The origin of molecular evolution required the replication of short oligonucleotides to form longer polymers. Prebiotically plausible oligonucleotide pools tend to contain more of some nucleobases than others. It has been unclear whether this initial bias persists and how it affects replication. To investigate this, we examined the evolution of 12-mer biased short DNA pools using an enzymatic model system. This allowed us to study the long timescales involved in evolution, since it is not yet possible with currently investigated prebiotic replication chemistries. Our analysis using next-generation sequencing from different time points revealed that the initial nucleotide bias of the pool disappeared in the elongated pool after isothermal replication. In contrast, the nucleotide composition at each position in the elongated sequences remained biased and varied with both position and initial bias. Furthermore, we observed the emergence of highly periodic dimer and trimer motifs in the rapidly elongated sequences. This shift in nucleotide composition and the emergence of structure through templated replication could help explain how biased prebiotic pools could undergo molecular evolution and lead to complex functional nucleic acids.
We present the one-dimensional Ly α forest power spectrum measurement using the first data provided by the Dark Energy Spectroscopic Instrument (DESI). The data sample comprises 26 330 quasar spectra, at redshift z > 2.1, contained in the DESI Early Data Release and the first 2 months of the main survey. We employ a Fast Fourier Transform (FFT) estimator and compare the resulting power spectrum to an alternative likelihood-based method in a companion paper. We investigate methodological and instrumental contaminants associated with the new DESI instrument, applying techniques similar to previous Sloan Digital Sky Survey (SDSS) measurements. We use synthetic data based on lognormal approximation to validate and correct our measurement. We compare our resulting power spectrum with previous SDSS and high-resolution measurements. With relatively small number statistics, we successfully perform the FFT measurement, which is already competitive in terms of the scale range. At the end of the DESI survey, we expect a five times larger Ly α forest sample than SDSS, providing an unprecedented precise one-dimensional power spectrum measurement.
We investigate cosmological correlators for conformally coupled $\phi^4$ theory in four-dimensional de Sitter space. These \textit{in-in} correlators differ from scattering amplitudes for massless particles in flat space due to the spacelike structure of future infinity in de Sitter. They also require a regularization which preserves de Sitter-invariance, which makes the flat space limit subtle to define at loop-level. Nevertheless we find that up to two loops, the \textit{in-in} correlators are structurally simpler than the wave function and have the same transcendentality as flat space amplitudes. Moreover, we show that their loop integrands can be recast in terms of flat space integrands and can be derived from a novel recursion relation.
Spatial proton gradients create energy in biological systems and are likely a driving force for prebiotic systems. Due to the fast diffusion of protons, they are however difficult to create as steady state, unless driven by other non-equilibria such as thermal gradients. Here, we quantitatively predict the heat-flux driven formation of pH gradients for the case of a simple acid-base reaction system. To this end, we (i) establish a theoretical framework that describes the spatial interplay of chemical reactions with thermal convection, thermophoresis, and electrostatic forces by a separation of timescales, and (ii) report quantitative measurements in a purpose-built microfluidic device. We show experimentally that the slope of such pH gradients undergoes pronounced amplitude changes in a concentration-dependent manner and can even be inverted. The predictions of the theoretical framework fully reflect these features and establish an understanding of how naturally occurring non-equilibrium environmental conditions can drive pH gradients.
We report the first simultaneous and independent measurements of the K$^{-}$p $\rightarrow \Sigma^0 \, \pi^{0}$ and K$^{-}$p $\rightarrow \Lambda \, \pi^{0}$ cross sections around 100 MeV/c kaon momentum. The kaon beam delivered by the DA$\Phi$NE collider was exploited to detect K$^-$ absorptions on Hydrogen atoms, populating the gas mixture of the KLOE drift chamber. The precision of the measurements ($\sigma_{K^- p \rightarrow \Sigma^0 \pi^0} = 42.8 \pm 1.5 (stat.) ^{+2.4}_{-2.0}(syst.) \ \mathrm{mb}$ and $\sigma_{K^- p \rightarrow \Lambda \pi^0} = 31.0 \pm 0.5 (stat.) ^{+1.2}_{-1.2}(syst.) \ \mathrm{mb}\,$) is the highest yet obtained in the low kaon momentum regime.
