The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin excitations. Calculations are performed self-consistently with relativistic point-coupling interactions DD-PC1 and DD-PCX. In the charge-exchange channel, the pairing interaction can be split into isovector (T=1) and isoscalar (T=0) parts. For the isovector component, the same separable form of the Gogny D1S pairing interaction is used both for the ground-state calculation as well as for the residual interaction, while the strength of the isoscalar pairing in the residual interaction is determined by comparison with experimental data on Gamow-Teller resonance (GTR) and isobaric analog resonance (IAR) centroid energy differences in even-even tin isotopes. The temperature effects are introduced by treating Bogoliubov quasiparticles within a grand-canonical ensemble. Thus, unlike the conventional formulation of the quasiparticle random-phase approximation (QRPA) based on the Bardeen-Cooper-Schrieffer (BCS) basis, our model is formulated within the Hartree-Fock-Bogoliubov (HFB) quasiparticle basis. Implementing a relativistic point-coupling interaction and a separable pairing force allows for the reduction of complicated two-body residual interaction matrix elements, which considerably decreases the dimension of the problem in the coordinate space. The main advantage of this method is to avoid the diagonalization of a large QRPA matrix, especially at finite temperature where the size of configuration space is significantly increased. The implementation of the linear response code is used to study the temperature evolution of IAR, GTR, and spin-dipole resonance (SDR) in even-even tin isotopes in the temperature range T=0–1.5 MeV.
The strong interaction among hadrons has been measured in the past by scattering experiments. Although this technique has been extremely successful in providing information about the nucleon-nucleon and pion-nucleon interactions, when unstable hadrons are considered the experiments become more challenging. In the last few years, the analysis of correlations in the momentum space for pairs of stable and unstable hadrons measured in pp and p+Pb collisions by the ALICE Collaboration at the LHC has provided a new method to investigate the strong interaction among hadrons. In this article, we review the numerous results recently achieved for hyperon-nucleon, hyperon-hyperon, and kaon-nucleon pairs, which show that this new method opens the possibility of measuring the residual strong interaction of any hadron pair.
The topic of this work is the non-traditional baryon–baryon femtoscopy, the goal of which is to study the interaction potential between different baryon pairs, assuming that their emission source is known. A new analysis framework (CATS) has been developed to model the correlation function. Further, a new model to describe the emission source was created, which accounts for the modulation related to particle production through the decays of short-lived resonances. Finally, these new analysis methods were applied to study the strong interaction acting between proton-Lambda and Lambda-Lambda pairs.
This thesis presents several multi-messenger analyses, searching for the long-sough sources of high-energy cosmic radiation. By combining data from the IceCube Neutrino Detector and other multi-frequency observatories, the first two significant neutrino point sources - the blazar TXS 0506+056 and the Seyfert 2 galaxy NGC 1068 - are identified. Furthermore, a correlation study of high-energy neutrinos with gamma-ray blazars finds 3.2σ evidence for an astrophysical neutrino flux contribution from IBL/HBL blazars. Finally, we present a deep neural network that helps to optimize IceCube’s event selection pipeline.
We present a multi-wavelength study of the gaseous medium surrounding the nearby active galactic nucleus (AGN), Fornax A. Using MeerKAT, ALMA, and MUSE observations, we reveal a complex distribution of the atomic (H I), molecular (CO), and ionised gas in its centre and along the radio jets. By studying the multi-scale kinematics of the multi-phase gas, we reveal the presence of concurrent AGN feeding and feedback phenomena. Several clouds and an extended 3 kpc filament - perpendicular to the radio jets and the inner disk (r ≲ 4.5 kpc) - show highly-turbulent kinematics, which likely induces non-linear condensation and subsequent chaotic cold accretion (CCA) onto the AGN. In the wake of the radio jets and in an external (r ≳ 4.5 kpc) ring, we identify an entrained massive (∼107 M⊙) multi-phase outflow (vOUT ∼ 2000 km s−1). The rapid flickering of the nuclear activity of Fornax A (∼3 Myr) and the gas experiencing turbulent condensation raining onto the AGN provide quantitative evidence that a recurrent, tight feeding and feedback cycle may be self-regulating the activity of Fornax A, in agreement with CCA simulations. To date, this is one of the most in-depth probes of such a mechanism, paving the way to apply these precise diagnostics to a larger sample of nearby AGN hosts and their multi-phase inter stellar medium.
Reduced images and datacubes are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/656/A45
We use separate universe simulations with the IllustrisTNG galaxy formation model to predict the local PNG bias parameters bΦ and bΦδ of atomic neutral hydrogen, H$_{I}$. These parameters and their relation to the linear density bias parameter b
$_{1}$ play a key role in observational constraints of the local PNG parameter f
$_{NL}$ using the H$_{I}$ power spectrum and bispectrum. Our results show that the popular calculation based on the universality of the halo mass function overpredicts the bΦ(b
$_{1}$) and bΦδ(b
$_{1}$) relations measured in the simulations. In particular, our results show that at z ≲ 1 the H$_{I}$ power spectrum is more sensitive to f
$_{NL}$ compared to previously thought (bΦ is more negative), but is less sensitive at other epochs (bΦ is less positive). We discuss how this can be explained by the competition of physical effects such as that large-scale gravitational potentials with local PNG (i) accelerate the conversion of hydrogen to heavy elements by star formation, (ii) enhance the effects of baryonic feedback that eject the gas to regions more exposed to ionizing radiation, and (iii) promote the formation of denser structures that shield the H$_{I}$ more efficiently. Our numerical results can be used to revise existing forecast studies on f
$_{NL}$ using 21 cm line-intensity mapping data. Despite this first step towards predictions for the local PNG bias parameters of H$_{I}$, we emphasize that more work is needed to assess their sensitivity on the assumed galaxy formation physics and H$_{I}$ modeling strategy.
The simplest models of dark matter halo formation rely on the heuristic assumption, motivated by spherical collapse, that virialized haloes originate from initial regions that are maxima of the smoothed matter density field. Here, we replace this notion with the dynamical requirement that protohaloes be regions where the local gravitational flow converges to a point. For this purpose, we look for spheres whose acceleration at the boundary - relative to their centre of mass - points towards their geometric centre: that is, spheres with null dipole moment. We show that these configurations are minima of the energy, corresponding to the most energetically bound spheres. Therefore, we study peaks of the smoothed energy overdensity field. This significant conceptual change is technically trivial to implement: to change from density to energy one need only modify the standard top-hat smoothing filter. However, this comes with the important benefit that, for power spectra of cosmological interest, the model is no longer plagued by divergences: improving the physics mends the mathematics. In addition, the 'excursion set' requirement that the smoothed matter density crosses a critical value can be naturally replaced by a threshold in energy. Measurements in simulations of haloes more massive than 1013h-1M⊙ show very good agreement with a number of generic predictions of our model.
Using the CLASH-VLT survey, we assembled an unprecedented sample of 1234 spectroscopically confirmed members in Abell~S1063, finding a dynamically complex structure at z_cl=0.3457 with a velocity dispersion \sigma_v=1380 -32 +26 km s^-1. We investigate cluster environmental and dynamical effects by analysing the projected phase-space diagram and the orbits as a function of galaxy spectral properties. We classify cluster galaxies according to the presence and strength of the [OII] emission line, the strength of the Hδ absorption line, and colours. We investigate the relationship between the spectral classes of galaxies and their position in the projected phase-space diagram. We analyse separately red and blue galaxy orbits. By correlating the observed positions and velocities with the projected phase-space constructed from simulations, we constrain the accretion redshift of galaxies with different spectral types. Passive galaxies are mainly located in the virialised region, while emission-line galaxies are outside r_200, and are accreted later into the cluster. Emission-lines and post-starbursts show an asymmetric distribution in projected phase-space within r_200, with the first being prominent at Delta_v/sigma <~-1.5$, and the second at Delta_v/ sigma >~ 1.5, suggesting that backsplash galaxies lie at large positive velocities. We find that low-mass passive galaxies are accreted in the cluster before the high-mass ones. This suggests that we observe as passives only the low-mass galaxies accreted early in the cluster as blue galaxies, that had the time to quench their star formation. We also find that red galaxies move on more radial orbits than blue galaxies. This can be explained if infalling galaxies can remain blue moving on tangential orbits.
Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code \textsc{CIGALE}. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited (i<22.5) sample of galaxies up to redshift z∼0.8. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.
The scalar field theory of cosmological inflation constitutes nowadays one of the preferred scenarios for the physics of the early universe. In this paper we aim at studying the inflationary universe making use of a numerical lattice simulation. Various lattice codes have been written in the last decades and have been extensively used for understating the reheating phase of the universe, but they have never been used to study the inflationary phase itself far from the end of inflation (i.e. about 50 e-folds before the end of inflation). In this paper we use a lattice simulation to reproduce the well-known results of some simple models of single-field inflation, particularly for the scalar field perturbation. The main model that we consider is the standard slow-roll inflation with an harmonic potential for the inflaton field. We explore the technical aspects that need to be accounted for in order to reproduce with precision the nearly scale invariant power spectrum of inflaton perturbations. We also consider the case of a step potential, and show that the simulation is able to correctly reproduce the oscillatory features in the power spectrum of this model. Even if a lattice simulation is not needed in these cases, that are well within the regime of validity of linear perturbation theory, this sets the basis to future work on using lattice simulations to study more complicated models of inflation.
Analysis of large galaxy surveys requires confidence in the robustness of numerical simulation methods. The simulations are used to construct mock galaxy catalogues to validate data analysis pipelines and identify potential systematics. We compare three N-body simulation codes, abacus, gadget-2, and swift, to investigate the regimes in which their results agree. We run N-body simulations at three different mass resolutions, 6.25 × 10^8, 2.11 × 10^9, and 5.00 × 10^9 h^−1 M_⊙, matching phases to reduce the noise within the comparisons. We find systematic errors in the halo clustering between different codes are smaller than the Dark Energy Spectroscopic Instrument (DESI) statistical error for s > 20 h−1 Mpc in the correlation function in redshift space. Through the resolution comparison we find that simulations run with a mass resolution of 2.1 × 10^9 h^−1 M_⊙ are sufficiently converged for systematic effects in the halo clustering to be smaller than the DESI statistical error at scales larger than 20 h−1 Mpc. These findings show that the simulations are robust for extracting cosmological information from large scales which is the key goal of the DESI survey. Comparing matter power spectra, we find the codes agree to within 1 per cent for k ≤ 10 h Mpc^−1. We also run a comparison of three initial condition generation codes and find good agreement. In addition, we include a quasi-N-body code, FastPM, since we plan use it for certain DESI analyses. The impact of the halo definition and galaxy–halo relation will be presented in a follow-up study.
