

ABOUT THE COMPUTATIONAL CENTER

FOR PARTICLE AND ASTROPHYSICS

Progress in understanding the exciting scientific uestions of the origin and evolution of the Universe requires considerable computational effiot. his includes producing theoretical models as well as extracting and interpreting observational and experimental data. The resulting computic article physics thereforore have increasesed sigit particle physics therefore have increased signifi
cantly in recent years and will continue to increase in the future.
To meet these ever-growing demands, the Excellence Cluster Universe in the second period of the Excellence Initiative founded the Computational
Center for Particle and Astroohysics (CPPAP) |lis Center for Particle and Astrophysics (C'PAPP).It Rechenzentrum LRZ and allows the members of the Universe Cluster to keep pace and harvest he progress of the continuously broadening deHPC) domain.

C2PAP operates its own computing cluster with 2084 processor cores, which is essentially a at LRZ with some modifications owing to the needs of the Universe Cluster scientists such a nodes with larger main memory or local disk stor members of the Universe Cluster enabling the to develop their tools for efficient usage of supercomputers like SupervuC and cloud-computing facilities. Its own data storage system also pro vides 300 Terabytes for data intensive projects or members of the Universe Cluste
py employ ing five full-time staff members, CPPAP areas of scientific computing such as high-per
formance computing, parallelization, algorithm development and novel computing architectuth as well as further aspects of large-scale comput. ing like usage of modern software packages, da tabase design, data preservation and visualizafion to allow members of the Univers coveris

126 compute nodes: each 64 GB RAM, 250 GB HDD, 16 Intel Xeon CPU cores 2.7 GHz
3 login nodes: each 128 GB RAM, 300 GB HDD,
16 Intel Xeon CPU cores 2.7 GHz 1 "fat" node: 750 GB RAM,
15 TB HDD with 20 Intel Xeon CPU cores 2.7 GHz IBM Storage system with total volume of 260 TB

LRZ offers with the Compute Cloud an attractive new concept to accauir computing reso projects. Based on virtuaizzation the users can provide their own operating resources are available, ranging from standard worker nodes to high-mem ory nodes or highly parallel GPU clusters.

CONFERENCE ACTIVITIES

C2PAP staff members regularly participate at and contribute to numerous more than 40 so far) national and international workshops, schools and conferences. Thereby the team members continuously gather experience and accumulate knowledge in the field of modern programming paradigms,
hardware development, statistical and numerical methods as well as algoharaware development, Staitsticia and numerical methods as well as algo-
rithm and optimization strategies on HPC plattorms. In addition, the CPPAP staff actively supported different project teams on events like Hackathons or workshops (see picture gallery), where HPC centers guide project teams improve their numerical tools for the next generation of HPC hardware. Furnermore, the CPPAP staff also contributes to the dissemination of the reternational physics conferences and is also actively involved in co-organizing workshop and seminar series as well as giving lectures in schools covering the full range of $C^{C P P A P ~ a c t i v i t i e s . ~}$

(20)

 (2)
MACNETICUME

"Magneticum Pathfinder" (www.magneticum.org) is the world's most elaborate cosmological simulation of the evolution of our Universe and has been
accomplished by theoretical astrophysicists of the LMU in cooperation with accomplished by theoretical astrophysicists of the LMU in cooperation with
C'PPAP and LRZ. A group of theorists led by C'PAPP director Klaus Dolag has performed a nev, unique hydrodynamic simulation of the large-scale distribution of the Universe's visible matter. The most recent result regarding the
three most important cosmic ingredients of the Universe are taken into account - the dark energy, the dark matter and the visible matter. The researchers transtorm their knowledge about the physical processes forming our Universe into mathematical models and simulate the evolution of Universe on high-performance computers over billions of years.

For the first time, these numerous characteristics make it possible to compare a cosmological simulation in detail with large-scale astronomical sur-
veys. Astronomical surveys from space telescopes ike Planck or Hubl veys. „Astronomical surveys from space telescopes like Planck or Hubble
observe a lagge segment of the visible Universe while sophisticated simulations so far could only model very small parts of the Universe, making a direct comparison virtually impossible," says Klaus Dolag. „Thus, Magnetic um Pathfinder marks the beginning of a new era in computer-based cosmology."

These data are available for interested researchers worldwide. CePAP re
 size, mass or other properties and visualize them.