We investigate the ten independent local form factors relevant to the b -baryon decay Λb→Λ ℓ+ℓ-,combininginformationof lattice QCD and dispersive bounds. We propose a novel parametrization of the form factors in terms of orthonormal polynomials that diagonalizes the form factor contributions to the dispersive bounds. This is a generalization of the unitarity bounds developed for meson-to-meson form factors. In contrast to ad hoc parametrizations of these form factors, our parametrization provides a degree of control of the form-factor uncertainties at large hadronic recoil. This is of phenomenological interest for theoretical predictions of, e.g., Λb→Λ γ and Λb→Λ ℓ+ℓ- decay processes.
We study the excitation spectrum of light and strange mesons in diffractive scattering. We identify different hadron resonances through partial wave analysis, which inherently relies on analysis models. Besides statistical uncertainties, the model dependence of the analysis introduces dominant systematic uncertainties. We discuss several of their sources for the $\pi^-\pi^-\pi^+$ and $K^0_S K^-$ final states and present methods to reduce them. We have developed a new approach exploiting a-priori knowledge of signal continuity over adjacent final-state-mass bins to stably fit a large pool of partial-waves to our data, allowing a clean identification of very small signals in our large data sets. For two-body final states of scalar particles, such as $K^0_S K^-$, mathematical ambiguities in the partial-wave decomposition lead to the same intensity distribution for different combinations of amplitude values. We will discuss these ambiguities and present solutions to resolve or at least reduce the number of possible solutions. Resolving these issues will allow for a complementary analysis of the $a_J$-like resonance sector in these two final states.
We propose extensions of the anti-kt and Cambridge/Aachen hierarchical jet clustering algorithms that are designed to retain the exact jet kinematics of these algorithms, while providing an infrared-and-collinear-safe definition of jet flavor at any fixed order in perturbation theory. Central to our approach is a new technique called interleaved flavor neutralization (IFN), whereby the treatment of flavor is integrated with, but distinct from, the kinematic clustering. IFN allows flavor information to be meaningfully accessed at each stage of the clustering sequence, which enables a consistent assignment of flavor both to individual jets and to their substructure. We validate the IFN approach using a dedicated framework for fixed-order tests of infrared and collinear safety, which also reveals unanticipated issues in earlier approaches to flavored jet clustering. We briefly explore the phenomenological impact of IFN with anti-kt jets for benchmark tasks at the Large Hadron Collider.
The onset of star formation is set by the collapse of filaments in the interstellar medium. From a theoretical point of view, an isolated cylindrical filament forms cores via the edge effect. Due to the self-gravity of a filament, the strong increase in acceleration at both ends leads to a pile-up of matter which collapses into cores. However, this effect is rarely observed. Most theoretical models consider a sharp density cut-off at the edge of the filament, whereas a smoother transition is more realistic and would also decrease the acceleration at the ends of the filament. We show that the edge effect can be significantly slowed down by a density gradient, although not completely avoided. However, this allows perturbations inside the filament to grow faster than the edge. We determine the critical density gradient for which the time-scales are equal and find it to be of the order of several times the filament radius. Hence, the density gradient at the ends of a filament is an essential parameter for fragmentation and the low rate of observed cases of the edge effect could be naturally explained by shallow gradients.
Turbulence in protoplanetary discs, when present, plays a critical role in transporting dust particles embedded in the gaseous disc component. When using a field description of dust dynamics, a diffusion approach is traditionally used to model this turbulent dust transport. However, it has been shown that classical turbulent diffusion models are not fully self-consistent. Several shortcomings exist, including the ambiguous nature of the diffused quantity and the non-conservation of angular momentum. Orbital effects are also neglected without an explicit prescription. In response to these inconsistencies, we present a novel Eulerian turbulent dust transport model for isotropic and homogeneous turbulence on the basis of a mean-field theory. Our model is based on density-weighted averaging applied to the pressureless fluid equations and uses appropriate turbulence closures. Our model yields novel dynamic equations for the turbulent dust mass flux and recovers existing turbulent transport models in special limiting cases, thus providing a more general and self-consistent description of turbulent particle transport. Importantly, our model ensures the conservation of global angular and linear momentum unconditionally and implicitly accounts for the effects of orbital dynamics in protoplanetary discs. Furthermore, our model correctly describes the vertical settling-diffusion equilibrium solutions for both small and large particles. Hence, this work presents a generalized Eulerian turbulent dust transport model, establishing a comprehensive framework for more detailed studies of turbulent dust transport in protoplanetary discs.