We provide the first combined cosmological analysis of South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the $\nu \Lambda$CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find $\alpha_{\text{SZ}} = 1.49 _{-0.10}^{+0.07}$ and $(1-b)_{\text{SZ}} = 0.69 _{-0.14}^{+0.07}$ respectively. The results for the mass slope show a $\sim 4 \, \sigma$ departure from the self-similar evolution, $\alpha_{\text{SZ}} \sim 1.8$. This shift is mainly driven by the matter density value preferred by SPT data, $\Omega_m = 0.30 \pm 0.03$, lower than the one obtained by Planck data alone, $\Omega_m = 0.37 _{-0.06}^{+0.02}$. The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, $(1-b) \sim 0.8$, and with results required by the Planck cosmic microwave background cosmology, $(1-b) \sim 0.6$. From this analysis, we obtain a new catalog of Planck cluster masses $M_{500}$. We estimate the relation between the published Planck derived $M_{\text{SZ}}$ masses and our derived masses, as a measured mass bias. We analyse the mass, redshift and detection noise dependence of this quantity, finding an increasing trend towards high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass high-mass, low-z high-z regimes.
The multihadron decays $ {\Lambda}_b^0 $ → D+pπ−π− and $ {\Lambda}_b^0 $ → D$^{*}$+pπ−π− are observed in data corresponding to an integrated luminosity of 3 fb$^{−1}$, collected in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV by the LHCb detector. Using the decay $ {\Lambda}_b^0 $ → $ {\Lambda}_c^{+} $π$^{+}$π$^{−}$π$^{−}$ as a normalisation channel, the ratio of branching fractions is measured to be$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {\Lambda}_c^0{\pi}^{+}{\pi}^{-}{\pi}^{-}\right)}\times \frac{\mathcal{B}\left({D}^{+}\to {K}^{-}{\pi}^{+}{\pi}^{+}\right)}{\mathcal{B}\left({\Lambda}_c^0\to {pK}^{-}{\pi}^{-}\right)}=\left(5.35\pm 0.21\pm 0.16\right)\%, $where the first uncertainty is statistical and the second systematic. The ratio of branching fractions for the $ {\Lambda}_b^0 $ → D$^{*+}$pπ$^{−}$π$^{−}$ and $ {\Lambda}_b^0 $ → D$^{+}$pπ$^{−}$π$^{−}$ decays is found to be$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{\ast +}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}\times \left(\mathcal{B}\left({D}^{\ast +}\to {D}^{+}{\pi}^0\right)+\mathcal{B}\left({D}^{\ast +}\to {D}^{+}\gamma \right)\right)=\left(61.3\pm 4.3\pm 4.0\right)\%. $[graphic not available: see fulltext]
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50$\mathrm { \,m}$ long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400$\,\mathrm {GeV}$ protons, the experiment aims at profiting from the $4\times 10^{19}$ protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few ${\mathrm {\,MeV\!/}c^2}$ up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
Black holes are amongst the most fascinating concepts both for (astro-) physicists and the public. However, they are not only intriguing objects lurking in the cosmic shadows. Many of the most luminous phenomena, both persistent and transient, that we know in the Universe are somehow related to accretion of matter onto them. Black holes are predicted and inferred to exist in different mass ranges, with two main populations consisting of stellar-mass and supermassive
black holes (SMBHs). [...]
A data sample collected with the LHCb detector corresponding to an integrated luminosity of 9 fb$^{-1}$ is used to measure eleven $CP$ violation observables in $B^\pm\to Dh^\pm$ decays, where $h$ is either a kaon or a pion. The neutral $D$ meson decay is reconstructed in the three-body final states: $K^\pm\pi^\mp\pi^0$; $\pi^+\pi^-\pi^0$; $K^+K^-\pi^0$ and the suppressed $\pi^\pm K^\mp\pi^0$ combination. The mode where a large $CP$ asymmetry is expected, $B^\pm\to [\pi^\pm K^\mp\pi^0]_DK^\pm$, is observed with a significance greater than seven standard deviations. The ratio of the partial width of this mode relative to that of the favoured mode, $B^\pm\to [K^\pm\pi^\mp\pi^0]_D K^\pm$, is $R_{{\rm ADS}(K)} = (1.27\pm0.16\pm0.02)\times 10^{-2}$. Evidence for a large $CP$ asymmetry is also seen: $A_{{\rm ADS}(K)} = -0.38\pm0.12\pm0.02$. Constraints on the CKM angle $\gamma$ are calculated from the eleven reported observables.
We compute the three-loop helicity amplitudes for the scattering of four gluons in QCD. We employ projectors in the ’t Hooft-Veltman scheme and construct the amplitudes from a minimal set of physical building blocks, which allows us to keep the computational complexity under control. We obtain relatively compact results that can be expressed in terms of harmonic polylogarithms. In addition, we consider the Regge limit of our amplitude and extract the gluon Regge trajectory in full three-loop QCD. This is the last missing ingredient required for studying single-Reggeon exchanges at next-to-next-to-leading logarithmic accuracy.
We present the v1.0 release of CLMM, an open source PYTHON library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a stand-alone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the Vera C. Rubin Legacy Survey of Space and Time-Dark Energy Science Collaboration (LSST-DESC). Its purpose is to serve as a flexible, easy-to-install, and easy-to-use interface for both weak lensing simulators and observers and can be applied to real and mock data to study the systematics affecting weak lensing mass reconstruction. At the core of CLMM are routines to model the weak lensing shear signal given the underlying mass distribution of galaxy clusters and a set of data operations to prepare the corresponding data vectors. The theoretical predictions rely on existing software, used as backends in the code, that have been thoroughly tested and cross-checked. Combined theoretical predictions and data can be used to constrain the mass distribution of galaxy clusters as demonstrated in a suite of example Jupyter Notebooks shipped with the software and also available in the extensive online documentation.
We adapt the dual-null foliation to the functional Schrödinger representation of quantum field theory and study the behavior of quantum probes in plane-wave space-times near the null singularity. A comparison between the Einstein-Rosen and the Brinkmann patch, where the latter extends beyond the first, shows a seeming tension that can be resolved by comparing the configuration spaces. Our analysis concludes that Einstein-Rosen space-times support exclusively configurations with nonempty gravitational memory that are focused to a set of measure zero in the focal plane with respect to a Brinkmann observer. To conclude, we provide a rough framework to estimate the qualitative influence of backreactions on these results.
A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and the separable pairing interaction of Tian et al. [Phys. Lett. B 676, 44 (2009), 10.1016/j.physletb.2009.04.067] are compared with experimental differential charge radii in the regions of the nuclear chart in which available experimental data crosses the neutron shell closures at N =28 ,50 ,82 , and 126. The analysis of absolute differential radii of different isotopic chains and their relative properties indicate clearly that such properties are reasonably well described in model calculations in the cases when the mean-field approximation is justified. However, while the observed clusterization of differential charge radii of different isotopic chains is well described above the N =50 and N =126 shell closures, it is more difficult to reproduce it above the N =28 and N =82 shell closures because of possible deficiencies in the underlying single-particle structure. The impact of the latter has been evaluated for spherical shapes and it was shown that the relative energies of the single-particle states and the patterns of their occupation with increasing neutron number have an appreciable impact on the evolution of the δ «r2»N ,N' values. These factors also limit the predictive power of model calculations in the regions of high densities of the single-particle states of different origin. It is shown that the kinks in the charge radii at neutron shell closures are due to the underlying single-particle structure and due to weakening or collapse of pairing at these closures. The regions of the nuclear chart in which the correlations beyond mean field are expected to have an impact on charge radii are indicated; the analysis shows that the assignment of a calculated excited prolate minimum to the experimental ground state allows us to understand the trends of the evolution of differential charge radii with neutron number in many cases of shape coexistence even at the mean-field level. It is usually assumed that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis paints a more complicated picture. It suggests a new mechanism in which the fragmentation of the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling provides a significant contribution to OES in charge radii.
We investigate the impact of gas accretion in streams on the evolution of disc galaxies, using magnetohydrodynamic simulations including advection and anisotropic diffusion of cosmic rays (CRs) generated by supernovae as the only source of feedback. Stream accretion has been suggested as an important galaxy growth mechanism in cosmological simulations and we vary their orientation and angular momentum in idealized setups. We find that accretion streams trigger the formation of galactic rings and enhanced star formation. The star formation rates and consequently the CR-driven outflow rates are higher for low angular momentum accretion streams, which also result in more compact, lower angular momentum discs. The CR generated outflows show a characteristic structure. At low outflow velocities (<50 km s-1), the angular momentum distribution is similar to the disc and the gas is in a fountain flow. Gas at high outflow velocities (>200 km s-1), penetrating deep into the halo, has close to zero angular momentum, and originates from the centre of the galaxies. As the mass loading factors of the CR-driven outflows are of the order of unity and higher, we conclude that this process is important for the removal of low angular momentum gas from evolving disc galaxies and the transport of, potentially metal enriched, material from galactic centres far into the galactic haloes.
As ever-more sensitive experiments are made in the quest for primordial CMB B Modes, the number of potentially significant astrophysical contaminants becomes larger as well. Thermal emission from interplanetary dust, for example, has been detected by the Planck satellite. While the polarization fraction of this Zodiacal, or interplanetary dust emission (IPDE) is expected to be low, it is bright enough to be detected in total power. Here, estimates of the magnitude of the effect as it might be seen by the LiteBIRD satellite are made. The COBE IPDE model from Kelsall et al. (1998) is combined with a model of the LiteBIRD experiment's scanning strategy to estimate potential contamination of the CMB in both total power and in polarization power spectra. LiteBIRD should detect IPDE in temperature across all of its bands, from 40 through 402 GHz, and should improve limits on the polarization fraction of IPDE at the higher end of this frequency range. If the polarization fraction of IPDE is of order 1%, the current limit from ISO/CAM measurements in the mid-infrared, it may induce large-scale polarization B Modes comparable to cosmological models with an r of order 0.001. In this case, the polarized IPDE would also need to be modeled and removed. As a CMB foreground, IPDE will always be subdominant to Galactic emissions, though because it caused by emission from grains closer to us, it appears variable as the Earth travels around the Sun, and may thereby complicate the data analysis somewhat. But with an understanding of some of the symmetries of the emission and some flexibility in the data processing, it should not be the primary impediment to the CMB polarization measurement.
The strong X-ray irradiation from young solar-type stars may play a crucial role in the thermodynamics and chemistry of circumstellar discs, driving their evolution in the last stages of disc dispersal as well as shaping the atmospheres of newborn planets. In this paper, we study the influence of stellar mass on circumstellar disc mass-loss rates due to X-ray irradiation, extending our previous study of the mass-loss rate's dependence on the X-ray luminosity and spectrum hardness. We focus on stars with masses between 0.1 and 1 M⊙, which are the main target of current and future missions to find potentially habitable planets. We find a linear relationship between the mass-loss rates and the stellar masses when changing the X-ray luminosity accordingly with the stellar mass. This linear increase is observed also when the X-ray luminosity is kept fixed because of the lower disc aspect ratio which allows the X-ray irradiation to reach larger radii. We provide new analytical relations for the mass-loss rates and profiles of photoevaporative winds as a function of the stellar mass that can be used in disc and planet population synthesis models. Our photoevaporative models correctly predict the observed trend of inner-disc lifetime as a function of stellar mass with an increased steepness for stars smaller than 0.3 M⊙, indicating that X-ray photoevaporation is a good candidate to explain the observed disc dispersal process.