$\begin{array}{ll}\text { Since } 1998 \text { when it was discovered that the ex- } & \text { background mapping experiment in Antartica. } \\ \text { pansialogs. In one demonstration run, these high } \\ \text { we the Universe is accelerating attention } \\ \text { We use these maps to identify galaxy clusters }\end{array}$ efficiency pipelines were used to prepare an en$\begin{array}{lll}\begin{array}{l}\text { pansion of the Universe is accelerating, attention } \\ \text { has turned to using the evolution of the large- }\end{array} & \begin{array}{l}\text { We use these maps to identify galaxy clusters } \\ \text { from the moment of their formation. The DES is a }\end{array} & \begin{array}{l}\text { efficiency pipelines were used to prepare an en- } \\ \text { tire observing season (125 nights, } 15 \text { TB) of DES }\end{array}\end{array}$ $\begin{array}{lll}\text { has turned to using the evolution of the large- } & \text { from the moment of their formation. The DES is a } & \text { tire obsening season (} 125 \text { nights, } 15 \text { TB) of DES } \\ \text { scale structure such has voids, walls, filaments } \\ \text { multiband optical imaging survey carried out } \\ \text { tatat for science analysis over a two week period. }\end{array}$ and galaxy clusters to understand whether this from the Chilean Andes. We use the DES data to
acceleration is driven by some new component of
the Universe - termed "dark energy" - or whether our understanding of gravity is flawed. Two lead-
ing astronomical surveys - the South Pole Telescope (SPT) and the Dark Energy Survey (DES)-
are designed to address these questions. The SPT
is a high angular resolution cosmic microwave

CPPAP has been used to run the cosmological analysis software on the SPT+DES galaxy cluster sample, producing the most sensitive constraints to date on the nature of dark energy. These sults show that over the 10 billion years of evolution probed by the galaxy cluster sample, the dark energy has exhibited the propey
energy density vacuum energy.

PATLAS Q EXPERIMENT

The ATLAS experiment is one of two multi-purpose experiments at the world's sargest particle CERN, designed to record large numbers of pro-ton-proton collision events. The ATLAS collabo-
ration has already published more than 500 jourration has already pubbished more than 500 journal articles including the celebrated discovery of
the Higgs boson. The 2nd phase of LHC run- 2 is ongoing since 2015 at a center-of-mass energy of 13 tera-electronvolts. For identitying new phe nomena within the recorded data, simulations of proton-proton collisions, based on theoretical pre-
dictions combined with detailed modelling of the
detector response, are indispensable. Simulating a single complex collisison event is computationaly expensive and can take up to 1,000 seconds n a single CPU core. The ATLAS experiment re
ords about 10 billion collision events per yea The detailed analysis of this data requires at east the same amount of simulated events for standdd processes in order to perform the baseline adition requires many extra smples to perfor searches for "New Physics" processes - the main purpose of the LHC program. This simulation
production is part of a worldwide e efort, involving more than 100 computing centers in all ATLAS member states. Besides the substantial amoun deaicated resources for ATLAS/LHC, this ef stic use of temporarily available resources at the associated institutions.

2PAP made very valuable contributions in two ways: on the one hand we could use CePAP re souroes to contribute effectively to this simula tion production, but more importantly, since
C'PAP has a similar setup and architecture as large HPC clusters, we could tune and optimize the ATLAS production work-flows for such sys ems. Based on these developments we obMUC at the LRZ and DRACO at the Max Planck Computing and Data Faciility (MPCDF), and have integrated them into the ATLAS worldwide effor significantly extending the available CPU resources. In adatition, CPPAP staff strongly contribute
to the optimization of the ATLAS reconstruction software in order to operate it on multi-threade or parallel computer architectures.

C²PAP HIGHLIGHT 4

How doess matter behave at the highest tempera-
tures and highest densities? These questions lures and highest densities? These questions
have been investigated since 2014 by the newly have been investigated since 2014 by the newly
formed TUMQCD collaboration lead by Prof. Dr. Nora Brambilla (TUM). They have studied hot nu clear matter through simulations on the computing clusters CPPAP and SuperMUC. The interior
of atomic nuyclei consists of so-called noler of atomic nuclei consists of so-called nuclear
matter and can be described using a highly non-linear theory called quantum chromodynamin (QCD). Using this theory, it is possible to sim late hot and dense matter on computers.

