
  • Giuseppe Martellotti,
  • Loris Martinazzoli,
  • Maurizio Martinelli,
  • Diego Martinez Santos,
  • Fernando Martinez Vidal,
  • André Massafferri,
  • Marcel Materok,
  • Rosen Matev,
  • Abhijit Mathad,
  • Viacheslav Matiunin,
  • Clara Matteuzzi,
  • Kara Renee Mattioli,
  • Andrea Mauri,
  • Emilie Maurice,
  • Juan Mauricio,
  • Michal Kazimierz Mazurek,
  • Michael McCann,
  • Lucas Mcconnell,
  • Tamaki Holly Mcgrath,
  • Niall Thomas Mchugh,
  • Andrew McNab,
  • Ronan McNulty,
  • James Vincent Mead,
  • Brian Meadows,
  • Gerwin Meier,
  • Nis Meinert,
  • Dmytro Melnychuk,
  • Simone Meloni,
  • Marcel Merk,
  • Andrea Merli,
  • Lucas Meyer Garcia,
  • Mikhail Mikhasenko,
  • Diego Alejandro Milanes,
  • Edward James Millard,
  • Marko Milovanovic,
  • Marie-Noelle Minard,
  • Alessandro Minotti,
  • Luca Minzoni,
  • Sara Elizabeth Mitchell,
  • Biljana Mitreska,
  • Dominik Stefan Mitzel,
  • Antje Mödden,
  • Rizwaan Adeeb Mohammed,
  • Razvan Daniel Moise,
  • Sergei Mokhnenko,
  • Titus Mombächer,
  • Igancio Alberto Monroy,
  • Stephane Monteil,
  • Mauro Morandin,
  • Gianfranco Morello,
  • Michael Joseph Morello,
  • Jakub Moron,
  • Adam Benjamin Morris,
  • Andrew George Morris,
  • Raymond Mountain,
  • Hongjie Mu,
  • Franz Muheim,
  • Mick Mulder,
  • Dominik Müller,
  • Katharina Müller,
  • Colm Harold Murphy,
  • Donal Murray,
  • Rebecca Murta,
  • Piera Muzzetto,
  • Paras Naik,
  • Tatsuya Nakada,
  • Raja Nandakumar,
  • Tara Nanut,
  • Irina Nasteva,
  • Matthew Needham,
  • Nicola Neri,
  • Sebastian Neubert,
  • Niko Neufeld,
  • Ryan Newcombe,
  • Elisabeth Maria Niel,
  • Simon Nieswand,
  • Nikolay Nikitin,
  • Niklas Stefan Nolte,
  • Camille Normand,
  • Cynthia Nunez,
  • Agnieszka Oblakowska-Mucha,
  • Vladimir Obraztsov,
  • Thomas Oeser,
  • Daniel Patrick O'Hanlon,
  • Shinichi Okamura,
  • Rudolf Oldeman,
  • Federica Oliva,
  • Mario Edgardo Olivares,
  • C.J. G. Onderwater,
  • Ryunosuke Hugo O'Neil,
  • Juan Martin Otalora Goicochea,
  • Tatiana Ovsiannikova,
  • Patrick Owen,
  • Maria Aranzazu Oyanguren,
  • Klaas Ole Padeken,
  • Bhagyashree Pagare,
  • Preema Rennee Pais,
  • Tommaso Pajero,
  • Antimo Palano,
  • Matteo Palutan,
  • Yue Pan,
  • Gennady Panshin,
  • Antonios Papanestis,
  • Marco Pappagallo,
  • Luciano Pappalardo,
  • Cheryl Pappenheimer,
  • William Parker,
  • Christopher Parkes,
  • Barbara Passalacqua,
  • Giovanni Passaleva,
  • Alessandra Pastore,
  • Mitesh Patel,
  • Claudia Patrignani,
  • Christopher James Pawley,
  • Alex Pearce,
  • Antonio Pellegrino,
  • Monica Pepe Altarelli,
  • Stefano Perazzini,
  • Dmitrii Pereima,
  • Asier Pereiro Castro,
  • Pascal Perret,
  • Marko Petric,
  • Konstantinos Petridis,
  • Alessandro Petrolini,
  • Aleksandr Petrov,
  • Stefano Petrucci,
  • Marco Petruzzo,
  • Thi Thuy Hang Pham,
  • Anton Philippov,
  • Lorenzo Pica,
  • Mauro Piccini,
  • Boleslaw Pietrzyk,
  • Guillaume Pietrzyk,
  • Martina Pili,
  • Davide Pinci,
  • Flavio Pisani,
  • Marco Pizzichemi,
  • P.K. Resmi,
  • Vlad-Mihai Placinta,
  • Jonathan Plews,
  • Maximo Plo Casasus,
  • Francesco Polci,
  • Marco Poli Lener,
  • Mariia Poliakova,
  • Anton Poluektov,
  • Natalia Polukhina,
  • Ivan Polyakov,
  • Erica Polycarpo,
  • Sebastien Ponce,
  • Dmitry Popov,
  • Sergei Popov,
  • Stanislav Poslavskii,
  • Kodassery Prasanth,
  • Laura Promberger,
  • Claire Prouve,
  • Valery Pugatch,
  • Veronique Puill,
  • Hannah Louise Pullen,
  • Giovanni Punzi,
  • Hongrong Qi,
  • Wenbin Qian,
  • Jia-Jia Qin,
  • Ning Qin,
  • Renato Quagliani,
  • Boris Quintana,
  • Naomi Veronika Raab,
  • Raul Iraq Rabadan Trejo,
  • Bartlomiej Rachwal,
  • Jonas Rademacker,
  • Matteo Rama,
  • Miguel Ramos Pernas,
  • Murilo Rangel,
  • Fedor Ratnikov,
  • Gerhard Raven,
  • Meril Reboud,
  • Federico Redi,
  • Florian Reiss,
  • Clara Remon Alepuz,
  • Zan Ren,
  • Victor Renaudin,
  • Roberto Ribatti,
  • Stefania Ricciardi,
  • Kurt Rinnert,
  • Patrick Robbe,
  • Gary Robertson,
  • Ana Barbara Rodrigues,
  • Eduardo Rodrigues,
  • Jairo Alexis Rodriguez Lopez,
  • E.R. R. Rodriguez Rodriguez,
  • Alexandra Paige Rollings,
  • Philipp Roloff,
  • Vladimir Romanovskiy,
  • Marcos Romero Lamas,
  • Antonio Romero Vidal,
  • Jordan Daniel Roth,
  • Marcello Rotondo,
  • Matthew Scott Rudolph,
  • Thomas Ruf,
  • Ramon Angel Ruiz Fernandez,
  • Joan Ruiz Vidal,
  • Artem Ryzhikov,
  • Jakub Ryzka,
  • Juan Jose Saborido Silva,
  • Naylya Sagidova,
  • Niladribihari Sahoo,
  • Biagio Saitta,
  • Matteo Salomoni,
  • Cristina Sanchez Gras,
  • Roberta Santacesaria,
  • Cibran Santamarina Rios,
  • Marco Santimaria,
  • Emanuele Santovetti,
  • Danila Saranin,
  • Gediminas Sarpis,
  • Minaugas Sarpis,
  • Alessio Sarti,
  • Celestina Satriano,
  • Alessia Satta,
  • Miroslav Saur,
  • Darya Savrina,
  • Halime Sazak,
  • Luke George Scantlebury Smead,
  • Alessandro Scarabotto,
  • Stefan Schael,
  • Sigrid Scherl,
  • Manuel Schiller,
  • Heinrich Schindler,
  • Michael Schmelling,
  • Burkhard Schmidt,
  • Sebastian Schmitt,
  • Olivier Schneider,
  • Andreas Schopper,
  • Maxime Schubiger,
  • Sebastian Schulte,
  • Marie Helene Schune,
  • Rainer Schwemmer,
  • Barbara Sciascia,
  • Sara Sellam,
  • Alexander Semennikov,
  • Mara Senghi Soares,
  • Antonino Sergi,
  • Nicola Serra,
  • Lorenzo Sestini,
  • Alex Seuthe,
  • Yiduo Shang,
  • Desmond Mzamo Shangase,
  • Mikhail Shapkin,
  • Ivan Shchemerov,
  • Lesya Shchutska,
  • Tara Shears,
  • Lev Shekhtman,
  • Zhihong Shen,
  • Shuqi Sheng,
  • Vladimir Shevchenko,
  • Edward Brendan Shields,
  • Yuya Shimizu,
  • Evgenii Shmanin,
  • Joseph David Shupperd,
  • Benedetto Gianluca Siddi,
  • Rafael Silva Coutinho,
  • Gabriele Simi,
  • Saverio Simone,
  • Nicola Skidmore,
  • Tomasz Skwarnicki,
  • Mark Slater,
  • Igor Slazyk,
  • Jennifer Clare Smallwood,
  • John Gordon Smeaton,
  • Anastasia Smetkina,
  • Eluned Smith,
  • Mark Smith,
  • Aleksandra Snoch,
  • Lais Soares Lavra,
  • Michael Sokoloff,
  • F.J. P. Soler,
  • Aleksandr Solovev,
  • Ivan Solovyev,
  • Felipe Luan Souza De Almeida,
  • Bruno Souza De Paula,
  • Bernhard Spaan,
  • Elisabetta Spadaro Norella,
  • Patrick Spradlin,
  • Federico Stagni,
  • Marian Stahl,
  • Sascha Stahl,
  • Seophine Stanislaus,
  • Olaf Steinkamp,
  • Oleg Stenyakin,
  • Holger Stevens,
  • Sheldon Stone,
  • Daria Strekalina,
  • Fidan Suljik,
  • Jiayin Sun,
  • Liang Sun,
  • Yipeng Sun,
  • Peter Svihra,
  • Paul Nathaniel Swallow,
  • Krzysztof Swientek,
  • Adam Szabelski,
  • Tomasz Szumlak,
  • Maciej Pawel Szymanski,
  • Shantam Taneja,
  • Alastair Roger Tanner,
  • Martin Duy Tat,
  • Aleksandr Terentev,
  • Frederic Teubert,
  • Eric Thomas,
  • Daniel James David Thompson,
  • Kayleigh Anne Thomson,
  • Hanae Tilquin,
  • Vincent Tisserand,
  • Stephane T'Jampens,
  • Mark Tobin,
  • Luca Tomassetti,
  • Xingyu Tong,
  • Diego Torres Machado,
  • Da Yu Tou,
  • Ekaterina Trifonova,
  • Carina Trippl,
  • Giulia Tuci,
  • Alison Tully,
  • Niels Tuning,
  • Artur Ukleja,
  • Daniel Joachim Unverzagt,
  • Eduard Ursov,
  • Andrii Usachov,
  • Andrey Ustyuzhanin,
  • Ulrich Uwer,
  • Alexander Vagner,
  • Vincenzo Vagnoni,
  • Andrea Valassi,
  • Giovanni Valenti,
  • Nuria Valls Canudas,
  • Martinus van Beuzekom,
  • Maarten Van Dijk,
  • Hubert Van Hecke,
  • Eric van Herwijnen,
  • Maarten van Veghel,
  • Ricardo Vazquez Gomez,
  • Pablo Vazquez Regueiro,
  • Carlos Vázquez Sierra,
  • Stefania Vecchi,
  • Jaap Velthuis,
  • Michele Veltri,
  • Aravindhan Venkateswaran,
  • Michele Veronesi,
  • Mika Vesterinen,
  • Daniel Vieira,
  • Maria Vieites Diaz,
  • Harald Viemann,
  • Xavier Vilasis-Cardona,
  • Eva Vilella Figueras,
  • Andrea Villa,
  • Pascal Vincent,
  • Felicia Carolin Volle,
  • Dorothea Vom Bruch,
  • Alexey Vorobyev,
  • Vitaly Vorobyev,
  • Nikolai Voropaev,
  • Kimberley Vos,
  • Roland Waldi,
  • John Walsh,
  • Chishuai Wang,
  • Jialu Wang,
  • Jianchun Wang,
  • Jianqiao Wang,
  • Jike Wang,
  • Mengzhen Wang,
  • Rui Wang,
  • Yilong Wang,
  • Zhenzi Wang,
  • Zirui Wang,
  • Ziyi Wang,
  • Jake Alexander Ward,
  • Nigel Watson,
  • Steffen Georg Weber,
  • David Websdale,
  • Constantin Weisser,
  • Benedict Donald C Westhenry,
  • Dylan Jaide White,
  • Mark Whitehead,
  • Aidan Richard Wiederhold,
  • Dirk Wiedner,
  • Guy Wilkinson,
  • Michael Wilkinson,
  • Ifan Williams,
  • Mike Williams,
  • Mark Richard James Williams,
  • Fergus Wilson,
  • Wojciech Wislicki,
  • Mariusz Witek,
  • Lukas Witola,
  • Guy Wormser,
  • Stephen Wotton,
  • Hangyi Wu,
  • Kenneth Wyllie,
  • Zhiyu Xiang,
  • Dong Xiao,
  • Yuehong Xie,
  • Ao Xu,
  • Jingyi Xu,
  • Li Xu,
  • Menglin Xu,
  • Qingnian Xu,
  • Zehua Xu,
  • Zhihao Xu,
  • Di Yang,
  • Shuangli Yang,
  • Youhua Yang,
  • Zhenwei Yang,
  • Zishuo Yang,
  • Yuezhe Yao,
  • Lauren Emma Yeomans,
  • Hang Yin,
  • Jiesheng Yu,
  • Xuhao Yuan,
  • Oleg Yushchenko,
  • Ettore Zaffaroni,
  • Mikhail Zavertyaev,
  • Milosz Zdybal,
  • Oleksandr Zenaiev,
  • Ming Zeng,
  • Dongliang Zhang,
  • Liming Zhang,
  • Shulei Zhang,
  • Shunan Zhang,
  • Yanxi Zhang,
  • Yu Zhang,
  • Alina Zharkova,
  • Alexey Zhelezov,
  • Yangheng Zheng,
  • Tianwen Zhou,
  • Xiaokang Zhou,
  • Yixiong Zhou,
  • Valeriia Zhovkovska,
  • Xianglei Zhu,
  • Xiaoyu Zhu,
  • Zhanwen Zhu,
  • Valery Zhukov,
  • Jennifer Brigitta Zonneveld,
  • Quan Zou,
  • Stefano Zucchelli,
  • Davide Zuliani,
  • Gianluca Zunica
  • (less)
abstract + abstract -

Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb$^{−1}$ collected with the LHCb detector, seven decay modes of the $ {\mathrm{B}}_{\mathrm{c}}^{+} $ meson into a J/ψ or ψ(2S) meson and three charged hadrons, kaons or pions, are studied. The decays $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → (ψ(2S) → J/ψπ$^{+}$π$^{−}$)π$^{+}$, $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → ψ(2S)π$^{+}$π$^{−}$π$^{+}$, $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → J/ψK$^{+}$π$^{−}$π$^{+}$ and $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → J/ψK$^{+}$K$^{−}$K$^{+}$ are observed for the first time, and evidence for the $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → ψ(2S)K$^{+}$K$^{−}$π$^{+}$, decay is found, where J/ψ and ψ(2S) mesons are reconstructed in their dimuon decay modes. The ratios of branching fractions between the different $ {\mathrm{B}}_{\mathrm{c}}^{+} $ decays are reported as well as the fractions of the decays proceeding via intermediate resonances. The results largely support the factorisation approach used for a theoretical description of the studied decays.[graphic not available: see fulltext]


CN-4
RU-C
(462)Dwarf AGNs from Optical Variability for the Origins of Seeds (DAVOS): insights from the dark energy survey deep fields
  • Colin J. Burke,
  • Xin Liu,
  • Yue Shen,
  • Kedar A. Phadke,
  • Qian Yang
  • +66
  • Will G. Hartley,
  • Ian Harrison,
  • Antonella Palmese,
  • Hengxiao Guo,
  • Kaiwen Zhang,
  • Richard Kron,
  • David J. Turner,
  • Paul A. Giles,
  • Christopher Lidman,
  • Yu-Ching Chen,
  • Robert A. Gruendl,
  • Ami Choi,
  • Alexandra Amon,
  • Erin Sheldon,
  • M. Aguena,
  • S. Allam,
  • F. Andrade-Oliveira,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • T.M. Davis,
  • J. De Vicente,
  • S. Desai,
  • H.T. Diehl,
  • S. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • B. Hoyle,
  • D.J. James,
  • K. Kuehn,
  • M.A.G. Maia,
  • J.L. Marshall,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • K. Reil,
  • A.K. Romer,
  • E. Sanchez,
  • M. Schubnell,
  • S. Serrano,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • T.N. Varga,
  • R.D. Wilkinson
  • (less)
Mon.Not.Roy.Astron.Soc. (11/2021) e-Print:2111.03079 doi:10.1093/mnras/stac2262
abstract + abstract -

We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg^2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate (⁠|$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$|⁠; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.