Young solar-type stars are known to be strong X-ray emitters and their X-ray spectra have been widely studied. X-rays from the central star may play a crucial role in the thermodynamics and chemistry of the circumstellar material as well as in the atmospheric evolution of young planets. In this paper, we present model spectra based on spectral parameters derived from the observations of young stars in the Orion nebula cluster from the Chandra Orion Ultradeep Project (COUP). The spectra are then used to calculate new photoevaporation prescriptions that can be used in disc and planet population synthesis models. Our models clearly show that disc wind mass loss rates are controlled by the stellar luminosity in the soft ($100\, \mathrm{eV}$ to $1\, \mathrm{keV}$) X-ray band. New analytical relations are provided for the mass loss rates and profiles of photoevaporative winds as a function of the luminosity in the soft X-ray band. The agreement between observed and predicted transition disc statistics moderately improved using the new spectra, but the observed population of strongly accreting large cavity discs can still not be reproduced by these models. Furthermore, our models predict a population of non-accreting transition discs that are not observed. This highlights the importance of considering the depletion of millimetre-sized dust grains from the outer disc, which is a likely reason why such discs have not been detected yet.
The formation of peptide bonds is one of the most important biochemical reaction steps. Without the development of structurally and catalytically active polymers, there would be no life on our planet. However, the formation of large, complex oligomer systems is prevented by the high thermodynamic barrier of peptide condensation in aqueous solution. Liquid sulphur dioxide proves to be a superior alternative for copper-catalyzed peptide condensations. Compared to water, amino acids are activated in sulphur dioxide, leading to the incorporation of all 20 proteinogenic amino acids into proteins. Strikingly, even extremely low initial reactant concentrations of only 50 mM are sufficient for extensive peptide formation, yielding up to 2.9% of dialanine in 7 days. The reactions carried out at room temperature and the successful use of the Hadean mineral covellite (CuS) as a catalyst, suggest a volcanic environment for the formation of the peptide world on early Earth.
As an important step towards a complete next-to-leading (NLO) QCD analysis of the ratio ε'/ε within the Standard Model Effective Field Theory (SMEFT), we present for the first time the NLO master formula for the BSM part of this ratio expressed in terms of the Wilson coefficients of all contributing operators evaluated at the electroweak scale. To this end we use the common Weak Effective Theory (WET) basis (the so-called JMS basis) for which tree-level and one-loop matching to the SMEFT are already known. The relevant hadronic matrix elements of BSM operators at the electroweak scale are taken from Dual QCD approach and the SM ones from lattice QCD. It includes the renormalization group evolution and quark-flavour threshold effects at NLO in QCD from hadronic scales, at which these matrix elements have been calculated, to the electroweak scale.
We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z ~ 0.67 - 2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, turbulent disk, and an NFW dark matter halo, using code that fully forward-models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I: the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of noncircular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z ~ 1 - 2 are baryon-dominated on galactic scales, with lower dark matter fractions toward higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis.
Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an "overdensity" or "lump;" this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.
The question of what determines the width of Kuiper belt analogues (exoKuiper belts) is an open one. If solved, this understanding would provide valuable insights into the architecture, dynamics, and formation of exoplanetary systems. Recent observations by ALMA have revealed an apparent paradox in this field, the presence of radially narrow belts in protoplanetary discs that are likely the birthplaces of planetesimals, and exoKuiper belts nearly four times as wide in mature systems. If the parent planetesimals of this type of debris disc indeed form in these narrow protoplanetary rings via streaming instability where dust is trapped, we propose that this width dichotomy could naturally arise if these dust traps form planetesimals whilst migrating radially, e.g. as caused by a migrating planet. Using the dust evolution software DUSTPY, we find that if the initial protoplanetary disc and trap conditions favour planetesimal formation, dust can still effectively accumulate and form planetesimals as the trap moves. This leads to a positive correlation between the inward radial speed and final planetesimal belt width, forming belts up to ~100AU over 10 Myr of evolution. We show that although planetesimal formation is most efficient in low-viscosity (α = 10-4) discs with steep dust traps to trigger the streaming instability, the large widths of most observed planetesimal belts constrain α to values ≥4 × 10-4 at tens of AU, otherwise the traps cannot migrate far enough. Additionally, the large spread in the widths and radii of exoKuiper belts could be due to different trap migration speeds (or protoplanetary disc lifetimes) and different starting locations, respectively. Our work serves as a first step to link exoKuiper belts and rings in protoplanetary discs.
The bispectrum is the leading non-Gaussian statistic in large-scale structure, carrying valuable information on cosmology that is complementary to the power spectrum. To access this information, we need to model the bispectrum in the weakly nonlinear regime. In this work we present the first two-loop, i.e. next-to-next-to-leading order perturbative description of the bispectrum within an effective field theory (EFT) framework. Using an analytic expansion of the perturbative kernels up to F6 we derive a renormalized bispectrum that is demonstrated to be independent of the UV cutoff. We show that the EFT parameters associated with the four independent second-order EFT operators known from the one-loop bispectrum are sufficient to absorb the UV sensitivity of the two-loop contributions in the double-hard region. In addition, we employ a simplified treatment of the single-hard region, introducing one extra EFT parameter at two-loop order. We compare our results to N -body simulations using the realization-based grid perturbation theory method and find good agreement within the expected range, as well as consistent values for the EFT parameters. The two-loop terms start to become relevant at k ≈0.07 h Mpc-1. The range of wave numbers with percent-level agreement, independently of the shape, extends from 0.08 to 0.15 h Mpc-1 when going from one to two loops at z =0 . In addition, we quantify the impact of using exact instead of Einstein-de-Sitter kernels for the one-loop bispectrum, and discuss in how far their impact can be absorbed into a shift of the EFT parameters.
Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.
Messier 15 (NGC 7078) is an old and metal-poor post core-collapse globular cluster that hosts a rich population of variable stars. We report new optical (gi) and near-infrared (NIR, JKs) multi-epoch observations for 129 RR Lyrae, 4 Population II Cepheids (3 BL Herculis, 1 W Virginis), and 1 anomalous Cepheid variable candidate in M15 obtained using the MegaCam and the WIRCam instruments on the 3.6 m Canada-France-Hawaii Telescope. Multi-band data are used to improve the periods and classification of variable stars, and determine accurate mean magnitudes and pulsational amplitudes from the light curves fitted with optical and NIR templates. We derive optical and NIR period-luminosity relations for RR Lyrae stars which are best constrained in the Ks band, ${m}_{{K}_{s}}=-2.333\,(0.054)\mathrm{log}P+13.948\,(0.015)$ with a scatter of only 0.037 mag. Theoretical and empirical calibrations of RR Lyrae period-luminosity-metallicity relations are used to derive a true distance modulus to M15: 15.196 ± 0.026 (statistical) ± 0.039 (systematic) mag. Our precise distance moduli based on RR Lyrae stars and Population II Cepheid variables are mutually consistent and agree with recent distance measurements in the literature based on Gaia parallaxes and other independent methods.
Our ordinary life changed quite a bit in March of 2020 due to the global Covid-19 pandemic. While spring time in general well awaited and regarded as a synonym for rejuvenation the spring of 2020 brought lock-down, curfew, home office and digital education to the lives of many. The particle physics community was not an exception: research institutes and universities introduced home office and digital lecturing and all workshops, conferences and summer schools were canceled, got postponed or took place online. Using publicly available data from the INSPIRE and arXiv databases we investigate the effects of this dramatic change of life to the publishing trends of the high-energy physics community with an emphasis on particle phenomenology and theory. To get insights we gather information about publishing trends in the last 20 years, and analyse it in detail.
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.
A short review of existing efforts to understand charge radii and related indicators on a global scale within the covariant density functional theory (CDFT) is presented. Using major classes of covariant energy density functionals (CEDFs), the global accuracy of the description of experimental absolute and differential charge radii within the CDFT framework has been established. This assessment is supplemented by an evaluation of theoretical statistical and systematic uncertainties in the description of charge radii. New results on the accuracy of the description of differential charge radii in deformed actinides and light superheavy nuclei are presented and the role of octupole deformation in their reproduction is evaluated. Novel mechanisms leading to odd-even staggering in charge radii are discussed. Finally, we analyze the role of self-consistency effects in an accurate description of differential charge radii.
Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for - its applications on those scales being largely based on extrapolation and its validity there sometimes questioned in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR.
Neutrino telescopes are unrivaled tools to explore the Universe at its most extreme. The current generation of telescopes has shown that very high energy neutrinos are produced in the cosmos, even with hints of their possible origin, and that these neutrinos can be used to probe our understanding of particle physics at otherwise inaccessible regimes. The fluxes, however, are low, which means newer, larger telescopes are needed. Here we present the Pacific Ocean Neutrino Experiment, a proposal to build a multi-cubic-kilometer neutrino telescope off the coast of Canada. The idea builds on the experience accumulated by previous sea-water missions, and the technical expertise of Ocean Networks Canada that would facilitate deploying such a large infrastructure. The design and physics potential of the first stage and a full-scale P-ONE are discussed.
Searches for rare $ {B}_s^0 $ and B$^{0}$ decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb$^{−1}$. Direct decays and decays via light scalar and J/ψ resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 × 10$^{−10}$ and 2.6 × 10$^{−9}$ are set.[graphic not available: see fulltext]
The experimental detection of the CE$\nu$NS allows the investigation of neutrinos and neutrino sources with all-flavor sensitivity. Given its large content in neutrons and stability, Pb is a very appealing choice as target element. The presence of the radioisotope $^{210}$Pb (T$_{1/2}\sim$22 yrs) makes natural Pb unsuitable for low-background, low-energy event searches. This limitation can be overcome employing Pb of archaeological origin, where several half-lives of $^{210}$Pb have gone by. We present results of a cryogenic measurement of a 15g PbWO$_4$ crystal, grown with archaeological Pb (older than $\sim$2000 yrs) that achieved a sub-keV nuclear recoil detection threshold. A ton-scale experiment employing such material, with a detection threshold for nuclear recoils of just 1 keV would probe the entire Milky Way for SuperNovae, with equal sensitivity for all neutrino flavors, allowing the study of the core of such exceptional events.
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
We search for the signature of shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the recently released Compton-y maps from the 2500 deg^2 SPT-SZ survey on the locations of clusters identified in that same dataset. The sample contains 516 clusters with mean mass <M200m> = 1e14.9 msol and redshift <z> = 0.55. We analyze in parallel a set of zoom-in hydrodynamical simulations from The Three Hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = $1.08 \pm 0.09$, measured at $3.1\sigma$ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = $4.58 \pm 1.24$ at $2.0\sigma$ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyze clusters from the Planck and Atacama Cosmology Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius (Rsh_acc) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, Rsh_acc/Rsp > $2.16 \pm 0.59$.
Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb$^{−1}$ collected with the LHCb detector, seven decay modes of the $ {\mathrm{B}}_{\mathrm{c}}^{+} $ meson into a J/ψ or ψ(2S) meson and three charged hadrons, kaons or pions, are studied. The decays $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → (ψ(2S) → J/ψπ$^{+}$π$^{−}$)π$^{+}$, $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → ψ(2S)π$^{+}$π$^{−}$π$^{+}$, $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → J/ψK$^{+}$π$^{−}$π$^{+}$ and $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → J/ψK$^{+}$K$^{−}$K$^{+}$ are observed for the first time, and evidence for the $ {\mathrm{B}}_{\mathrm{c}}^{+} $ → ψ(2S)K$^{+}$K$^{−}$π$^{+}$, decay is found, where J/ψ and ψ(2S) mesons are reconstructed in their dimuon decay modes. The ratios of branching fractions between the different $ {\mathrm{B}}_{\mathrm{c}}^{+} $ decays are reported as well as the fractions of the decays proceeding via intermediate resonances. The results largely support the factorisation approach used for a theoretical description of the studied decays.[graphic not available: see fulltext]
We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg^2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate (|$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$|; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.
We compute the leading corrections to the differential cross section for top-pair production via gluon fusion due to third-generation dimension-six operators at leading order in QCD. The Standard Model fields are assumed to couple only weakly to the hypothetical new sector. A systematic approach then suggests treating single insertions of the operator class containing gluon field strength tensors on the same footing as explicitly loop suppressed contributions from four-fermion operators. This is in particular the case for the chromomagnetic operator Q(u G ) and the purely bosonic operators Q(G ) and Q(φ G ). All leading order dimension-six contributions are consequently suppressed with a loop factor 1 /16 π2.
The interstellar medium is characterized by an intricate filamentary network that exhibits complex structures. These show a variety of different shapes (e.g. junctions, rings, etc.) deviating strongly from the usually assumed cylindrical shape. A possible formation mechanism are filament mergers that we analyse in this study. Indeed, the proximity of filaments in networks suggests mergers to be rather likely. As the merger has to be faster than the end dominated collapse of the filament along its major axis, we expect three possible results: (a) The filaments collapse before a merger can happen, (b) the merged filamentary complex shows already signs of cores at the edges, or (c) the filaments merge into a structure which is not end-dominated. We develop an analytic formula for the merging and core-formation time-scale at the edge and validate our model via hydrodynamical simulations with the adaptive-mesh-refinement-code RAMSES. This allows us to predict the outcome of a filament merger, given different initial conditions which are the initial distance and the respective line-masses of each filament as well as their relative velocities.
The construction of catalogues of a particular type of galaxy can be complicated by interlopers contaminating the sample. In spectroscopic galaxy surveys this can be due to the misclassification of an emission line; for example in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) low-redshift [O II] emitters may make up a few per cent of the observed Ly α emitter (LAE) sample. The presence of contaminants affects the measured correlation functions and power spectra. Previous attempts to deal with this using the cross-correlation function have assumed sources at a fixed redshift, or not modelled evolution within the adopted redshift bins. However, in spectroscopic surveys like HETDEX, where the contamination fraction is likely to be redshift dependent, the observed clustering of misclassified sources will appear to evolve strongly due to projection effects, even if their true clustering does not. We present a practical method for accounting for the presence of contaminants with redshift-dependent contamination fractions and projected clustering. We show using mock catalogues that our method, unlike existing approaches, yields unbiased clustering measurements from the upcoming HETDEX survey in scenarios with redshift-dependent contamination fractions within the redshift bins used. We show our method returns autocorrelation functions with systematic biases much smaller than the statistical noise for samples with at least as high as 7 per cent contamination. We also present and test a method for fitting for the redshift-dependent interloper fraction using the LAE-[O II] galaxy cross-correlation function, which gives less biased results than assuming a single interloper fraction for the whole sample.
We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic ∆F = 1 decays that govern s → d and b → d, s transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers Nf of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of K → ππ and non-leptonic B-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.
Context. Observations of young stars hosting transition disks show that several of them have high accretion rates, despite their disks presenting extended cavities in their dust component. This represents a challenge for theoretical models, which struggle to reproduce both features simultaneously.
Aims: We aim to explore if a disk evolution model, including a dead zone and disk dispersal by X-ray photoevaporation, can explain the high accretion rates and large gaps (or cavities) measured in transition disks.
Methods: We implemented a dead zone turbulence profile and a photoevaporative mass-loss profile into numerical simulations of gas and dust. We performed a population synthesis study of the gas component and obtained synthetic images and SEDs of the dust component through radiative transfer calculations.
Results: This model results in long-lived inner disks and fast dispersing outer disks that can reproduce both the accretion rates and gap sizes observed in transition disks. For a dead zone of turbulence αdz = 10−4 and an extent rdz = 10 AU, our population synthesis study shows that 63% of our transition disks are still accreting with Ṁg ≥ 10−11 M⊙ yr−1 after opening a gap. Among those accreting transition disks, half display accretion rates higher than 5.0 × 10−10 M⊙ yr−1. The dust component in these disks is distributed in two regions: in a compact inner disk inside the dead zone, and in a ring at the outer edge of the photoevaporative gap, which can be located between 20 and 100 AU. Our radiative transfer calculations show that the disk displays an inner disk and an outer ring in the millimeter continuum, a feature that resembles some of the observed transition disks.
Conclusions: A disk model considering X-ray photoevaporative dispersal in combination with dead zones can explain several of the observed properties in transition disks, including the high accretion rates, the large gaps, and a long-lived inner disk at millimeter emission.
Blazars research is one of the hot topics of contemporary extragalactic astrophysics. That is because these sources are the most abundant type of extragalactic γ-ray sources and are suspected to play a central role in multimessenger astrophysics. We have used Swift$\_$xrtproc, a tool to carry out an accurate spectral and photometric analysis of the Swift-XRT data of all blazars observed by Swift at least 50 times between December 2004 and the end of 2020. We present a database of X-ray spectra, best-fit parameter values, count rates and flux estimations in several energy bands of over 31 000 X-ray observations and single snapshots of 65 blazars. The results of the X-ray analysis have been combined with other multifrequency archival data to assemble the broad-band Spectral Energy Distributions (SEDs) and the long-term light curves of all sources in the sample. Our study shows that large X-ray luminosity variability on different time-scales is present in all objects. Spectral changes are also frequently observed with a 'harder-when-brighter' or 'softer-when-brighter' behaviour depending on the SED type of the blazars. The peak energy of the synchrotron component (νpeak) in the SED of HBL blazars, estimated from the log-parabolic shape of their X-ray spectra, also exhibits very large changes in the same source, spanning a range of over two orders of magnitude in Mrk421 and Mrk501, the objects with the best data sets in our sample.
One of the most fundamental questions in cosmology is if dark energy is related just to a constant or it is something more complex. In this work, we call the attention to the fact that, under very general conditions, dark energy can be identified with a cosmological constant. Indeed, this fact defines what we call Vacuum Frame. In general, this frame does not coincide with the Jordan or Einstein frame, defined by the invariant character of particle masses or the Newton constant, respectively. We illustrate this question by the introduction of a particular scalar-tensor model where the different hierarchies among these energy scales are dynamically generated.
We analyze in detail the angular distributions in B ¯ →D∗ℓ ν ¯ decays, with a focus on lepton-flavour non-universality. We investigate the minimal number of angular observables that fully describes current and upcoming datasets, and explore their sensitivity to physics beyond the Standard Model (BSM) in the most general weak effective theory. We apply our findings to the current datasets, extract the non-redundant set of angular observables from the data, and compare to precise SM predictions that include lepton-flavour universality violating mass effects. Our analysis shows that the number of independent angular observables that can be inferred from current experimental data is limited to only four. These are insufficient to extract the full set of relevant BSM parameters. We uncover a ∼4 σ tension between data and predictions that is hidden in the redundant presentation of the Belle 2018 data on B ¯ →D∗ℓ ν ¯ decays. This tension specifically involves observables that probe e -μ lepton-flavour universality. However, we find inconsistencies in these data, which renders results based on it suspicious. Nevertheless, we discuss which generic BSM scenarios could explain the tension, in the case that the inconsistencies do not affect the data materially. Our findings highlight that e -μ non-universality in the SM, introduced by the finite muon mass, is already significant in a subset of angular observables with respect to the experimental precision.
Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source (VADLIS) with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the N =126 shell closure, the electromagnetic moments of 207Hg, and more precise mass values of Hg-208206. The odd-even staggering (OES) of the mean square charge radii and the kink at N =126 are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predominantly in the particle-hole channel in CDFT, since both are present in the calculations without pairing. However, the magnitude of the kink is still affected by the occupation of the ν 1 i11 /2 and ν 2 g9 /2 orbitals with a dependence on the relative energies as well as pairing.
Aims: We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.
Methods: The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsähovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.
Results: The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3σ. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from γ'min=2×104 to γ'max=6×105.
Light curves and spectral energy distributions data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/655/A89
Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyse the dynamics traced by stars belonging to the brightest cluster galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and compare it to the dynamics traced by dark matter and galaxies identified in the simulations. We compute scaling relations between the BCG and cluster velocity dispersions and their corresponding masses (i.e. $M_\mathrm{BCG}^{\star }$-$\sigma _\mathrm{BCG}^{\star }$, M200-σ200, $M_\mathrm{BCG}^{\star }$-M200, and $\sigma _\mathrm{BCG}^{\star }$-σ200), we find in general a good agreement with observational results. Our simulations also predict $\sigma _\mathrm{BCG}^{\star }$-σ200 relation to not change significantly up to redshift z = 1, in line with a relatively slow accretion of the BCG stellar mass at late times. We analyse the main features of the velocity dispersion profiles, as traced by stars, dark matter, and galaxies. As a result, we discuss that observed stellar velocity dispersion profiles in the inner cluster regions are in excellent agreement with simulations. We also report that the slopes of the BCG velocity dispersion profile from simulations agree with what is measured in observations, confirming the existence of a robust correlation between the stellar velocity dispersion slope and the cluster velocity dispersion (thus, cluster mass) when the former is computed within 0.1R500. Our results demonstrate that simulations can correctly describe the dynamics of BCGs and their surrounding stellar envelope, as determined by the past star formation and assembly histories of the most massive galaxies of the Universe.