We present MGLENS, a large series of modified gravity lensing simulations tailored for cosmic shear data analyses and forecasts in which cosmological and modified gravity parameters are varied simultaneously. Based on the FORGE and BRIDGEN-body simulation suites presented in companion papers, we construct 100 × 5000 deg2 of mock Stage-IV lensing data from two 4D Latin hypercubes that sample cosmological and gravitational parameters in f(R) and nDGP gravity, respectively. These are then used to validate our inference analysis pipeline based on the lensing power spectrum, exploiting our implementation of these modified gravity models within the COSMOSIS cosmological inference package. Sampling this new likelihood, we find that cosmic shear can achieve 95 per cent CL constraints on the modified gravity parameters of log$_{10}[f_{R_0}] \lt $ -4.77 and log10[H0rc] > 0.09, after marginalizing over intrinsic alignments of galaxies and including scales up to ℓ = 5000. We also investigate the impact of photometric uncertainty, scale cuts, and covariance matrices. We finally explore the consequences of analysing MGLENS data with the wrong gravity model, and report catastrophic biases for a number of possible scenarios. The Stage-IV MGLENS simulations, the FORGE and BRIDGE emulators and the COSMOSIS interface modules will be made publicly available upon journal acceptance.
The differential cross section for the quasi-free photoproduction reaction γ n →K0Σ0 was measured at BGOOD at ELSA from threshold to a centre-of-mass energy of 2400 MeV . Close to threshold the results are consistent with existing data and are in agreement with partial wave analysis solutions over the full measured energy range, with a large coupling to the Δ (1900 ) 1 /2- evident. This is the first dataset covering the K∗ threshold region, where there are model predictions of dynamically generated vector meson-baryon resonance contributions.
Gaia BH1, the first quiescent black hole (BH) detected from Gaia data, poses a challenge to most binary evolution models: its current mass ratio is ≈0.1, and its orbital period seems to be too long for a post-common envelope system and too short for a non-interacting binary system. Here, we explore the hypothesis that Gaia BH1 formed through dynamical interactions in a young star cluster (YSC). We study the properties of BH-main sequence (MS) binaries formed in YSCs with initial mass 3 × 102-3 × 104 M⊙ at solar metallicity, by means of 3.5 × 104 direct N-body simulations coupled with binary population synthesis. For comparison, we also run a sample of isolated binary stars with the same binary population synthesis code and initial conditions used in the dynamical models. We find that BH-MS systems that form via dynamical exchanges populate the region corresponding to the main orbital properties of Gaia BH1 (period, eccentricity, and masses). In contrast, none of our isolated binary systems match the orbital period and MS mass of Gaia BH1. Our best-matching Gaia BH1-like system forms via repeated dynamical exchanges and collisions involving the BH progenitor star, before it undergoes core collapse. YSCs are at least two orders of magnitude more efficient in forming Gaia BH1-like systems than isolated binary evolution.
Radio relics are typically found to be arc-like regions of synchrotron emission in the outskirts of merging galaxy clusters, bowing out from the cluster center. In most cases they show synchrotron spectra that steepen toward the cluster center, indicating that they are caused by relativistic electrons being accelerated at outward traveling merger shocks. A number of radio relics break with this ideal picture and show morphologies that are bent the opposite way and show spectral index distributions that do not follow expectations from the ideal picture. We propose that these "wrong way" relics can form when an outward traveling shock wave is bent inward by an infalling galaxy cluster or group. We test this in an ultra-high-resolution zoom-in simulation of a massive galaxy cluster with an on-the-fly spectral cosmic-ray model. This allows us to study not only the synchrotron emission at colliding shocks, but also their synchrotron spectra to address the open question of relics with strongly varying spectral indices over the relic surface.
Photoevaporation from high-energy stellar radiation has been thought to drive the dispersal of protoplanetary discs. Different theoretical models have been proposed, but their predictions diverge in terms of the rate and modality at which discs lose their mass, with significant implications for the formation and evolution of planets. In this paper, we use disc population synthesis models to interpret recent observations of the lowest accreting protoplanetary discs, comparing predictions from EUV-driven, FUV-driven, and X-ray-driven photoevaporation models. We show that the recent observational data of stars with low accretion rates (low accretors) point to X-ray photoevaporation as the preferred mechanism driving the final stages of protoplanetary disc dispersal. We also show that the distribution of accretion rates predicted by the X-ray photoevaporation model is consistent with observations, while other dispersal models tested here are clearly ruled out.