(461)Top-pair production via gluon fusion in the Standard Model effective field theory
  • Christoph Müller
Physical Review D (11/2021) doi:10.1103/PhysRevD.104.095003
abstract + abstract -

We compute the leading corrections to the differential cross section for top-pair production via gluon fusion due to third-generation dimension-six operators at leading order in QCD. The Standard Model fields are assumed to couple only weakly to the hypothetical new sector. A systematic approach then suggests treating single insertions of the operator class containing gluon field strength tensors on the same footing as explicitly loop suppressed contributions from four-fermion operators. This is in particular the case for the chromomagnetic operator Q(u G ) and the purely bosonic operators Q(G ) and Q(φ G ). All leading order dimension-six contributions are consequently suppressed with a loop factor 1 /16 π2.


CN-5
RU-D
(460)Merging filaments I: a race against collapse
  • Elena Hoemann,
  • Stefan Heigl,
  • Andreas Burkert
Monthly Notices of the Royal Astronomical Society (11/2021) doi:10.1093/mnras/stab1698
abstract + abstract -

The interstellar medium is characterized by an intricate filamentary network that exhibits complex structures. These show a variety of different shapes (e.g. junctions, rings, etc.) deviating strongly from the usually assumed cylindrical shape. A possible formation mechanism are filament mergers that we analyse in this study. Indeed, the proximity of filaments in networks suggests mergers to be rather likely. As the merger has to be faster than the end dominated collapse of the filament along its major axis, we expect three possible results: (a) The filaments collapse before a merger can happen, (b) the merged filamentary complex shows already signs of cores at the edges, or (c) the filaments merge into a structure which is not end-dominated. We develop an analytic formula for the merging and core-formation time-scale at the edge and validate our model via hydrodynamical simulations with the adaptive-mesh-refinement-code RAMSES. This allows us to predict the outcome of a filament merger, given different initial conditions which are the initial distance and the respective line-masses of each filament as well as their relative velocities.


RU-C
(459)Correcting correlation functions for redshift-dependent interloper contamination
  • Daniel J. Farrow,
  • Ariel G. Sánchez,
  • Robin Ciardullo,
  • Erin Mentuch Cooper,
  • Dustin Davis
  • +12
  • Maximilian Fabricius,
  • Eric Gawiser,
  • Henry S. Grasshorn Gebhardt,
  • Karl Gebhardt,
  • Gary J. Hill,
  • Donghui Jeong,
  • Eiichiro Komatsu,
  • Martin Landriau,
  • Chenxu Liu,
  • Shun Saito,
  • Jan Snigula,
  • Isak G. B. Wold
  • (less)
Monthly Notices of the Royal Astronomical Society (11/2021) doi:10.1093/mnras/stab1986
abstract + abstract -

The construction of catalogues of a particular type of galaxy can be complicated by interlopers contaminating the sample. In spectroscopic galaxy surveys this can be due to the misclassification of an emission line; for example in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) low-redshift [O II] emitters may make up a few per cent of the observed Ly α emitter (LAE) sample. The presence of contaminants affects the measured correlation functions and power spectra. Previous attempts to deal with this using the cross-correlation function have assumed sources at a fixed redshift, or not modelled evolution within the adopted redshift bins. However, in spectroscopic surveys like HETDEX, where the contamination fraction is likely to be redshift dependent, the observed clustering of misclassified sources will appear to evolve strongly due to projection effects, even if their true clustering does not. We present a practical method for accounting for the presence of contaminants with redshift-dependent contamination fractions and projected clustering. We show using mock catalogues that our method, unlike existing approaches, yields unbiased clustering measurements from the upcoming HETDEX survey in scenarios with redshift-dependent contamination fractions within the redshift bins used. We show our method returns autocorrelation functions with systematic biases much smaller than the statistical noise for samples with at least as high as 7 per cent contamination. We also present and test a method for fitting for the redshift-dependent interloper fraction using the LAE-[O II] galaxy cross-correlation function, which gives less biased results than assuming a single interloper fraction for the whole sample.


RU-A
(458)General non-leptonic ∆F = 1 WET at the NLO in QCD
  • Jason Aebischer,
  • Christoph Bobeth,
  • Andrzej J. Buras,
  • Jacky Kumar,
  • Mikołaj Misiak
Journal of High Energy Physics (11/2021) doi:10.1007/JHEP11(2021)227
abstract + abstract -

We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic ∆F = 1 decays that govern s → d and b → d, s transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers Nf of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of K → ππ and non-leptonic B-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.


CN-2
RU-D
(457)Large gaps and high accretion rates in photoevaporative transition disks with a dead zone
  • Matías Gárate,
  • Timmy N. Delage,
  • Jochen Stadler,
  • Paola Pinilla,
  • Til Birnstiel
  • +5
  • Sebastian Markus Stammler,
  • Giovanni Picogna,
  • Barbara Ercolano,
  • Raphael Franz,
  • Christian Lenz
  • (less)
Astronomy and Astrophysics (11/2021) doi:10.1051/0004-6361/202141444
abstract + abstract -

Context. Observations of young stars hosting transition disks show that several of them have high accretion rates, despite their disks presenting extended cavities in their dust component. This represents a challenge for theoretical models, which struggle to reproduce both features simultaneously.
Aims: We aim to explore if a disk evolution model, including a dead zone and disk dispersal by X-ray photoevaporation, can explain the high accretion rates and large gaps (or cavities) measured in transition disks.
Methods: We implemented a dead zone turbulence profile and a photoevaporative mass-loss profile into numerical simulations of gas and dust. We performed a population synthesis study of the gas component and obtained synthetic images and SEDs of the dust component through radiative transfer calculations.
Results: This model results in long-lived inner disks and fast dispersing outer disks that can reproduce both the accretion rates and gap sizes observed in transition disks. For a dead zone of turbulence αdz = 10−4 and an extent rdz = 10 AU, our population synthesis study shows that 63% of our transition disks are still accreting with Ṁg ≥ 10−11 M yr−1 after opening a gap. Among those accreting transition disks, half display accretion rates higher than 5.0 × 10−10 M yr−1. The dust component in these disks is distributed in two regions: in a compact inner disk inside the dead zone, and in a ring at the outer edge of the photoevaporative gap, which can be located between 20 and 100 AU. Our radiative transfer calculations show that the disk displays an inner disk and an outer ring in the millimeter continuum, a feature that resembles some of the observed transition disks.
Conclusions: A disk model considering X-ray photoevaporative dispersal in combination with dead zones can explain several of the observed properties in transition disks, including the high accretion rates, the large gaps, and a long-lived inner disk at millimeter emission.


(456)X-ray spectra, light curves and SEDs of blazars frequently observed by Swift
  • Paolo Giommi,
  • M. Perri,
  • M. Capalbi,
  • V. D'Elia,
  • U. Barres de Almeida
  • +17
  • C. H. Brandt,
  • A. M. T. Pollock,
  • F. Arneodo,
  • A. Di Giovanni,
  • Y. L. Chang,
  • O. Civitarese,
  • M. De Angelis,
  • C. Leto,
  • F. Verrecchia,
  • N. Ricard,
  • S. Di Pippo,
  • R. Middei,
  • A. V. Penacchioni,
  • R. Ruffini,
  • N. Sahakyan,
  • D. Israyelyan,
  • S. Turriziani
  • (less)
Monthly Notices of the Royal Astronomical Society (11/2021) doi:10.1093/mnras/stab2425
abstract + abstract -

Blazars research is one of the hot topics of contemporary extragalactic astrophysics. That is because these sources are the most abundant type of extragalactic γ-ray sources and are suspected to play a central role in multimessenger astrophysics. We have used Swift$\_$xrtproc, a tool to carry out an accurate spectral and photometric analysis of the Swift-XRT data of all blazars observed by Swift at least 50 times between December 2004 and the end of 2020. We present a database of X-ray spectra, best-fit parameter values, count rates and flux estimations in several energy bands of over 31 000 X-ray observations and single snapshots of 65 blazars. The results of the X-ray analysis have been combined with other multifrequency archival data to assemble the broad-band Spectral Energy Distributions (SEDs) and the long-term light curves of all sources in the sample. Our study shows that large X-ray luminosity variability on different time-scales is present in all objects. Spectral changes are also frequently observed with a 'harder-when-brighter' or 'softer-when-brighter' behaviour depending on the SED type of the blazars. The peak energy of the synchrotron component (νpeak) in the SED of HBL blazars, estimated from the log-parabolic shape of their X-ray spectra, also exhibits very large changes in the same source, spanning a range of over two orders of magnitude in Mrk421 and Mrk501, the objects with the best data sets in our sample.