We present infrared spectral indices (1.0-2.3 μm) of Galactic late-type giants and red supergiants (RSGs). We used existing and new spectra obtained at resolution power R = 2000 with SpeX on the IRTF telescope. While a large CO equivalent width (EW), at 2.29 μm ([CO, 2.29] ≳ 45 Å) is a typical signature of RSGs later than spectral type M0, $[\mathrm{CO}]$ of K-type RSGs and giants are similar. In the [CO, 2.29] versus [Mg I, 1.71] diagram, RSGs of all spectral types can be distinguished from red giants because the Mg I line weakens with increasing temperature and decreasing gravity. We find several lines that vary with luminosity, but not temperature: Si I (1.59 μm), Sr (1.033 μm), Fe+Cr+Si+CN (1.16 μm), Fe+Ti (1.185 μm), Fe+Ti (1.196 μm), Ti+Ca (1.28 μm), and Mn (1.29 μm). Good markers of CN enhancement are the Fe+Si+CN line at 1.087 μm and CN line at 1.093 μm. Using these lines, at the resolution of SpeX, it is possible to separate RSGs and giants. Contaminant O-rich Mira and S-type AGBs are recognized by strong molecular features due to water vapor features, TiO band heads, and/or ZrO absorption. Among the 42 candidate RSGs that we observed, all but one were found to be late types. Twenty-one have EWs consistent with those of RSGs, 16 with those of O-rich Mira AGBs, and one with an S-type AGB. These infrared results open new, unexplored, potential for searches at low resolution of RSGs in the highly obscured innermost regions of the Milky Way.
Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby.
Following our recent work on Type II supernovae (SNe), we present a set of 1D nonlocal thermodynamic equilibrium radiative transfer calculations for nebular-phase Type Ibc SNe starting from state-of-the-art explosion models with detailed nucleosynthesis. Our grid of progenitor models is derived from He stars that were subsequently evolved under the influence of wind mass loss. These He stars, which most likely form through binary mass exchange, synthesize less oxygen than their single-star counterparts with the same zero-age main sequence (ZAMS) mass. This reduction is greater in He-star models evolved with an enhanced mass loss rate. We obtain a wide range of spectral properties at 200 d. In models from He stars with an initial mass > 6 M⊙, the [O I] λλ 6300, 6364 is of a comparable or greater strength than [Ca II] λλ 7291, 7323 - the strength of [O I] λλ 6300, 6364 increases with the He-star initial mass. In contrast, models from lower mass He stars exhibit a weak [O I] λλ 6300, 6364, strong [Ca II] λλ 7291, 7323, and also strong N II lines and Fe II emission below 5500 Å. The ejecta density, which is modulated by the ejecta mass, the explosion energy, and clumping, has a critical impact on gas ionization, line cooling, and spectral properties. We note that Fe II dominates the emission below 5500 Å and is stronger at earlier nebular epochs. It ebbs as the SN ages, while the fractional flux in [O I] λλ 6300, 6364 and [Ca II] λλ 7291, 7323 increases with a similar rate as the ejecta recombine. Although the results depend on the adopted wind mass loss rate and pre-SN mass, we find that He-stars of 6-8 M⊙ initially (ZAMS mass of 23-28 M⊙) match the properties of standard SNe Ibc adequately. This finding agrees with the offset in progenitor masses inferred from the environments of SNe Ibc relative to SNe II. Our results for less massive He stars are more perplexing since the predicted spectra are not seen in nature. They may be missed by current surveys or associated with Type Ibn SNe in which interaction power dominates over decay power.
Tables A.3-A.23 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/656/A61
We report predictions for the suppression and elliptic flow of the ϒ (1 S ), ϒ (2 S ), and ϒ (3 S ) as a function of centrality and transverse momentum in ultrarelativistic heavy-ion collisions. We obtain our predictions by numerically solving a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix derived using potential nonrelativistic QCD and the formalism of open quantum systems. To numerically solve the Lindblad equation, we make use of a stochastic unraveling called the quantum trajectories algorithm. This unraveling allows us to solve the Lindblad evolution equation efficiently on large lattices with no angular momentum cutoff. The resulting evolution describes the full 3D quantum and non-Abelian evolution of the reduced density matrix for bottomonium states. We expand upon our previous work by treating differential observables and elliptic flow; this is made possible by a newly implemented Monte Carlo sampling of physical trajectories. Our final results are compared to experimental data collected in √{sN N}=5.02 TeV Pb-Pb collisions by the ALICE, ATLAS, and CMS collaborations.
We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including ≍20,000 high-, medium-, and low-resolution spectra for ≍10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (Hα, Hβ, Hγ, Hδ). We tackled the long-standing problem of the reference epoch to anchor light-curve and RVC templates. For the V-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are ~35% to ~45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single-point and the three phase point approaches. We found that barycentric velocities based on our RVC templates are two to three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC 3201 collected with MUSE at VLT. We found the cluster barycentric RV of Vγ = 496.89 ± 8.37(error) ± 3.43 (standard deviation) km s-1, which agrees well with literature estimates.
Expressions for the potentials appearing in the nonrelativistic effective field theory description of doubly heavy baryons are known in terms of operator insertions in the Wilson loop. However, their evaluation requires nonperturbative techniques, such as lattice QCD, and the relevant calculations are often not available. We propose a parametrization of these potentials with a minimal model dependence based on an interpolation of the short- and long-distance descriptions. The short-distance description is obtained from weakly-coupled potential NRQCD and the long-distance one is computed using an effective string theory. The effective string theory coincides with the one for pure gluodynamics with the addition of a fermion field constrained to move on the string. We compute the hyperfine contributions to the doubly heavy baryon spectrum. The unknown parameters are obtained from heavy quark-diquark symmetry or fitted to the available lattice-QCD determinations of the hyperfine splittings. Using these parameters we compute the double charm and bottom baryon spectrum including the hyperfine contributions. We compare our results with those of other approaches and find that our results are closer to lattice-QCD determinations, in particular for the excited states. Furthermore, we compute the vacuum energy in the effective string theory and show that the fermion field contribution produces the running of the string tension and a change of sign in the Lüscher term.
We present analytical results for one-loop five-point master integrals with up to three off-shell legs. The method of canonical differential equations along with the Simplified Differential Equations approach is employed. All necessary boundary terms are given in closed form, resulting to solutions in terms of Goncharov Polylogarithms of arbitrary weight. Explicit results up to weight six will be presented.
Context: Modelling satellite galaxy abundance $N_s$ in Galaxy Clusters (GCs) is a key element in modelling the Halo Occupation Distribution (HOD), which itself is a powerful tool to connect observational studies with numerical simulations. Aims: To study the impact of cosmological parameters on satellite abundance both in cosmological simulations and in mock observations. Methods: We build an emulator (HODEmu, \url{https://github.com/aragagnin/HODEmu/}) of satellite abundance based on cosmological parameters $\Omega_m, \Omega_b, \sigma_8, h_0$ and redshift $z.$ We train our emulator using \magneticum hydrodynamic simulations that span 15 different cosmologies, each over $4$ redshift slices between $0<z<0.5,$ and for each setup we fit normalisation $A$, log-slope $\beta$ and Gaussian fractional-scatter $\sigma$ of the $N_s-M$ relation. The emulator is based on multi-variate output Gaussian Process Regression (GPR). Results: We find that $A$ and $\beta$ depend on cosmological parameters, even if weakly, especially on $\Omega_m,$ $\Omega_b.$ This dependency can explain some discrepancies found in literature between satellite HOD of different cosmological simulations (Magneticum, Illustris, BAHAMAS). We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO), and non-radiative simulations. Conclusions: This work provides a preliminary calibration of the cosmological dependency of the satellite abundance of high mass halos, and we showed that modelling HOD with cosmological parameters is necessary to interpret satellite abundance, and we showed the importance of using FP simulations in modelling this dependency.
We present mg-glam, a code developed for the very fast
production of full N-body cosmological simulations in modified
gravity (MG) models. We describe the implementation, numerical tests
and first results of a large suite of cosmological simulations for
three classes of MG models with conformal coupling terms: the f(R)
gravity, symmetron and coupled quintessence models. Derived from
the parallel particle-mesh code glam, mg-glam
incorporates an efficient multigrid relaxation technique to solve
the characteristic nonlinear partial differential equations of these
models. For f(R) gravity, we have included new variants to
diversify the model behaviour, and we have tailored the relaxation
algorithms to these to maintain high computational efficiency. In a
companion paper, we describe versions of this code developed for
derivative coupling MG models, including the Vainshtein- and
K-mouflage-type models. mg-glam can model the prototypes
for most MG models of interest, and is broad and versatile. The
code is highly optimised, with a tremendous speedup of a factor of
more than a hundred compared with earlier N-body codes, while
still giving accurate predictions of the matter power spectrum and
dark matter halo abundance. mg-glam is ideal for the
generation of large numbers of MG simulations that can be used in
the construction of mock galaxy catalogues and the production of
accurate emulators for ongoing and future galaxy surveys.
I give a theory motivation for future measurements in quark flavour physics, trying to identify observables, which are less familiar, but nevertheless interesting and promising.
We present period-luminosity relations (PLRs) for 55 Cepheids in M31 with periods ranging from 4 to 78 days observed with the Hubble Space Telescope using the same three-band photometric system recently used to calibrate their luminosities. Images were taken with the Wide Field Camera 3 in two optical filters (F555W and F814W) and one near-infrared filter (F160W) using the Drift and Shift (DASH) mode of operation to significantly reduce overheads and observe widely separated Cepheids in a single orbit. We include additional F160W epochs for each Cepheid from the Panchromatic Hubble Andromeda Treasury and use light curves from the Panoramic Survey Telescope and Rapid Response System of the Andromeda galaxy project to determine mean magnitudes. Combined with a 1.28% absolute calibration of Cepheid PLRs in the Large Magellanic Cloud from Riess et al. in the same three filters, we find a distance modulus to M31 of μ0 = 24.407 ± 0.032, corresponding to 761 ± 11 kpc and 1.49% uncertainty including all error sources, the most precise determination of its distance to date. We compare our results to past measurements using Cepheids and the tip of the red giant branch. This study also provides the groundwork for turning M31 into a precision anchor galaxy in the cosmic distance ladder to measure the Hubble constant together with efforts to measure a fully geometric distance to M31.
We show that axionlike particles that only couple to invisible dark photons can generate visible B mode signals around the reionization epoch. The axion field starts rolling shortly before reionization, resulting in a tachyonic instability for the dark photons. This generates an exponential growth of the dark photon quanta sourcing both scalar metric modes and gravitational waves that leave an imprint on the reionized baryons. The tensor modes modify the cosmic microwave background (CMB) polarization at reionization, generating visible B mode signatures for the next generation of CMB experiments for parameter ranges that satisfy the current experimental constraints.
Despite strong evidence for the existence of large amounts of dark matter (DM) in our Universe, there is no direct indication of its presence in our own solar system. All estimates of the local DM density rely on extrapolating results on much larger scales. We demonstrate for the first time the possibility of simultaneously measuring the local DM density and interaction cross section with a direct detection experiment. It relies on the assumption that incoming DM particles frequently scatter on terrestrial nuclei prior to detection, inducing an additional time-dependence of the signal. We show that for sub-GeV DM, with a large spin-independent DM-proton cross section, future direct detection experiments should be able to reconstruct the local DM density with smaller than 50% uncertainty.