We report high-quality Hα/CO imaging spectroscopy of nine massive (log median stellar mass = 10.65 M ⊙) disk galaxies on the star-forming main sequence (henceforth SFGs), near the peak of cosmic galaxy evolution (z ~ 1.1-2.5), taken with the ESO Very Large Telescope, IRAM-NOEMA, and Atacama Large Millimeter/submillimeter Array. We fit the major axis position-velocity cuts with beam-convolved, forward models with a bulge, a turbulent rotating disk, and a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from our previous rotation curve analysis of these galaxies. We then subtract the inferred 2D model-galaxy velocity and velocity dispersion maps from those of the observed galaxies. We investigate whether the residual velocity and velocity dispersion maps show indications for radial flows. We also carry out kinemetry, a model-independent tool for detecting radial flows. We find that all nine galaxies exhibit significant nontangential flows. In six SFGs, the inflow velocities (v r ~ 30-90 km s-1, 10%-30% of the rotational component) are along the minor axis of these galaxies. In two cases the inflow appears to be off the minor axis. The magnitudes of the radial motions are in broad agreement with the expectations from analytic models of gravitationally unstable, gas-rich disks. Gravitational torques due to clump and bar formation, or spiral arms, drive gas rapidly inward and result in the formation of central disks and large bulges. If this interpretation is correct, our observations imply that gas is transported into the central regions on ~10 dynamical timescales.
Accurately understanding the equation of state (EOS) of high-density, zero-temperature quark matter plays an essential role in constraining the behavior of dense strongly interacting matter inside the cores of neutron stars. In this Letter, we study the weak-coupling expansion of the EOS of cold quark matter and derive the complete, gauge-invariant contributions from the long-wavelength, dynamically screened gluonic sector at next-to-next-to-next-to-leading order (N3LO) in the strong coupling constant αs. This elevates the EOS result to the O (αs3ln αs) level, leaving only one unknown constant from the unscreened sector at N3LO, and places it on par with its high-temperature counterpart from 2003.
Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.
Context. The general prediction that more than half of all cataclysmic variables (CVs) have evolved past the period minimum is in strong disagreement with observational surveys, which show that the relative number of these objects is just a few percent.
Aims: Here, we investigate whether a large number of post-period minimum CVs could detach because of the appearance of a strong white dwarf magnetic field potentially generated by a rotation- and crystallization-driven dynamo.
Methods: We used the MESA code to calculate evolutionary tracks of CVs incorporating the spin evolution and cooling as well as compressional heating of the white dwarf. If the conditions for the dynamo were met, we assumed that the emerging magnetic field of the white dwarf connects to that of the companion star and incorporated the corresponding synchronization torque, which transfers spin angular momentum to the orbit.
Results: We find that for CVs with donor masses exceeding ∼0.04 M⊙, magnetic fields are generated mostly if the white dwarfs start to crystallize before the onset of mass transfer. It is possible that a few white dwarf magnetic fields are generated in the period gap. For the remaining CVs, the conditions for the dynamo to work are met beyond the period minimum, when the accretion rate decreased significantly. Synchronization torques cause these systems to detach for several gigayears even if the magnetic field strength of the white dwarf is just one MG.
Conclusions: If the rotation- and crystallization-driven dynamo - which is currently the only mechanism that can explain several observational facts related to magnetism in CVs and their progenitors - or a similar temperature-dependent mechanism is responsible for the generation of magnetic field in white dwarfs, most CVs that have evolved beyond the period minimum must detach for several gigayears at some point. This reduces the predicted number of semi-detached period bouncers by up to ∼60 − 80%.
Strong gravitational lensing is a powerful tool to provide constraints on galaxy mass distributions and cosmological parameters, such as the Hubble constant, H0. Nevertheless, inference of such parameters from images of lensing systems is not trivial as parameter degeneracies can limit the precision in the measured lens mass and cosmological results. External information on the mass of the lens, in the form of kinematic measurements, is needed to ensure a precise and unbiased inference. Traditionally, such kinematic information has been included in the inference after the image modeling, using spherical Jeans approximations to match the measured velocity dispersion integrated within an aperture. However, as spatially resolved kinematic measurements become available via IFU data, more sophisticated dynamical modeling is necessary. Such kinematic modeling is expensive, and constitutes a computational bottleneck that we aim to overcome with our Stellar Kinematics Neural Network (SKiNN). SKiNN emulates axisymmetric modeling using a neural network, quickly synthesizing from a given mass model a kinematic map that can be compared to the observations to evaluate a likelihood. With a joint lensing plus kinematic framework, this likelihood constrains the mass model at the same time as the imaging data. We show that SKiNN's emulation of a kinematic map is accurate to a considerably better precision than can be measured (better than 1% in almost all cases). Using SKiNN speeds up the likelihood evaluation by a factor of ~200. This speedup makes dynamical modeling economical, and enables lens modelers to make effective use of modern data quality in the JWST era.