MIAPbP
(455)The Vacuum Frame
  • Jose A. R. Cembranos
arXiv e-prints (11/2021) e-Print:2111.11907
abstract + abstract -

One of the most fundamental questions in cosmology is if dark energy is related just to a constant or it is something more complex. In this work, we call the attention to the fact that, under very general conditions, dark energy can be identified with a cosmological constant. Indeed, this fact defines what we call Vacuum Frame. In general, this frame does not coincide with the Jordan or Einstein frame, defined by the invariant character of particle masses or the Newton constant, respectively. We illustrate this question by the introduction of a particular scalar-tensor model where the different hierarchies among these energy scales are dynamically generated.


MIAPbP
RU-A
(454)Lepton-flavour non-universality of B ¯ →D<SUP>∗</SUP>ℓ ν ¯ angular distributions in and beyond the Standard Model
  • Christoph Bobeth,
  • Marzia Bordone,
  • Nico Gubernari,
  • Martin Jung,
  • Danny van Dyk
European Physical Journal C (11/2021) doi:10.1140/epjc/s10052-021-09724-2
abstract + abstract -

We analyze in detail the angular distributions in B ¯ →Dℓ ν ¯ decays, with a focus on lepton-flavour non-universality. We investigate the minimal number of angular observables that fully describes current and upcoming datasets, and explore their sensitivity to physics beyond the Standard Model (BSM) in the most general weak effective theory. We apply our findings to the current datasets, extract the non-redundant set of angular observables from the data, and compare to precise SM predictions that include lepton-flavour universality violating mass effects. Our analysis shows that the number of independent angular observables that can be inferred from current experimental data is limited to only four. These are insufficient to extract the full set of relevant BSM parameters. We uncover a ∼4 σ tension between data and predictions that is hidden in the redundant presentation of the Belle 2018 data on B ¯ →Dℓ ν ¯ decays. This tension specifically involves observables that probe e -μ lepton-flavour universality. However, we find inconsistencies in these data, which renders results based on it suspicious. Nevertheless, we discuss which generic BSM scenarios could explain the tension, in the case that the inconsistencies do not affect the data materially. Our findings highlight that e -μ non-universality in the SM, introduced by the finite muon mass, is already significant in a subset of angular observables with respect to the experimental precision.


CN-7
RU-A
(453)Charge radii, moments, and masses of mercury isotopes across the N =126 shell closure
  • T. Day Goodacre,
  • A. V. Afanasjev,
  • A. E. Barzakh,
  • L. Nies,
  • B. A. Marsh
  • +46
  • S. Sels,
  • U. C. Perera,
  • P. Ring,
  • F. Wienholtz,
  • A. N. Andreyev,
  • P. Van Duppen,
  • N. A. Althubiti,
  • B. Andel,
  • D. Atanasov,
  • R. S. Augusto,
  • J. Billowes,
  • K. Blaum,
  • T. E. Cocolios,
  • J. G. Cubiss,
  • G. J. Farooq-Smith,
  • D. V. Fedorov,
  • V. N. Fedosseev,
  • K. T. Flanagan,
  • L. P. Gaffney,
  • L. Ghys,
  • A. Gottberg,
  • M. Huyse,
  • S. Kreim,
  • P. Kunz,
  • D. Lunney,
  • K. M. Lynch,
  • V. Manea,
  • Y. Martinez Palenzuela,
  • T. M. Medonca,
  • P. L. Molkanov,
  • M. Mougeot,
  • J. P. Ramos,
  • M. Rosenbusch,
  • R. E. Rossel,
  • S. Rothe,
  • L. Schweikhard,
  • M. D. Seliverstov,
  • P. Spagnoletti,
  • C. Van Beveren,
  • M. Veinhard,
  • E. Verstraelen,
  • A. Welker,
  • K. Wendt,
  • R. N. Wolf,
  • A. Zadvornaya,
  • K. Zuber
  • (less)
Physical Review C (11/2021) doi:10.1103/PhysRevC.104.054322
abstract + abstract -

Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source (VADLIS) with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the N =126 shell closure, the electromagnetic moments of 207Hg, and more precise mass values of Hg-208206. The odd-even staggering (OES) of the mean square charge radii and the kink at N =126 are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predominantly in the particle-hole channel in CDFT, since both are present in the calculations without pairing. However, the magnitude of the kink is still affected by the occupation of the ν 1 i11 /2 and ν 2 g9 /2 orbitals with a dependence on the relative energies as well as pairing.


CN-6
(452)Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017
  • MAGIC Collaboration,
  • V. A. Acciari,
  • S. Ansoldi,
  • L. A. Antonelli,
  • A. Arbet Engels
  • +279
  • M. Artero,
  • K. Asano,
  • A. Babić,
  • A. Baquero,
  • U. Barres de Almeida,
  • J. A. Barrio,
  • I. Batković,
  • J. Becerra González,
  • W. Bednarek,
  • L. Bellizzi,
  • E. Bernardini,
  • M. Bernardos,
  • A. Berti,
  • J. Besenrieder,
  • W. Bhattacharyya,
  • C. Bigongiari,
  • O. Blanch,
  • Ž. Bošnjak,
  • G. Busetto,
  • R. Carosi,
  • G. Ceribella,
  • M. Cerruti,
  • Y. Chai,
  • A. Chilingarian,
  • S. Cikota,
  • S. M. Colak,
  • E. Colombo,
  • J. L. Contreras,
  • J. Cortina,
  • S. Covino,
  • G. D'Amico,
  • V. D'Elia,
  • P. da Vela,
  • F. Dazzi,
  • A. de Angelis,
  • B. de Lotto,
  • M. Delfino,
  • J. Delgado,
  • C. Delgado Mendez,
  • D. Depaoli,
  • F. di Pierro,
  • L. di Venere,
  • E. Do Souto Espiñeira,
  • D. Dominis Prester,
  • A. Donini,
  • M. Doro,
  • V. Fallah Ramazani,
  • A. Fattorini,
  • G. Ferrara,
  • M. V. Fonseca,
  • L. Font,
  • C. Fruck,
  • S. Fukami,
  • R. J. García López,
  • M. Garczarczyk,
  • S. Gasparyan,
  • M. Gaug,
  • N. Giglietto,
  • F. Giordano,
  • P. Gliwny,
  • N. Godinović,
  • J. G. Green,
  • D. Green,
  • D. Hadasch,
  • A. Hahn,
  • L. Heckmann,
  • J. Herrera,
  • J. Hoang,
  • D. Hrupec,
  • M. Hütten,
  • T. Inada,
  • S. Inoue,
  • K. Ishio,
  • Y. Iwamura,
  • I. Jiménez,
  • J. Jormanainen,
  • L. Jouvin,
  • Y. Kajiwara,
  • M. Karjalainen,
  • D. Kerszberg,
  • Y. Kobayashi,
  • H. Kubo,
  • J. Kushida,
  • A. Lamastra,
  • D. Lelas,
  • F. Leone,
  • E. Lindfors,
  • S. Lombardi,
  • F. Longo,
  • R. López-Coto,
  • M. López-Moya,
  • A. López-Oramas,
  • S. Loporchio,
  • B. Machado de Oliveira Fraga,
  • C. Maggio,
  • P. Majumdar,
  • M. Makariev,
  • M. Mallamaci,
  • G. Maneva,
  • M. Manganaro,
  • L. Maraschi,
  • M. Mariotti,
  • M. Martínez,
  • D. Mazin,
  • S. Menchiari,
  • S. Mender,
  • S. Mićanović,
  • D. Miceli,
  • T. Miener,
  • M. Minev,
  • J. M. Miranda,
  • R. Mirzoyan,
  • E. Molina,
  • A. Moralejo,
  • D. Morcuende,
  • V. Moreno,
  • E. Moretti,
  • V. Neustroev,
  • C. Nigro,
  • K. Nilsson,
  • K. Nishijima,
  • K. Noda,
  • S. Nozaki,
  • Y. Ohtani,
  • T. Oka,
  • J. Otero-Santos,
  • S. Paiano,
  • M. Palatiello,
  • D. Paneque,
  • R. Paoletti,
  • J. M. Paredes,
  • L. Pavletić,
  • P. Peñil,
  • C. Perennes,
  • M. Persic,
  • P. G. Prada Moroni,
  • E. Prandini,
  • C. Priyadarshi,
  • I. Puljak,
  • M. Ribó,
  • J. Rico,
  • C. Righi,
  • A. Rugliancich,
  • L. Saha,
  • N. Sahakyan,
  • T. Saito,
  • S. Sakurai,
  • K. Satalecka,
  • F. G. Saturni,
  • K. Schmidt,
  • T. Schweizer,
  • J. Sitarek,
  • I. Šnidarić,
  • D. Sobczynska,
  • A. Spolon,
  • A. Stamerra,
  • D. Strom,
  • M. Strzys,
  • Y. Suda,
  • T. Surić,
  • M. Takahashi,
  • F. Tavecchio,
  • P. Temnikov,
  • T. Terzić,
  • M. Teshima,
  • L. Tosti,
  • S. Truzzi,
  • A. Tutone,
  • S. Ubach,
  • J. van Scherpenberg,
  • G. Vanzo,
  • M. Vazquez Acosta,
  • S. Ventura,
  • V. Verguilov,
  • C. F. Vigorito,
  • V. Vitale,
  • I. Vovk,
  • M. Will,
  • C. Wunderlich,
  • D. Zarić,
  • Fact Collaboration,
  • D. Baack,
  • M. Balbo,
  • N. Biederbeck,
  • A. Biland,
  • T. Bretz,
  • J. Buss,
  • D. Dorner,
  • L. Eisenberger,
  • D. Elsaesser,
  • D. Hildebrand,
  • R. Iotov,
  • K. Mannheim,
  • D. Neise,
  • M. Noethe,
  • A. Paravac,
  • W. Rhode,
  • B. Schleicher,
  • V. Sliusar,
  • R. Walter,
  • F. D'Ammando,
  • D. Horan,
  • A. Y. Lien,
  • M. Baloković,
  • G. M. Madejski,
  • M. Perri,
  • F. Verrecchia,
  • C. Leto,
  • A. Lähteenmäki,
  • M. Tornikoski,
  • V. Ramakrishnan,
  • E. Järvelä,
  • R. J. C. Vera,
  • W. Chamani,
  • M. Villata,
  • C. M. Raiteri,
  • A. C. Gupta,
  • A. Pandey,
  • A. Fuentes,
  • I. Agudo,
  • C. Casadio,
  • E. Semkov,
  • S. Ibryamov,
  • A. Marchini,
  • R. Bachev,
  • A. Strigachev,
  • E. Ovcharov,
  • V. Bozhilov,
  • A. Valcheva,
  • E. Zaharieva,
  • G. Damljanovic,
  • O. Vince,
  • V. M. Larionov,
  • G. A. Borman,
  • T. S. Grishina,
  • V. A. Hagen-Thorn,
  • E. N. Kopatskaya,
  • E. G. Larionova,
  • L. V. Larionova,
  • D. A. Morozova,
  • A. A. Nikiforova,
  • S. S. Savchenko,
  • I. S. Troitskiy,
  • Y. V. Troitskaya,
  • A. A. Vasilyev,
  • O. A. Merkulova,
  • W. P. Chen,
  • M. Samal,
  • H. C. Lin,
  • J. W. Moody,
  • A. C. Sadun,
  • S. G. Jorstad,
  • A. P. Marscher,
  • Z. R. Weaver,
  • M. Feige,
  • J. Kania,
  • M. Kopp,
  • L. Kunkel,
  • D. Reinhart,
  • A. Scherbantin,
  • L. Schneider,
  • C. Lorey,
  • J. A. Acosta-Pulido,
  • M. I. Carnerero,
  • D. Carosati,
  • S. O. Kurtanidze,
  • O. M. Kurtanidze,
  • M. G. Nikolashvili,
  • R. A. Chigladze,
  • R. Z. Ivanidze,
  • G. N. Kimeridze,
  • L. A. Sigua,
  • M. D. Joner,
  • M. Spencer,
  • M. Giroletti,
  • N. Marchili,
  • S. Righini,
  • N. Rizzi,
  • G. Bonnoli
  • (less)
Astronomy and Astrophysics (11/2021) doi:10.1051/0004-6361/202141004
abstract + abstract -