This thesis deals with the study of properties and interactions of light mesons. Specifically, we focus on hadronic decay and scattering processes, which are dominated by effects of the strong interaction in the low-energy regime. A peculiarity of the strong interaction is that perturbative expansions fail at hadronic energy scales. Thus, genuine nonperturbative tools are essential to obtain first-principles predictions. Here we use Lattice Field Theory, and Effective Field Theories. The mathematical formulation of Quantum Chromodynamics (QCD) and the methods to resolve its dynamics will be addressed in Chapter 1. The research of this dissertation is divided in two parts. Chapter 2 describes our study of the 't Hooft limit of QCD using lattice simulations, while in Chapter 3 we consider processes that involve multiparticle states. The 't Hooft limit provides a simplification of nonabelian gauge theories that leads to nonperturbative predictions. We will analyze the scaling with the number of colours of various observables, such as meson masses, decay constants and weak matrix elements. A question we address is the origin of the long-standing puzzle of the $\Delta I=1/2$ rule, that is, the large hierarchy in the isospin amplitudes of the $K \to \pi\pi$ weak decay. Regarding multiparticle processes, we will discuss generalizations of the Lüscher formalism to explore three-particle processes from lattice simulations. The focus will be on our contributions, such as our implementation of the finite-volume formalism that includes higher partial waves, and the first application of the formalism to a full lattice QCD spectrum. We will also comment on the extension of the approach to generic three-pion systems. A summary in Spanish will be given in Chapter 4. The final part of the thesis (Part II) includes the peer-reviewed publications in their original published form.
We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted power by up to 30 % compared to earlier 1D calculations. We derive the emitted beam shape, which is important for antenna design. We show that realistic dark matter axion velocities of 10-3 c and inhomogeneities of the external magnetic field at the scale of 10 % have negligible impact on the sensitivity of MADMAX. We investigate design requirements for which the emitted power changes by less than 20 % for a benchmark boost factor with a bandwidth of 50 MHz at 22 GHz, corresponding to an axion mass of 90 μ eV. We find that the maximum allowed disk tilt is 100 μ m divided by the disk diameter, the required disk planarity is 20 μ m (min-to-max) or better, and the maximum allowed surface roughness is 100 μ m (min-to-max). We show how using tiled dielectric disks glued together from multiple smaller patches can affect the beam shape and antenna coupling.
We investigate the phenomenology of a dark matter scenario containing two generations of the dark matter particle, differing only by their mass and their couplings to the other particles, akin to the quark and lepton sectors of the Standard Model. For concreteness, we consider the case where the two dark matter generations are Majorana fermions that couple to a right-handed lepton and a scalar mediator through Yukawa couplings. We identify different production regimes in the multi-flavor dark matter scenario and we argue that in some parts of the parameter space the heavier generation can play a pivotal role in generating the correct dark matter abundance. In these regions, the strength of the dark matter coupling to the Standard Model can be much larger than in the single-flavored dark matter scenario. Correspondingly the indirect and direct detection signals can be significantly boosted. We also comment on the signatures of the model from the decay of the heavier dark matter generation into the lighter.
We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg$^{2}$ area encompassing a comoving volume of 10.9 Gpc$^{3}$. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.
The thermal Sunyaev-Zeldovich effect contains information about the thermal history of the Universe, which is observable in maps of the Compton y parameter; however, it does not contain information about the redshift of the sources. Recent papers have utilized a tomographic approach, by cross correlating the Compton y map with the locations of galaxies with known redshift in order to deproject the signal along the line of sight. In this paper, we test the validity and accuracy of this tomographic approach to probe the thermal history of the Universe. We use the state-of-the-art, cosmological, and hydrodynamical simulation, Magneticum, for which the thermal history of the Universe is a known quantity. The key ingredient is the Compton-y -weighted halo bias, by, which is computed from the halo model. We find that, at redshifts currently available, the method reproduces the correct mean thermal pressure (or the density-weighted mean temperature) with high accuracy, validating and confirming the results of previous papers. At higher redshifts (z ≳2 ), there is significant disagreement between by from the halo model and the simulation.
Evolutionary games between species are known to lead to intriguing spatiotemporal patterns in systems of diffusing agents. However, the role of interspecies interactions is hardly studied when agents are (self-)propelled, as is the case in many biological systems. Here, we combine aspects from active matter and evolutionary game theory and study a system of two species whose individuals are (self-)propelled and interact through a snowdrift game. We derive hydrodynamic equations for the density and velocity fields of both species from which we identify parameter regimes in which one or both species form macroscopic orientational order as well as regimes of propagating wave patterns. Interestingly, we find simultaneous wave patterns in both species that result from the interplay between alignment and snowdrift interactions—a feedback mechanism that we call game-induced pattern formation. We test these results in agent-based simulations and confirm the different regimes of order and spatiotemporal patterns as well as game-induced pattern formation.
Three-dimensional $\mathcal{N}=4$ supersymmetric field theories admit a natural class of chiral half-BPS boundary conditions that preserve $\mathcal{N}=(0,4)$ supersymmetry. While such boundary conditions are not compatible with topological twists, deformations that define boundary conditions for the topological theories were recently introduced by Costello and Gaiotto. Not all $\mathcal{N}=(0,4)$ boundary conditions admit such deformations. We revisit this construction, working directly in the setting of the holomorphically twisted theory and viewing the topological twists as further deformations. Properties of the construction are explained both purely in the context of holomorphic field theory and also by engineering the holomorphic theory on the worldvolume of a D-brane. Our brane engineering approach combines the intersecting brane configurations of Hanany-Witten with recent work of Costello and Li on twisted supergravity. The latter approach allows to realize holomorphically and topologically twisted field theories directly as worldvolume theories in deformed supergravity backgrounds, and we make extensive use of this.
We investigate the algebra of vector fields on the sphere. First, we find that linear deformations of this algebra are obstructed under reasonable conditions. In particular, we show that hs[λ], the one-parameter deformation of the algebra of area-preserving vector fields, does not extend to the entire algebra. Next, we study some non-central extensions through the embedding of vect(S2) into vect(ℂ*). For the latter, we discuss a three parameter family of non-central extensions which contains the symmetry algebra of asymptotically flat and asymptotically Friedmann spacetimes at future null infinity, admitting a simple free field realization.
We perform a detailed analysis of flavour changing neutral current processes in the charm sector in the context of 331 models. As pointed out recently, in the case of Z' contributions in these models there are no new free parameters beyond those already present in the Bd,s and K meson systems analyzed in the past. As a result, definite ranges for new Physics (NP) effects in various charm observables could be obtained. While generally NP effects turn out to be small, in a number of observables they are much larger than the tiny effects predicted within the Standard Model. In particular we find that the branching ratio of the mode D0→ μ+μ−, despite remaining tiny, can be enhanced by 6 orders of magnitude with respect to the SM. We work out correlations between this mode and rare Bd,s and K decays. We also discuss neutral charm meson oscillations and CP violation in the charm system. In particular, we point out that 331 models provide new weak phases that are a necessary condition to have non-vanishing CP asymmetries. In the case of ∆ACP, the difference between the CP asymmetries in D0→ K+K− and D0→ π+π−, we find that agreement with experiment can be obtained provided that two conditions are verified: the phases in the ranges predicted in 331 models and large hadronic matrix elements.
The parameter space for modelling stellar systems is vast and complicated. To find best-fitting models for a star one needs a statistically robust way of exploring this space. We present a new machine-learning approach to predict the modelling parameters for detached double-lined eclipsing binary systems, including the system age, based on observable quantities. Our method allows for the estimation of the importance of several physical effects which are included in a parametrized form in stellar models, such as convective core overshoot or stellar spot coverage. The method yields probability distribution functions for the predicted parameters which take into account the statistical and, to a certain extent, the systematic errors which is very difficult to do using other methods. We employ two different approaches to investigate the two components of the system either independently or in a combined manner. Furthermore, two different grids are used as training data. We apply the method to 26 selected objects and test the predicted best solutions with an on-the-fly optimization routine which generates full hydrostatic models. While we do encounter failures of the predictions, our method can serve as a rapid estimate for stellar ages of detached eclipsing binaries taking full account of the uncertainties in the observables.
Substructures are ubiquitous in high resolution (sub-)millimeter continuum observations of circumstellar discs. They are possibly caused by forming planets embedded in their disc. To investigate the relation between observed substructures and young planets, we perform novel 3D two-fluid (gas+1-mm-dust) hydrodynamic simulations of circumstellar discs with embedded planets (Neptune-, Saturn-, Jupiter-, 5 Jupiter-mass) at different orbital distances from the star (5.2 AU, 30 AU, 50 AU). We turn these simulations into synthetic (sub-)millimeter ALMA images. We find that all but the Neptune-mass planet open annular gaps in both the gas and the dust component of the disc. We find that the temporal evolution of the dust density distribution is distinctly different from the gas'. For example, the planets cause significant vertical stirring of the dust in the circumstellar disc which opposes the vertical settling. This creates a thicker dust disc than discs without a planet. We find that this effect greatly influences the dust masses derived from the synthetic ALMA images. Comparing the dust disc masses in the 3D simulations to the disc masses derived from the 2D ALMA synthetic images using the optically thin approximation, we find the former to be a factor of a few (up to 10) larger, pointing to the conclusion that real discs are significantly more massive than previously thought based on ALMA continuum images. Finally, we analyse the synthetic ALMA images and provide an empirical relationship between the planet mass and the width of the gap in the ALMA images, including the effects of the beam size.
We present the novel wide and deep neural network GalaxyNet, which connects the properties of galaxies and dark matter haloes and is directly trained on observed galaxy statistics using reinforcement learning. The most important halo properties to predict stellar mass and star formation rate (SFR) are halo mass, growth rate, and scale factor at the time the mass peaks, which results from a feature importance analysis with random forests. We train different models with supervised learning to find the optimal network architecture. GalaxyNet is then trained with a reinforcement learning approach: for a fixed set of weights and biases, we compute the galaxy properties for all haloes and then derive mock statistics (stellar mass functions, cosmic and specific SFRs, quenched fractions, and clustering). Comparing these statistics to observations we get the model loss, which is minimized with particle swarm optimization. GalaxyNet reproduces the observed data very accurately and predicts a stellar-to-halo mass relation with a lower normalization and shallower low-mass slope at high redshift than empirical models. We find that at low mass, the galaxies with the highest SFRs are satellites, although most satellites are quenched. The normalization of the instantaneous conversion efficiency increases with redshift, but stays constant above z ≳ 0.5. Finally, we use GalaxyNet to populate a cosmic volume of (5.9 Gpc)3 with galaxies and predict the BAO signal, the bias, and the clustering of active and passive galaxies up to z = 4, which can be tested with next-generation surveys, such as LSST and Euclid.