NGC 7793, NGC 300, M 33, and NGC 2403 are four nearby undisturbed and bulgeless low-mass spiral galaxies whose morphology and stellar mass are similar. They are ideal laboratories for studying disc formation scenarios and the histories of stellar mass growth. We constructed a simple chemical evolution model by assuming that discs grow gradually with continuous metal-free gas infall and metal-enriched gas outflow. By means of the classical χ2 method, applied to the model predictions, the best combination of free parameters capable of reproducing the corresponding present-day observations was determined, that is, the radial dependence of the infall timescale τ = 0.1r/Rd + 3.4 Gyr (Rd is the disc scale length) and the gas outflow efficiency bout = 0.2. The model results agree excellently with the general predictions of the inside-out growth scenario for the evolution of spiral galaxies. About 80% of the stellar mass of NGC 7793 was assembled within the last 8 Gyr, and 40% of the mass was assembled within the last 4 Gyr. By comparing the best-fitting model results of the three other galaxies, we obtain similar results: 72% (NGC 300), 66% (NGC 2403), and 79% (M 33) of the stellar mass were assembled within the last ∼8 Gyr (i.e. z = 1). These four disc galaxies simultaneously increased their sizes and stellar masses in time, and they grew in size at ∼0.30 times the rate at which they grew in mass. The scale lengths of these four discs now are 20%-25% larger than at z = 1. Our best-fitting model predicted the stellar mass-metallicity relation and the metallicity gradients, constrained by the observed metallicities from HII-region emission line analysis, agree well with the observations measured from individual massive red and blue supergiant stars and population synthesis of Sloan Digital Sky Survey galaxies.
The inference of astrophysical and cosmological properties from the Lyman-$\alpha$ forest conventionally relies on summary statistics of the transmission field that carry useful but limited information. We present a deep learning framework for inference from the Lyman-$\alpha$ forest at field-level. This framework consists of a 1D residual convolutional neural network (ResNet) that extracts spectral features and performs regression on thermal parameters of the IGM that characterize the power-law temperature-density relation. We train this supervised machinery using a large set of mock absorption spectra from Nyx hydrodynamic simulations at $z=2.2$ with a range of thermal parameter combinations (labels). We employ Bayesian optimization to find an optimal set of hyperparameters for our network, and then employ a committee of ten neural networks for increased statistical robustness of the network inference. In addition to the parameter point predictions, our machine also provides a self-consistent estimate of their covariance matrix with which we construct a pipeline for inferring the posterior distribution of the parameters. We compare the results of our framework with the traditional summary (PDF and power spectrum of transmission) based approach in terms of the area of the 68% credibility regions as our figure of merit (FoM). In our study of the information content of perfect (noise- and systematics-free) Ly$\alpha$ forest spectral data-sets, we find a significant tightening of the posterior constraints -- factors of 5.65 and 1.71 in FoM over power spectrum only and jointly with PDF, respectively -- that is the consequence of recovering the relevant parts of information that are not carried by the classical summary statistics.
Subsonic turbulence plays a major role in determining properties of the intracluster medium (ICM). We introduce a new meshless finite mass (MFM) implementation in OPENGADGET3 and apply it to this specific problem. To this end, we present a set of test cases to validate our implementation of the MFM framework in our code. These include but are not limited to: the soundwave and Kepler disc as smooth situations to probe the stability, a Rayleigh-Taylor and Kelvin-Helmholtz instability as popular mixing instabilities, a blob test as more complex example including both mixing and shocks, shock tubes with various Mach numbers, a Sedov blast wave, different tests including self-gravity such as gravitational freefall, a hydrostatic sphere, the Zeldovich-pancake, and a 1015 M⊙ galaxy cluster as cosmological application. Advantages over smoothed particle hydrodynamics (SPH) include increased mixing and a better convergence behaviour. We demonstrate that the MFM-solver is robust, also in a cosmological context. We show evidence that the solver preforms extraordinarily well when applied to decaying subsonic turbulence, a problem very difficult to handle for many methods. MFM captures the expected velocity power spectrum with high accuracy and shows a good convergence behaviour. Using MFM or SPH within OPENGADGET3 leads to a comparable decay in turbulent energy due to numerical dissipation. When studying the energy decay for different initial turbulent energy fractions, we find that MFM performs well down to Mach numbers $\mathcal {M}\approx 0.01$. Finally, we show how important the slope limiter and the energy-entropy switch are to control the behaviour and the evolution of the fluids.