Aims: We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.
Methods: The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsähovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.
Results: The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3σ. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from γ'min=2×104 to γ'max=6×105.

Light curves and spectral energy distributions data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/655/A89


(451)Velocity dispersion of brightest cluster galaxies in cosmological simulations
  • I. Marini,
  • S. Borgani,
  • A. Saro,
  • G. L. Granato,
  • C. Ragone-Figueroa
  • +5
  • B. Sartoris,
  • K. Dolag,
  • G. Murante,
  • A. Ragagnin,
  • Y. Wang
  • (less)
Monthly Notices of the Royal Astronomical Society (11/2021) doi:10.1093/mnras/stab2518
abstract + abstract -

Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyse the dynamics traced by stars belonging to the brightest cluster galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and compare it to the dynamics traced by dark matter and galaxies identified in the simulations. We compute scaling relations between the BCG and cluster velocity dispersions and their corresponding masses (i.e. $M_\mathrm{BCG}^{\star }$-$\sigma _\mathrm{BCG}^{\star }$, M200200, $M_\mathrm{BCG}^{\star }$-M200, and $\sigma _\mathrm{BCG}^{\star }$-σ200), we find in general a good agreement with observational results. Our simulations also predict $\sigma _\mathrm{BCG}^{\star }$-σ200 relation to not change significantly up to redshift z = 1, in line with a relatively slow accretion of the BCG stellar mass at late times. We analyse the main features of the velocity dispersion profiles, as traced by stars, dark matter, and galaxies. As a result, we discuss that observed stellar velocity dispersion profiles in the inner cluster regions are in excellent agreement with simulations. We also report that the slopes of the BCG velocity dispersion profile from simulations agree with what is measured in observations, confirming the existence of a robust correlation between the stellar velocity dispersion slope and the cluster velocity dispersion (thus, cluster mass) when the former is computed within 0.1R500. Our results demonstrate that simulations can correctly describe the dynamics of BCGs and their surrounding stellar envelope, as determined by the past star formation and assembly histories of the most massive galaxies of the Universe.


RU-D
(450)New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types
  • Maria Messineo,
  • Donald F. Figer,
  • Rolf-Peter Kudritzki,
  • Qingfeng Zhu,
  • Karl M. Menten
  • +2
  • Valentin D. Ivanov,
  • C. -H. Rosie Chen
  • (less)
The Astronomical Journal (11/2021) doi:10.3847/1538-3881/ac116b
abstract + abstract -

We present infrared spectral indices (1.0-2.3 μm) of Galactic late-type giants and red supergiants (RSGs). We used existing and new spectra obtained at resolution power R = 2000 with SpeX on the IRTF telescope. While a large CO equivalent width (EW), at 2.29 μm ([CO, 2.29] ≳ 45 Å) is a typical signature of RSGs later than spectral type M0, $[\mathrm{CO}]$ of K-type RSGs and giants are similar. In the [CO, 2.29] versus [Mg I, 1.71] diagram, RSGs of all spectral types can be distinguished from red giants because the Mg I line weakens with increasing temperature and decreasing gravity. We find several lines that vary with luminosity, but not temperature: Si I (1.59 μm), Sr (1.033 μm), Fe+Cr+Si+CN (1.16 μm), Fe+Ti (1.185 μm), Fe+Ti (1.196 μm), Ti+Ca (1.28 μm), and Mn (1.29 μm). Good markers of CN enhancement are the Fe+Si+CN line at 1.087 μm and CN line at 1.093 μm. Using these lines, at the resolution of SpeX, it is possible to separate RSGs and giants. Contaminant O-rich Mira and S-type AGBs are recognized by strong molecular features due to water vapor features, TiO band heads, and/or ZrO absorption. Among the 42 candidate RSGs that we observed, all but one were found to be late types. Twenty-one have EWs consistent with those of RSGs, 16 with those of O-rich Mira AGBs, and one with an S-type AGB. These infrared results open new, unexplored, potential for searches at low resolution of RSGs in the highly obscured innermost regions of the Milky Way.


(449)Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography
  • Geoff C. -F. Chen,
  • Tommaso Treu,
  • Christopher D. Fassnacht,
  • Sam Ragland,
  • Thomas Schmidt
  • +1
Monthly Notices of the Royal Astronomical Society (11/2021) doi:10.1093/mnras/stab2587
abstract + abstract -

Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby.