If nuclear matter is heated to temperatures beyond one trillion degrees - which is 100,000
times hotter than the center of our Sun - , then the particles basically break apart into their build-
ing blocks, i.e. quarks and gluons. The new ing blocks, i.e. quarks and gluons. The new aggregate state is called quark-gluon plasma
(QGP). In many respects this aggregate state is similiar to electromagnetic plasmas, which are
studied experimentally at the Max-Planck-Institut for Plasma Physics and Technische Universiàt München. However, collisions of ultra-relativ-
istic heavy ions (i.e. lead) at large particle
accelerators are needed in order to create quark the ALICE experiment at CERN's Large Hadron Colider is committed to experimental research in narily complex hand last for less than 10.22 sild onds. Their analysis requires a thorough understanding of the underly ing theory. II the numerical ation, they use finite of the TUMOCD collabo-o-methods, putting the full quantum fiend theoron a space-time lattice withount um field theory These simulations require massivively parallelized computations, often using hundreds of CPUs. the temperature and sizes are required to vary sults in the limit of infinite volume and vanishing lattice step. Since the CPPAP architecture ena-
bles simulations with either only a few or many cores, CPPAP is well-suited for studies of QGP. One of the results of such simulations was the finement.

The growth of solids from micrometer particles to planetesimals is a critical stage in the formation of rocky planets like Earth. Observations at millimeter and submillimeter wavelengths are sensitive probes
of the solids in the disk midplane where planets are expected to form. In the course of three years, CPPAP staff provided guidance to ESO researchers Marco Tazzari and Leonardo Testi on efficient Monte Carlo sampling to perform the Bayesian analysis of models of grain growth in protoplanetary disks. The computational effort grows tremendously because the resolution of observations from interferometers such s ESO's ALMA is rapidly increasing and it becomes necessary to consider multiple wavelengths to crosscorreate information between physical phenomena on different scales. The required image manipula-
ions can be accelerated by orders of magnitude when executed on a graphics card (GPU). In a fruitful ollaboration, a software package named GALARIO was created and released that can compare observations to model predictions in milliseconds in what previously would have required several seconds. With this speed-up, much more thorough scientific analyses are now possible and the astrophysicists
can again focus on the modeling rather than the computing time. The initial development of GALARIO can again focus on the modeling rather than the computing time. The intitial development of GALARIO atmosphere.

810
$+\underset{(0)}{+}$

After the start of CPPAP the number of C'PAP projects have grown significantly over the years. A list

C²PAP SCIENCE NETWORK

The network for science topics of CePAP publications created by ADS Bumblebee. This network is created by grouping papers that share a signi-
ficant number of references, assuming that ficant number of references, assuming that pa-
pers on the same subject have a significant overpers on the same subject have a significant over-
lap of their references. The names to the groups are then given by looking for shared, unique words
in their tities. Connecting lines then link common in their titles. Connecting lines then link common
authors across the different groups. authors across the different groups.
For clarity, we exclude all collaborat For clarity, we exclude all collaboration papers
where CCPAP staff members formally are co-authors but have not contributed directly.

PROF. DR.
STEPHAN PAUL (TUM)

With the renewal of the Universe Cluster in 2012, CPPAP has been established in the close neighbourhood of the LRZ in München/Garching. It resolves a problem that is becoming more and more critical in numerical physics: providing computational groups with professional software developing expertise in order to run their codes efficiently and reliably on modern supercomputers. It
also serves as computational support structure and provides key computing also serves as computational support structure and provides key computing ower not present tor individual research groups on the campus. The success developments and publications, partially unexpected.
Due to its importance and success C CPAP is a key pillar of our new cluster proposal ORIGIINS. We congratuate the very active team and the management posal ORIGINS. We co
board for this success.

$$
\rightarrow \text { Andurean hutht }
$$

IMPRINT

EDITOR
Andieas Miler (TUMM)

FINAL Proofreading
D. Hubber
PRINTING
fiyeralam.com
DESIGN
Sabine Kwauka, s.kwauka@muenchen-mail.de COVER PHOTO / BACKPAGE
www.magneticum.org / Hischmann et al. (2014) IMAGE CREDTIS
IM.
whwmegneticum.org, Excellence Cluster Univers www.magneticum.org, Excellence Cluster Universe,
Axel Criesch tuir Max-Planck-Gesesllschatt, private Status as of October 2017