Starting from the one-loop divergences we obtained previously, we work out the renormalization of the Higgs-electroweak chiral Lagrangian explicitly and in detail. This includes the renormalization of the lowest-order Lagrangian, as well as the decomposition of the remaining divergences into a complete basis of next-to-leading-order counterterms. We provide the list of the corresponding beta functions. We show how our results match the one-loop renormalization of some of the dimension-6 operators in SMEFT. We further point out differences with related work in the literature and discuss them. As an application of the obtained results, we evaluate the divergences of the vacuum expectation value of the Higgs field at one loop and show that they can be appropriately removed by the corresponding renormalization. We also work out the finite renormalization required to keep the no-tadpole condition on the Higgs field at one loop.
We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of gaγ ≳ 4 × 10−13 GeV−1 over a mass range of 34.6738 μeV < ma< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
We measure the galaxy two- and three-point correlation functions at z = [0.5, 0.7] and z = [0.7, 0.9], from the Public Data Release 2 (PDR2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS). We model the two statistics including a non-linear one-loop model for the two-point function and a tree-level model for the three-point function, and perform a joint likelihood analysis. The entire process and non-linear corrections are tested and validated through the use of the 153 highly realistic VIPERS mock catalogues, showing that they are robust down to scales as small as 10 $h^{-1} \, \mathrm{Mpc}$. The mocks are also adopted to compute the covariance matrix that we use for the joint two- and three-point analysis. Despite the limited statistics of the two (volume-limited) subsamples analysed, we demonstrate that such a combination successfully breaks the degeneracy existing at two-point level between clustering amplitude σ8, linear bias b1, and the linear growth rate of fluctuations f. For the latter, in particular, we measure $f(z=0.61)=0.64^{+0.55}_{-0.37}$ and f(z = 0.8) = 1.0 ± 1.0, while the amplitude of clustering is found to be σ8(z = 0.61) = 0.50 ± 0.12 and $\sigma _8(z=0.8)=0.39^{+0.11}_{-0.13}$. These values are in excellent agreement with the extrapolation of a Planck cosmology.
Context. Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth.
Aims: In this paper, we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer.
Methods: Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the J = 3 →2 rotational lines of HDCO and D2CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H2CO emission and to give an estimate of the deuteration fractions HDCO/H2CO and D2CO/HDCO at scales of ~6″ (0.04-0.15 pc at the distance of our targets).
Results: Our observations show that singly and doubly deuterated H2CO are detected towards high-mass protostellar objects (HMPOs) and ultracompact H II regions (UC H II regions), and the deuteration fraction of H2CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UC H II), from ~0.13 to ~0.01. We have not detected HDCO and D2CO emission from the youngest sources (i.e. high-mass starless cores or HMSCs).
Conclusions: Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with the evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.
Aims: The TOPGöt project studies a sample of 86 high-mass star-forming regions in different evolutionary stages from starless cores to ultra compact HII regions. The aim of the survey is to analyze different molecular species in a statistically significant sample to study the chemical evolution in high-mass star-forming regions, and identify chemical tracers of the different phases.
Methods: The sources have been observed with the IRAM 30 m telescope in different spectral windows at 1, 2, and 3 mm. In this first paper, we present the sample and analyze the spectral energy distributions (SEDs) of the TOPGöt sources to derive physical parameters such as the dust temperature, Tdust, the total column density, NH2, the mass, M, the luminosity, L, and the luminosity-to-mass ratio, L∕M, which is an indicator of the evolutionary stage of the sources. We use the MADCUBA software to analyze the emission of methyl cyanide (CH3CN), a well-known tracer of high-mass star formation.
Results: We built the spectral energy distributions for ~80% of the sample and derived Tdust and NH2 values which range between 9−36 K and ~3 × 1021−7 × 1023 cm−2, respectively. The luminosity of the sources spans over four orders of magnitude from 30 to 3 × 105 L⊙, masses vary between ~30 and 8 × 103 M⊙, and the luminosity-to-mass ratio L∕M covers three orders of magnitude from 6 × 10−2 to 3 × 102 L⊙∕M⊙. The emission of the CH3CN(5K-4K) K-transitions has been detected toward 73 sources (85% of the sample), with 12 nondetections and one source not observed in the frequency range of CH3CN(5K-4K). The emission of CH3CN has been detected toward all evolutionary stages, with the mean abundances showing a clear increase of an order of magnitude from high-mass starless cores to later evolutionary stages. We found a conservative abundance upper limit for high-mass starless cores of XCH3CN < 4.0 × 10−11, and a range in abundance of 4.0 × 10−11 < XCH3CN < 7.0 × 10−11 for those sources that are likely high-mass starless cores or very early high-mass protostellar objects. In fact, in this range of abundance we have identified five sources previously not classified as being in a very early evolutionary stage. The abundance of CH3CN can thus be used to identify high-mass star-forming regions in early phases of star-formation.
Full Tables 3-6 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/653/A87
Post-starburst (PSB) galaxies belong to a short-lived transition population between star-forming (SF) and quiescent galaxies. Deciphering their heavily discussed evolutionary pathways is paramount to understanding galaxy evolution. We aim to determine the dominant mechanisms governing PSB evolution in both the field and in galaxy clusters. Using the cosmological hydrodynamical simulation suite Magneticum Pathfinder, we identify 647 PSBs with z ~ 0 stellar mass $M_* \ge 5 \times 10^{10} \, \mathrm{M_{\odot }}$ . We track their galactic evolution, merger history, and black hole activity over a time-span of $3.6\,$ Gyr. Additionally, we study cluster PSBs identified at different redshifts and cluster masses. Independent of environment and redshift, we find that PSBs, like SF galaxies, have frequent mergers. At z = 0, $89{{\ \rm per\ cent}}$ of PSBs have experienced mergers and $65{{\ \rm per\ cent}}$ had at least one major merger within the last $2.5\,$ Gyr, leading to strong star formation episodes. In fact, $23{{\ \rm per\ cent}}$ of z = 0 PSBs were rejuvenated during their starburst. Following the mergers, field PSBs are generally shutdown via a strong increase in active galactic nucleus (AGN) feedback (power output $P_{\rm AGN,PSB} \ge 10^{56}\,$ erg Myr-1). We find agreement with observations for both stellar mass functions and z = 0.9 line-of-sight phase space distributions of PSBs in galaxy clusters. Finally, we find that z ≲ 0.5 cluster PSBs are predominantly infalling, especially in high-mass clusters and show no signs of enhanced AGN activity. Thus, we conclude that the majority of cluster PSBs are shutdown via an environmental quenching mechanism such as ram-pressure stripping, while field PSBs are mainly quenched by AGN feedback.
We compute P-wave quarkonium wavefunctions at the origin in the MS ¯ scheme based on nonrelativistic effective field theories. We include nonperturbative effects from the long-distance behaviors of the potential, while the short-distance behaviors are determined from perturbative QCD. We obtain MS ¯-renormalized P-wave quarkonium wavefunctions at the origin that have the correct scale dependences that are expected from factorization formalisms, so that the dependences on the scheme and scale cancel in physical quantities. This greatly reduces the theoretical uncertainties associated with scheme and scale dependences in predictions of decay and production rates. Based on the calculation of the P-wave wavefunctions at the origin in this work, we make first-principles predictions of electromagnetic decay rates and exclusive electromagnetic production rates of P-wave charmonia and bottomonia, and compare them with measurements.
Fitting half-integer generalized Laguerre functions to the evolved, real-space dark matter and halo correlation functions provides a simple way to reconstruct their initial shapes. We show that this methodology also works well in a wide variety of realistic, assembly biased, velocity biased and redshift-space distorted mock galaxy catalogs. We use the linear point feature in the monopole of the redshift-space distorted correlation function to quantify the accuracy of our approach. We find that the linear point estimated from the mock galaxy catalogs is insensitive to the details of the biasing scheme at the subpercent level. However, the linear point scale in the nonlinear, biased, and redshift-space distorted field is systematically offset from its scale in the unbiased linear density fluctuation field by more than 1%. In the Laguerre reconstructed correlation function, this is reduced to sub-percent values, so it provides comparable accuracy and precision to methods that reconstruct the full density field before estimating the distance scale. The linear point in the reconstructed density fields provided by these other methods is likewise precise, accurate, and insensitive to galaxy bias. All reconstructions depend on some input parameters, and marginalizing over uncertainties in the input parameters required for reconstruction can degrade both accuracy and precision. The linear point simplifies the marginalization process, enabling more realistic estimates of the precision of the distance scale estimate for negligible additional computational cost. We show this explicitly for Laguerre reconstruction.
A parsec-scale dusty torus is thought to be the cause of active galactic nuclei (AGN) dichotomy in the 1/2 types, narrow/broad emission lines. In a previous work, on the basis of parsec-scale resolution infrared/optical dust maps, it was found that dust filaments, few parsecs wide and several hundred parsecs long, were ubiquitous features crossing the centre of type 2 AGN, their optical thickness being sufficient to fully obscure the optical nucleus. This work presents the complementary view for type 1 and intermediate-type AGN. The same type of narrow, collimated, dust filaments are equally found at the centre of these AGN. The difference now resides in their location with respect to the nucleus, next to it but not crossing it, as it is the case in type 2, and their reduced optical thickness towards the centre, $A_V \lesssim 1.5\, \rm {mag}$, insufficient to obscure at ultraviolet nucleus wavelengths. It is concluded that large-scale, hundred parsecs to kiloparsecs long, dust filaments and lanes, reminiscent of those seen in the Milky Way, are a common ingredient to the central parsec of galaxies. Their optical thickness changes along their structure in type 2 reaching optical depths high enough to obscure the nucleus in full. Their location with respect to the nucleus and increasing gradient in optical depth towards the centre could naturally lead to the canonical type 1/2 AGN classification, making these filaments to play the role of the torus. Dust filaments and lanes show equivalent morphologies in molecular gas. Gas kinematic in the filaments indicates mass inflows at rates ${\lt}1 \, \mathrm{M}_{\odot }~ \mathrm{yr}^{-1}$.
The Sunyaev-Zel'dolvich (SZ) effect is expected to be instrumental in measuring velocities of distant clusters in near future telescope surveys. We simplify the calculation of peculiar velocities of galaxy clusters using deep learning frameworks trained on numerical simulations to avoid the independent estimation of the optical depth. Images of distorted photon backgrounds are generated for idealized observations using one of the largest cosmological hydrodynamical simulations, the Magneticum simulations. The model is tested to determine its ability of estimating peculiar velocities from future kinetic SZ observations under different noise conditions. The deep learning algorithm displays robustness in estimating peculiar velocities from kinetic SZ effect by an improvement in accuracy of about 17 per cent compared to the analytical approach.