RU-D
(448)Nebular phase properties of supernova Ibc from He-star explosions
  • L. Dessart,
  • D. J. Hillier,
  • T. Sukhbold,
  • S. E. Woosley,
  • H. -T. Janka
Astronomy and Astrophysics (11/2021) doi:10.1051/0004-6361/202141927
abstract + abstract -

Following our recent work on Type II supernovae (SNe), we present a set of 1D nonlocal thermodynamic equilibrium radiative transfer calculations for nebular-phase Type Ibc SNe starting from state-of-the-art explosion models with detailed nucleosynthesis. Our grid of progenitor models is derived from He stars that were subsequently evolved under the influence of wind mass loss. These He stars, which most likely form through binary mass exchange, synthesize less oxygen than their single-star counterparts with the same zero-age main sequence (ZAMS) mass. This reduction is greater in He-star models evolved with an enhanced mass loss rate. We obtain a wide range of spectral properties at 200 d. In models from He stars with an initial mass > 6 M, the [O I] λλ 6300, 6364 is of a comparable or greater strength than [Ca II] λλ 7291, 7323 - the strength of [O I] λλ 6300, 6364 increases with the He-star initial mass. In contrast, models from lower mass He stars exhibit a weak [O I] λλ 6300, 6364, strong [Ca II] λλ 7291, 7323, and also strong N II lines and Fe II emission below 5500 Å. The ejecta density, which is modulated by the ejecta mass, the explosion energy, and clumping, has a critical impact on gas ionization, line cooling, and spectral properties. We note that Fe II dominates the emission below 5500 Å and is stronger at earlier nebular epochs. It ebbs as the SN ages, while the fractional flux in [O I] λλ 6300, 6364 and [Ca II] λλ 7291, 7323 increases with a similar rate as the ejecta recombine. Although the results depend on the adopted wind mass loss rate and pre-SN mass, we find that He-stars of 6-8 M initially (ZAMS mass of 23-28 M) match the properties of standard SNe Ibc adequately. This finding agrees with the offset in progenitor masses inferred from the environments of SNe Ibc relative to SNe II. Our results for less massive He stars are more perplexing since the predicted spectra are not seen in nature. They may be missed by current surveys or associated with Type Ibn SNe in which interaction power dominates over decay power.

Tables A.3-A.23 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/656/A61


CN-7
(447)Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy
  • Nora Brambilla,
  • Miguel Ángel Escobedo,
  • Michael Strickland,
  • Antonio Vairo,
  • Peter Vander Griend
  • +1
Physical Review D (11/2021) doi:10.1103/PhysRevD.104.094049
abstract + abstract -

We report predictions for the suppression and elliptic flow of the ϒ (1 S ), ϒ (2 S ), and ϒ (3 S ) as a function of centrality and transverse momentum in ultrarelativistic heavy-ion collisions. We obtain our predictions by numerically solving a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix derived using potential nonrelativistic QCD and the formalism of open quantum systems. To numerically solve the Lindblad equation, we make use of a stochastic unraveling called the quantum trajectories algorithm. This unraveling allows us to solve the Lindblad evolution equation efficiently on large lattices with no angular momentum cutoff. The resulting evolution describes the full 3D quantum and non-Abelian evolution of the reduced density matrix for bottomonium states. We expand upon our previous work by treating differential observables and elliptic flow; this is made possible by a newly implemented Monte Carlo sampling of physical trajectories. Our final results are compared to experimental data collected in √{sN N}=5.02 TeV Pb-Pb collisions by the ALICE, ATLAS, and CMS collaborations.


(446)On the Use of Field RR Lyrae as Galactic Probes. V. Optical and Radial Velocity Curve Templates
  • V. F. Braga,
  • J. Crestani,
  • M. Fabrizio,
  • G. Bono,
  • C. Sneden
  • +27
  • G. W. Preston,
  • J. Storm,
  • S. Kamann,
  • M. Latour,
  • H. Lala,
  • B. Lemasle,
  • Z. Prudil,
  • G. Altavilla,
  • B. Chaboyer,
  • M. Dall'Ora,
  • I. Ferraro,
  • C. K. Gilligan,
  • G. Fiorentino,
  • G. Iannicola,
  • L. Inno,
  • S. Kwak,
  • M. Marengo,
  • S. Marinoni,
  • P. M. Marrese,
  • C. E. Martínez-Vázquez,
  • M. Monelli,
  • J. P. Mullen,
  • N. Matsunaga,
  • J. Neeley,
  • P. B. Stetson,
  • E. Valenti,
  • M. Zoccali
  • (less)
The Astrophysical Journal (10/2021) doi:10.3847/1538-4357/ac1074
abstract + abstract -

We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including ≍20,000 high-, medium-, and low-resolution spectra for ≍10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (Hα, Hβ, Hγ, Hδ). We tackled the long-standing problem of the reference epoch to anchor light-curve and RVC templates. For the V-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are ~35% to ~45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single-point and the three phase point approaches. We found that barycentric velocities based on our RVC templates are two to three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC 3201 collected with MUSE at VLT. We found the cluster barycentric RV of Vγ = 496.89 ± 8.37(error) ± 3.43 (standard deviation) km s-1, which agrees well with literature estimates.


MIAPbP
(445)Effective QCD string and doubly heavy baryons
  • Joan Soto,
  • Jaume Tarrús Castellà
Physical Review D (10/2021) doi:10.1103/PhysRevD.104.074027
abstract + abstract -

Expressions for the potentials appearing in the nonrelativistic effective field theory description of doubly heavy baryons are known in terms of operator insertions in the Wilson loop. However, their evaluation requires nonperturbative techniques, such as lattice QCD, and the relevant calculations are often not available. We propose a parametrization of these potentials with a minimal model dependence based on an interpolation of the short- and long-distance descriptions. The short-distance description is obtained from weakly-coupled potential NRQCD and the long-distance one is computed using an effective string theory. The effective string theory coincides with the one for pure gluodynamics with the addition of a fermion field constrained to move on the string. We compute the hyperfine contributions to the doubly heavy baryon spectrum. The unknown parameters are obtained from heavy quark-diquark symmetry or fitted to the available lattice-QCD determinations of the hyperfine splittings. Using these parameters we compute the double charm and bottom baryon spectrum including the hyperfine contributions. We compare our results with those of other approaches and find that our results are closer to lattice-QCD determinations, in particular for the excited states. Furthermore, we compute the vacuum energy in the effective string theory and show that the fermion field contribution produces the running of the string tension and a change of sign in the Lüscher term.


(444)Multiscale pentagon integrals to all orders
  • Dhimiter D. Canko,
  • Costas G. Papadopoulos,
  • Nikolaos Syrrakos
arXiv e-prints (10/2021) e-Print:2110.07971
abstract + abstract -

We present analytical results for one-loop five-point master integrals with up to three off-shell legs. The method of canonical differential equations along with the Simplified Differential Equations approach is employed. All necessary boundary terms are given in closed form, resulting to solutions in terms of Goncharov Polylogarithms of arbitrary weight. Explicit results up to weight six will be presented.


(443)Satellite galaxy abundance dependency on cosmology in Magneticum simulations
  • Antonio Ragagnin,
  • Alessandra Fumagalli,
  • Tiago Castro,
  • Klaus Dolag,
  • Alexandro Saro
  • +2
  • Matteo Costanzi,
  • Sebastian Bocquet
  • (less)
arXiv e-prints (10/2021) e-Print:2110.05498
abstract + abstract -

Context: Modelling satellite galaxy abundance $N_s$ in Galaxy Clusters (GCs) is a key element in modelling the Halo Occupation Distribution (HOD), which itself is a powerful tool to connect observational studies with numerical simulations. Aims: To study the impact of cosmological parameters on satellite abundance both in cosmological simulations and in mock observations. Methods: We build an emulator (HODEmu, \url{https://github.com/aragagnin/HODEmu/}) of satellite abundance based on cosmological parameters $\Omega_m, \Omega_b, \sigma_8, h_0$ and redshift $z.$ We train our emulator using \magneticum hydrodynamic simulations that span 15 different cosmologies, each over $4$ redshift slices between $0<z<0.5,$ and for each setup we fit normalisation $A$, log-slope $\beta$ and Gaussian fractional-scatter $\sigma$ of the $N_s-M$ relation. The emulator is based on multi-variate output Gaussian Process Regression (GPR). Results: We find that $A$ and $\beta$ depend on cosmological parameters, even if weakly, especially on $\Omega_m,$ $\Omega_b.$ This dependency can explain some discrepancies found in literature between satellite HOD of different cosmological simulations (Magneticum, Illustris, BAHAMAS). We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO), and non-radiative simulations. Conclusions: This work provides a preliminary calibration of the cosmological dependency of the satellite abundance of high mass halos, and we showed that modelling HOD with cosmological parameters is necessary to interpret satellite abundance, and we showed the importance of using FP simulations in modelling this dependency.


(442)Fast full N-body simulations of generic modified gravity: conformal coupling models
  • Cheng-Zong Ruan,
  • César Hernández-Aguayo,
  • Baojiu Li,
  • Christian Arnold,
  • Carlton M. Baugh
  • +2
  • Anatoly Klypin,
  • Francisco Prada
  • (less)
abstract + abstract -

We present mg-glam, a code developed for the very fast

production of full N-body cosmological simulations in modified

gravity (MG) models. We describe the implementation, numerical tests

and first results of a large suite of cosmological simulations for

three classes of MG models with conformal coupling terms: the f(R)

gravity, symmetron and coupled quintessence models. Derived from

the parallel particle-mesh code glam, mg-glam

incorporates an efficient multigrid relaxation technique to solve

the characteristic nonlinear partial differential equations of these

models. For f(R) gravity, we have included new variants to

diversify the model behaviour, and we have tailored the relaxation

algorithms to these to maintain high computational efficiency. In a

companion paper, we describe versions of this code developed for

derivative coupling MG models, including the Vainshtein- and

K-mouflage-type models. mg-glam can model the prototypes

for most MG models of interest, and is broad and versatile. The

code is highly optimised, with a tremendous speedup of a factor of

more than a hundred compared with earlier N-body codes, while

still giving accurate predictions of the matter power spectrum and

dark matter halo abundance. mg-glam is ideal for the

generation of large numbers of MG simulations that can be used in

the construction of mock galaxy catalogues and the production of

accurate emulators for ongoing and future galaxy surveys.


CN-7
MIAPbP
(441)Simulating MADMAX in 3D: requirements for dielectric axion haloscopes
  • S. Knirck,
  • J. Schütte-Engel,
  • S. Beurthey,
  • D. Breitmoser,
  • A. Caldwell
  • +37
  • C. Diaconu,
  • J. Diehl,
  • J. Egge,
  • M. Esposito,
  • A. Gardikiotis,
  • E. Garutti,
  • S. Heyminck,
  • F. Hubaut,
  • J. Jochum,
  • P. Karst,
  • M. Kramer,
  • C. Krieger,
  • D. Labat,
  • C. Lee,
  • X. Li,
  • A. Lindner,
  • B. Majorovits,
  • S. Martens,
  • M. Matysek,
  • E. Öz,
  • L. Planat,
  • P. Pralavorio,
  • G. Raffelt,
  • A. Ranadive,
  • J. Redondo,
  • O. Reimann,
  • A. Ringwald,
  • N. Roch,
  • J. Schaffran,
  • A. Schmidt,
  • L. Shtembari,
  • F. Steffen,
  • C. Strandhagen,
  • D. Strom,
  • I. Usherov,
  • G. Wieching,
  • MADMAX Collaboration
  • (less)
Journal of Cosmology and Astroparticle Physics (10/2021) doi:10.1088/1475-7516/2021/10/034
abstract + abstract -

We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted power by up to 30 % compared to earlier 1D calculations. We derive the emitted beam shape, which is important for antenna design. We show that realistic dark matter axion velocities of 10-3 c and inhomogeneities of the external magnetic field at the scale of 10 % have negligible impact on the sensitivity of MADMAX. We investigate design requirements for which the emitted power changes by less than 20 % for a benchmark boost factor with a bandwidth of 50 MHz at 22 GHz, corresponding to an axion mass of 90 μ eV. We find that the maximum allowed disk tilt is 100 μ m divided by the disk diameter, the required disk planarity is 20 μ m (min-to-max) or better, and the maximum allowed surface roughness is 100 μ m (min-to-max). We show how using tiled dielectric disks glued together from multiple smaller patches can affect the beam shape and antenna coupling.


CN-3
RU-B
(440)Production and signatures of multi-flavour dark matter scenarios with t-channel mediators
  • Johannes Herms,
  • Alejandro Ibarra
Journal of Cosmology and Astroparticle Physics (10/2021) doi:10.1088/1475-7516/2021/10/026
abstract + abstract -

We investigate the phenomenology of a dark matter scenario containing two generations of the dark matter particle, differing only by their mass and their couplings to the other particles, akin to the quark and lepton sectors of the Standard Model. For concreteness, we consider the case where the two dark matter generations are Majorana fermions that couple to a right-handed lepton and a scalar mediator through Yukawa couplings. We identify different production regimes in the multi-flavor dark matter scenario and we argue that in some parts of the parameter space the heavier generation can play a pivotal role in generating the correct dark matter abundance. In these regions, the strength of the dark matter coupling to the Standard Model can be much larger than in the single-flavored dark matter scenario. Correspondingly the indirect and direct detection signals can be significantly boosted. We also comment on the signatures of the model from the decay of the heavier dark matter generation into the lighter.


RU-C
(439)The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections*
  • Karl Gebhardt,
  • Erin Mentuch Cooper,
  • Robin Ciardullo,
  • Viviana Acquaviva,
  • Ralf Bender
  • +58
  • William P. Bowman,
  • Barbara G. Castanheira,
  • Gavin Dalton,
  • Dustin Davis,
  • Roelof S. de Jong,
  • D.L. DePoy,
  • Yaswant Devarakonda,
  • Sun Dongsheng,
  • Niv Drory,
  • Maximilian Fabricius,
  • Daniel J. Farrow,
  • John Feldmeier,
  • Steven L. Finkelstein,
  • Cynthia S. Froning,
  • Eric Gawiser,
  • Caryl Gronwall,
  • Laura Herold,
  • Gary J. Hill,
  • Ulrich Hopp,
  • Lindsay R. House,
  • Steven Janowiecki,
  • Matthew Jarvis,
  • Donghui Jeong,
  • Shardha Jogee,
  • Ryota Kakuma,
  • Andreas Kelz,
  • W. Kollatschny,
  • Eiichiro Komatsu,
  • Mirko Krumpe,
  • Martin Landriau,
  • Chenxu Liu,
  • Maja Lujan Niemeyer,
  • Phillip MacQueen,
  • Jennifer Marshall,
  • Ken Mawatari,
  • Emily M. McLinden,
  • Shiro Mukae,
  • Gautam Nagaraj,
  • Yoshiaki Ono,
  • Masami Ouchi,
  • Casey Papovich,
  • Nao Sakai,
  • Shun Saito,
  • Donald P. Schneider,
  • Andreas Schulze,
  • Khavvia Shanmugasundararaj,
  • Matthew Shetrone,
  • Chris Sneden,
  • Jan Snigula,
  • Matthias Steinmetz,
  • Benjamin P. Thomas,
  • Brianna Thomas,
  • Sarah Tuttle,
  • Tanya Urrutia,
  • Lutz Wisotzki,
  • Isak Wold,
  • Gregory Zeimann,
  • Yechi Zhang
  • (less)
abstract + abstract -

We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg$^{2}$ area encompassing a comoving volume of 10.9 Gpc$^{3}$. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.


RU-C
(438)Testing the Sunyaev-Zeldovich-based tomographic approach to the thermal history of the Universe with pressure-density cross correlations: Insights from the Magneticum simulation
  • Sam Young,
  • Eiichiro Komatsu,
  • Klaus Dolag
Physical Review D (10/2021) doi:10.1103/PhysRevD.104.083538
abstract + abstract -

The thermal Sunyaev-Zeldovich effect contains information about the thermal history of the Universe, which is observable in maps of the Compton y parameter; however, it does not contain information about the redshift of the sources. Recent papers have utilized a tomographic approach, by cross correlating the Compton y map with the locations of galaxies with known redshift in order to deproject the signal along the line of sight. In this paper, we test the validity and accuracy of this tomographic approach to probe the thermal history of the Universe. We use the state-of-the-art, cosmological, and hydrodynamical simulation, Magneticum, for which the thermal history of the Universe is a known quantity. The key ingredient is the Compton-y -weighted halo bias, by, which is computed from the halo model. We find that, at redshifts currently available, the method reproduces the correct mean thermal pressure (or the density-weighted mean temperature) with high accuracy, validating and confirming the results of previous papers. At higher redshifts (z ≳2 ), there is significant disagreement between by from the halo model and the simulation.


(437)Snowdrift game induces pattern formation in systems of self-propelled particles
  • Johanna Mayer,
  • Michael Obermüller,
  • Jonas Denk,
  • Erwin Frey
Physical Review E (10/2021) doi:10.1103/PhysRevE.104.044408
abstract + abstract -

Evolutionary games between species are known to lead to intriguing spatiotemporal patterns in systems of diffusing agents. However, the role of interspecies interactions is hardly studied when agents are (self-)propelled, as is the case in many biological systems. Here, we combine aspects from active matter and evolutionary game theory and study a system of two species whose individuals are (self-)propelled and interact through a snowdrift game. We derive hydrodynamic equations for the density and velocity fields of both species from which we identify parameter regimes in which one or both species form macroscopic orientational order as well as regimes of propagating wave patterns. Interestingly, we find simultaneous wave patterns in both species that result from the interplay between alignment and snowdrift interactions—a feedback mechanism that we call game-induced pattern formation. We test these results in agent-based simulations and confirm the different regimes of order and spatiotemporal patterns as well as game-induced pattern formation.