Precision studies at electron-positron colliders with centre-of-mass energies in the charm-tau region and below have strongly contributed to our understanding of light-meson interactions at low energies. We focus on the processes involving two or three light mesons with invariant masses below nucleon-antinucleon threshold. A prominent role is given to the interactions of the nine lightest pseudoscalar mesons (pions, kaons, η, and η′) and the two narrow neutral isoscalar vector mesons ω and ϕ. Experimental methods used to produce the mesons are reviewed as well as theory tools to extract properties of the meson-meson interactions. Examples of recent results from the DA ΦNE, BEPCII, and VEPP-2000 colliders are presented. In the outlook we briefly discuss prospects for further studies at future super-charm-tau factories.
We present the integrated three-point shear correlation function iζ± - a higher order statistic of the cosmic shear field - which can be directly estimated in wide-area weak lensing surveys without measuring the full three-point shear correlation function, making this a practical and complementary tool to two-point statistics for weak lensing cosmology. We define it as the one-point aperture mass statistic Map measured at different locations on the shear field correlated with the corresponding local two-point shear correlation function ξ±. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated three-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ± and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ± and perform a joint analysis with ξ± for two tomographic source redshift bins with realistic shape noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ± and iζ± has the potential to considerably improve parameter constraints from ξ± alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.
The 21-cm signal from the Cosmic Dawn (CD) is likely to contain large fluctuations, with the most extreme astrophysical models on the verge of being ruled out by observations from radio interferometers. It is therefore vital that we understand not only the astrophysical processes governing this signal, but also other inherent processes impacting the signal itself, and in particular line-of-sight effects. Using our suite of fully numerical radiative transfer simulations, we investigate the impact on the redshifted 21-cm from the CD from one of these processes, namely the redshift-space distortions (RSDs). When RSDs are added, the resulting boost to the power spectra makes the signal more or equally detectable for our models for all redshifts, further strengthening hopes that a power spectra measurement of the CD will be possible. RSDs lead to anisotropy in the signal at the beginning and end of the CD, but not while X-ray heating is underway. The inclusion of RSDs, however, decreases detectability of the non-Gaussianity of fluctuations from inhomogeneous X-ray heating as measured by the skewness and kurtosis. On the other hand, mock observations created from all our simulations that include telescope noise corresponding to 1000 h of observation with the Square Kilometre Array telescope show that we may be able to image the CD for all heating models considered and suggest RSDs dramatically boost fluctuations coming from the inhomogeneous Ly α background.
We present observations of a giant Lyα blob (LAB) in the SSA22 protocluster at z = 3.1, SSA22-LAB1, taken with the Atacama Large Millimeter/submillimeter Array. Dust continuum, along with [C II] 158 μm and CO(4-3) line emission have been detected in LAB1, showing complex morphology and kinematics across a ~100 kpc central region. Seven galaxies at z = 3.0987-3.1016 in the surroundings are identified in [C II] and dust continuum emission, with two of them potential companions or tidal structures associated with the most massive galaxies. Spatially resolved [C II] and infrared luminosity ratios for the widely distributed media (L[Cɪɪ]/LIR ≍ 10-2-10-3) suggest that the observed extended interstellar media are likely to have originated from star formation activity and the contribution from shocked gas is probably not dominant. LAB1 is found to harbor a total molecular gas mass Mmol = (8.7 ± 2.0) × 1010 M⊙, concentrated in the core region of the Lyα-emitting area. While (primarily obscured) star formation activity in the LAB1 core is one of the most plausible power sources for the Lyα emission, multiple major mergers found in the core may also play a role in making LAB1 exceptionally bright and extended in Lyα as a result of cooling radiation induced by gravitational interactions.
We discuss how LHC di-muon data collected to study Bq → μμ can be used to constrain light particles with flavour-violating couplings to b-quarks. Focussing on the case of a flavoured QCD axion, a, we compute the decay rates for Bq → μμa and the SM background process Bq → μμγ near the kinematic endpoint. These rates depend on non-perturbative Bq → γ(*) form factors with on- or off-shell photons. The off-shell form factors — relevant for generic searches for beyond-the-SM particles — are discussed in full generality and computed with QCD sum rules for the first time. This includes an extension to the low-lying resonance region using a multiple subtracted dispersion relation. With these results, we analyse available LHCb data to obtain the sensitivity on Bq → μμa at present and future runs. We find that the full LHCb dataset alone will allow to probe axion-coupling scales of the order of 106 GeV for both b → d and b → s transitions. As a spin-off application of the off-shell form factors we further analyse the case of light, Beyond the Standard Model, vectors.
We test the adequacy of ultraviolet (UV) spectra for characterizing the outer structure of Type Ia supernova (SN) ejecta. For this purpose, we perform spectroscopic analysis for ASASSN-14lp, a normal SN Ia showing low continuum in the mid-UV regime. To explain the strong UV suppression, two possible origins have been investigated by mapping the chemical profiles over a significant part of their ejecta. We fit the spectral time series with mid-UV coverage obtained before and around maximum light by HST, supplemented with ground-based optical observations for the earliest epochs. The synthetic spectra are calculated with the one-dimensional MC radiative transfer code TARDIS from self-consistent ejecta models. Among several physical parameters, we constrain the abundance profiles of nine chemical elements. We find that a distribution of 56Ni (and other iron-group elements) that extends towards the highest velocities reproduces the observed UV flux well. The presence of radioactive material in the outer layers of the ejecta, if confirmed, implies strong constraints on the possible explosion scenarios. We investigate the impact of the inferred 56Ni distribution on the early light curves with the radiative transfer code TURTLS, and confront the results with the observed light curves of ASASSN-14lp. The inferred abundances are not in conflict with the observed photometry. We also test whether the UV suppression can be reproduced if the radiation at the photosphere is significantly lower in the UV regime than the pure Planck function. In this case, solar metallicity might be sufficient enough at the highest velocities to reproduce the UV suppression.
We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter $S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3} = 0.766^{+0.033}_{-0.038}$ which, at 4.8 per cent precision, provides one of the tightest constraints on S8 from the DES-Y1 weak lensing data. In our simulation-based method we determine the expected DES-Y1 peak-count signal for a range of cosmologies sampled in four w cold dark matter parameters (Ωm, σ8, h, w0). We also determine the joint covariance matrix with over 1000 realizations at our fiducial cosmology. With mock DES-Y1 data we calibrate the impact of photometric redshift and shear calibration uncertainty on the peak-count, marginalizing over these uncertainties in our cosmological analysis. Using dedicated training samples we show that our measurements are unaffected by mass resolution limits in the simulation, and that our constraints are robust against uncertainty in the effect of baryon feedback. Accurate modelling for the impact of intrinsic alignments on the tomographic peak-count remains a challenge, currently limiting our exploitation of cross-correlated peak counts between high and low redshift bins. We demonstrate that once calibrated, a fully tomographic joint peak-count and correlation functions analysis has the potential to reach a 3 per cent precision on S8 for DES-Y1. Our methodology can be adopted to model any statistic that is sensitive to the non-Gaussian information encoded in the shear field. In order to accelerate the development of these beyond-two-point cosmic shear studies, our simulations are made available to the community upon request.
We investigate strongly gravitationally lensed type II supernovae (LSNe II) for time-delay cosmography, incorporating microlensing effects; this expands on previous microlensing studies of type Ia supernovae (SNe Ia). We use the radiative-transfer code TARDIS to recreate five spectra of the prototypical SN 1999em at different times within the plateau phase of the light curve. The microlensing-induced deformations of the spectra and light curves are calculated by placing the SN into magnification maps generated with the code GERLUMPH. We study the impact of microlensing on the color curves and find that there is no strong influence on them during the investigated time interval of the plateau phase. The color curves are only weakly affected by microlensing due to the almost achromatic behavior of the intensity profiles. However, the lack of nonlinear structure in the color curves during the plateau phase of type II-plateau supernovae makes time-delay measurements more challenging compared to SN Ia color curves, given the possible presence of differential dust extinction. Therefore, we further investigate SN phase inference through spectral absorption lines under the influence of microlensing and Gaussian noise. As the spectral features shift to longer wavelengths with progressing time after explosion, the measured wavelength of a specific absorption line provides information on the epoch of the SN. The comparison between retrieved epochs of two observed lensing images then gives the time delay of the images. We find that the phase retrieval method that uses spectral features yields accurate delays with uncertainties of ≲2 days, making it a promising approach.
Time-delay strong lensing (TDSL) is a powerful probe of the current expansion rate of the Universe. However, in light of the discrepancies between early and late-time cosmological studies, efforts revolve around the characterisation of systematic uncertainties in the methods. Here, we focus on the mass-sheet degeneracy (MSD), which is considered a significant source of systematics in TDSL, and aim to assess the constraining power provided by IFU stellar kinematics. We approximate the MSD with a cored, two-parameter extension to the lensing mass profiles (with core radius $r_{\rm c}$ and mass-sheet parameter $\lambda_{\rm int}$). In addition, we utilise mock IFU stellar kinematics of time-delay strong lenses, given the prospects of obtaining such data with JWST. We construct joint strong lensing and stellar dynamical models, where the time delays, mock imaging and IFU observations are used to constrain the mass profile of lens galaxies, and yield joint constraints on the time-delay distance ($D_{\Delta t}$) and angular diameter distance ($D_{\rm d}$) to the lens. We find that mock JWST-like stellar kinematics constrain the internal mass sheet and limit its contribution to the uncertainties of $D_{\Delta t}$ and $D_{\rm d}$, each at the < 4% level, without assumptions on the background cosmological model. These distance constraints would translate to a < 4% precision measurement on $H_{\rm 0}$ in flat $\Lambda CDM$ for a single lens. Our study shows that IFU stellar kinematics of time-delay strong lenses will be key in lifting the MSD on a per lens basis, assuming reasonable core sizes. However, even in the limit of infinite $r_{\rm c}$, where $D_{\Delta t}$ is degenerate with $\lambda_{\rm int}$, stellar kinematics of the deflector, time delays and imaging data will provide powerful constraints on $D_{\rm d}$, which becomes the dominant source of information in the cosmological inference.
The impact of new and highly precise neutron β decay data is reviewed. We focus on recent results from neutron lifetime, β asymmetry, and electron-neutrino correlation experiments. From these results, weak interaction parameters are extracted with unprecedented precision, which is possible also because of progress in effective field theory and lattice QCD. Limits on New Physics beyond the Standard Model derived from neutron decay data are sharper than those derived from high-energy experiments, except for processes involving right-handed neutrinos.
SU(2) gauge fields coupled to an axion field can acquire an isotropic background solution during inflation. We study homogeneous but anisotropic inflationary solutions in the presence of such (massless) gauge fields. A gauge field in the cosmological background may pose a threat to spatial isotropy. We show, however, that such models generally isotropize in Bianchi type-I geometry, and the isotropic solution is the attractor. Restricting the setup by adding an axial symmetry, we revisited the numerical analysis presented in [1]. We find that the reported numerical breakdown in the previous analysis is an artifact of parametrization singularity. We use a new parametrization that is well-defined all over the phase space. We show that the system respects the cosmic no-hair conjecture and the anisotropies always dilute away within a few e-folds.