RU-A
(436)Holomorphic boundary conditions for topological field theories via branes in twisted supergravity
  • Ilka Brunner,
  • Ioannis Lavdas,
  • Ingmar Saberi
arXiv e-prints (10/2021) e-Print:2110.15257
abstract + abstract -

Three-dimensional $\mathcal{N}=4$ supersymmetric field theories admit a natural class of chiral half-BPS boundary conditions that preserve $\mathcal{N}=(0,4)$ supersymmetry. While such boundary conditions are not compatible with topological twists, deformations that define boundary conditions for the topological theories were recently introduced by Costello and Gaiotto. Not all $\mathcal{N}=(0,4)$ boundary conditions admit such deformations. We revisit this construction, working directly in the setting of the holomorphically twisted theory and viewing the topological twists as further deformations. Properties of the construction are explained both purely in the context of holomorphic field theory and also by engineering the holomorphic theory on the worldvolume of a D-brane. Our brane engineering approach combines the intersecting brane configurations of Hanany-Witten with recent work of Costello and Li on twisted supergravity. The latter approach allows to realize holomorphically and topologically twisted field theories directly as worldvolume theories in deformed supergravity backgrounds, and we make extensive use of this.


(435)On deformations and extensions of Diff(S<SUP>2</SUP>)
  • Martín Enríquez Rojo,
  • Tomáš Procházka,
  • Ivo Sachs
Journal of High Energy Physics (10/2021) doi:10.1007/JHEP10(2021)133
abstract + abstract -

We investigate the algebra of vector fields on the sphere. First, we find that linear deformations of this algebra are obstructed under reasonable conditions. In particular, we show that hs[λ], the one-parameter deformation of the algebra of area-preserving vector fields, does not extend to the entire algebra. Next, we study some non-central extensions through the embedding of vect(S2) into vect(ℂ*). For the latter, we discuss a three parameter family of non-central extensions which contains the symmetry algebra of asymptotically flat and asymptotically Friedmann spacetimes at future null infinity, admitting a simple free field realization.


RU-A
(434)The charm of 331
  • Andrzej J. Buras,
  • Pietro Colangelo,
  • Fulvia De Fazio,
  • Francesco Loparco
Journal of High Energy Physics (10/2021) doi:10.1007/JHEP10(2021)021
abstract + abstract -

We perform a detailed analysis of flavour changing neutral current processes in the charm sector in the context of 331 models. As pointed out recently, in the case of Z' contributions in these models there are no new free parameters beyond those already present in the Bd,s and K meson systems analyzed in the past. As a result, definite ranges for new Physics (NP) effects in various charm observables could be obtained. While generally NP effects turn out to be small, in a number of observables they are much larger than the tiny effects predicted within the Standard Model. In particular we find that the branching ratio of the mode D0→ μ+μ, despite remaining tiny, can be enhanced by 6 orders of magnitude with respect to the SM. We work out correlations between this mode and rare Bd,s and K decays. We also discuss neutral charm meson oscillations and CP violation in the charm system. In particular, we point out that 331 models provide new weak phases that are a necessary condition to have non-vanishing CP asymmetries. In the case of ∆ACP, the difference between the CP asymmetries in D0→ K+K and D0→ π+π, we find that agreement with experiment can be obtained provided that two conditions are verified: the phases in the ranges predicted in 331 models and large hadronic matrix elements.


(433)Determining fundamental parameters of detached double-lined eclipsing binary systems via a statistically robust machine learning method
  • Bryce A. Remple,
  • George C. Angelou,
  • Achim Weiss
Monthly Notices of the Royal Astronomical Society (10/2021) doi:10.1093/mnras/stab2030
abstract + abstract -

The parameter space for modelling stellar systems is vast and complicated. To find best-fitting models for a star one needs a statistically robust way of exploring this space. We present a new machine-learning approach to predict the modelling parameters for detached double-lined eclipsing binary systems, including the system age, based on observable quantities. Our method allows for the estimation of the importance of several physical effects which are included in a parametrized form in stellar models, such as convective core overshoot or stellar spot coverage. The method yields probability distribution functions for the predicted parameters which take into account the statistical and, to a certain extent, the systematic errors which is very difficult to do using other methods. We employ two different approaches to investigate the two components of the system either independently or in a combined manner. Furthermore, two different grids are used as training data. We apply the method to 26 selected objects and test the predicted best solutions with an on-the-fly optimization routine which generates full hydrostatic models. While we do encounter failures of the predictions, our method can serve as a rapid estimate for stellar ages of detached eclipsing binaries taking full account of the uncertainties in the observables.


CN-2
RU-D
(432)First 3D grid-based gas-dust simulations of circumstellar discs with an embedded planet
  • Fabian Binkert,
  • Judit Szulágyi,
  • Til Birnstiel
Monthly Notices of the Royal Astronomical Society (10/2021) doi:10.1093/mnras/stab2075
abstract + abstract -

Substructures are ubiquitous in high resolution (sub-)millimeter continuum observations of circumstellar discs. They are possibly caused by forming planets embedded in their disc. To investigate the relation between observed substructures and young planets, we perform novel 3D two-fluid (gas+1-mm-dust) hydrodynamic simulations of circumstellar discs with embedded planets (Neptune-, Saturn-, Jupiter-, 5 Jupiter-mass) at different orbital distances from the star (5.2 AU, 30 AU, 50 AU). We turn these simulations into synthetic (sub-)millimeter ALMA images. We find that all but the Neptune-mass planet open annular gaps in both the gas and the dust component of the disc. We find that the temporal evolution of the dust density distribution is distinctly different from the gas'. For example, the planets cause significant vertical stirring of the dust in the circumstellar disc which opposes the vertical settling. This creates a thicker dust disc than discs without a planet. We find that this effect greatly influences the dust masses derived from the synthetic ALMA images. Comparing the dust disc masses in the 3D simulations to the disc masses derived from the 2D ALMA synthetic images using the optically thin approximation, we find the former to be a factor of a few (up to 10) larger, pointing to the conclusion that real discs are significantly more massive than previously thought based on ALMA continuum images. Finally, we analyse the synthetic ALMA images and provide an empirical relationship between the planet mass and the width of the gap in the ALMA images, including the effects of the beam size.


(431)GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes
  • Benjamin P. Moster,
  • Thorsten Naab,
  • Magnus Lindström,
  • Joseph A. O'Leary
Monthly Notices of the Royal Astronomical Society (10/2021) doi:10.1093/mnras/stab1449
abstract + abstract -

We present the novel wide and deep neural network GalaxyNet, which connects the properties of galaxies and dark matter haloes and is directly trained on observed galaxy statistics using reinforcement learning. The most important halo properties to predict stellar mass and star formation rate (SFR) are halo mass, growth rate, and scale factor at the time the mass peaks, which results from a feature importance analysis with random forests. We train different models with supervised learning to find the optimal network architecture. GalaxyNet is then trained with a reinforcement learning approach: for a fixed set of weights and biases, we compute the galaxy properties for all haloes and then derive mock statistics (stellar mass functions, cosmic and specific SFRs, quenched fractions, and clustering). Comparing these statistics to observations we get the model loss, which is minimized with particle swarm optimization. GalaxyNet reproduces the observed data very accurately and predicts a stellar-to-halo mass relation with a lower normalization and shallower low-mass slope at high redshift than empirical models. We find that at low mass, the galaxies with the highest SFRs are satellites, although most satellites are quenched. The normalization of the instantaneous conversion efficiency increases with redshift, but stays constant above z ≳ 0.5. Finally, we use GalaxyNet to populate a cosmic volume of (5.9 Gpc)3 with galaxies and predict the BAO signal, the bias, and the clustering of active and passive galaxies up to z = 4, which can be tested with next-generation surveys, such as LSST and Euclid.


RU-A
(430)Higgs-electroweak chiral Lagrangian: One-loop renormalization group equations
  • G. Buchalla,
  • O. Catà,
  • A. Celis,
  • M. Knecht,
  • C. Krause
Physical Review D (10/2021) doi:10.1103/PhysRevD.104.076005
abstract + abstract -

Starting from the one-loop divergences we obtained previously, we work out the renormalization of the Higgs-electroweak chiral Lagrangian explicitly and in detail. This includes the renormalization of the lowest-order Lagrangian, as well as the decomposition of the remaining divergences into a complete basis of next-to-leading-order counterterms. We provide the list of the corresponding beta functions. We show how our results match the one-loop renormalization of some of the dimension-6 operators in SMEFT. We further point out differences with related work in the literature and discuss them. As an application of the obtained results, we evaluate the divergences of the vacuum expectation value of the Higgs field at one loop and show that they can be appropriately removed by the corresponding renormalization. We also work out the finite renormalization required to keep the no-tadpole condition on the Higgs field at one loop.