We analyse synthetic 12CO, 13CO, and [C II] emission maps of molecular cloud (MC) simulations from the SILCC-Zoom project. We present radiation, magnetohydrodynamic zoom-in simulations of individual clouds, both with and without radiative stellar feedback, forming in a turbulent multiphase interstellar medium following on-the-fly the evolution of e.g. H2, CO, and C+. We introduce a novel post-processing routine based on CLOUDY which accounts for higher ionization states of carbon due to stellar radiation in H II regions. Synthetic emission maps of [C II] in and around feedback bubbles show that the bubbles are largely devoid of [C II], as recently found in observations, which we attribute to the further ionization of C+ into C2+. For both 12CO and 13CO, the cloud-averaged luminosity ratio, $L_\rm {CO}/L_\rm {[C\, \small {II}]}$, can neither be used as a reliable measure of the H2 mass fraction nor of the evolutionary stage of the clouds. We note a relation between the $I_\rm {CO}/I_\rm {[C\, \small {II}]}$ intensity ratio and the H2 mass fraction for individual pixels of our synthetic maps. The scatter, however, is too large to reliably infer the H2 mass fraction. Finally, the assumption of chemical equilibrium overestimates H2 and CO masses by up to 150 and 50 per cent, respectively, and $L_\rm {CO}$ by up to 60 per cent. The masses of H and C+ would be underestimated by 65 and 30 per cent, respectively, and $L_\rm {[C\, \small {II}]}$ by up to 35 per cent. Hence, the assumption of chemical equilibrium in MC simulations introduces intrinsic errors of a factor of 2 in chemical abundances, luminosities, and luminosity ratios.
Context. Photoevaporation and dust-trapping are individually considered to be important mechanisms in the evolution and morphology of protoplanetary disks. However, it is not yet clear what kind of observational features are expected when both processes operate simultaneously.
Aims: We studied how the presence (or absence) of early substructures, such as the gaps caused by planets, affects the evolution of the dust distribution and flux in the millimeter continuum of disks that are undergoing photoevaporative dispersal. We also tested if the predicted properties resemble those observed in the population of transition disks.
Methods: We used the numerical code Dustpy to simulate disk evolution considering gas accretion, dust growth, dust-trapping at substructures, and mass loss due to X-ray and EUV (XEUV) photoevaporation and dust entrainment. Then, we compared how the dust mass and millimeter flux evolve for different disk models.
Results: We find that, during photoevaporative dispersal, disks with primordial substructures retain more dust and are brighter in the millimeter continuum than disks without early substructures, regardless of the photoevaporative cavity size. Once the photoevaporative cavity opens, the estimated fluxes for the disk models that are initially structured are comparable to those found in the bright transition disk population (Fmm > 30 mJy), while the disk models that are initially smooth have fluxes comparable to the transition disks from the faint population (Fmm < 30 mJy), suggesting a link between each model and population.
Conclusions: Our models indicate that the efficiency of the dust trapping determines the millimeter flux of the disk, while the gas loss due to photoevaporation controls the formation and expansion of a cavity, decoupling the mechanisms responsible for each feature. In consequence, even a planet with a mass comparable to Saturn could trap enough dust to reproduce the millimeter emission of a bright transition disk, while its cavity size is independently driven by photoevaporative dispersal.
The canonical undestanding of stellar convection has recently been put under doubt due to helioseismic results and global 3D convection simulations. This "convective conundrum" is manifested by much higher velocity amplitudes in simulations at large scales in comparison to helioseismic results, and the difficulty in reproducing the solar differential rotation and dynamo with global 3D simulations. Here some aspects of this conundrum are discussed from the viewpoint of hydrodynamic Cartesian 3D simulations targeted at testing the rotational influence and surface forcing on deep convection. More specifically, the dominant scale of convection and the depths of the convection zone and the weakly subadiabatic -- yet convecting -- Deardorff zone are discussed in detail.
Upcoming large galaxy surveys will subject the standard cosmological model, Lambda Cold Dark Matter, to new precision tests. These can be tightened considerably if theoretical models of galaxy formation are available that can predict galaxy clustering and galaxy-galaxy lensing on the full range of measurable scales, throughout volumes as large as those of the surveys, and with sufficient flexibility that uncertain aspects of the underlying astrophysics can be marginalized over. This, in particular, requires mock galaxy catalogues in large cosmological volumes that can be directly compared to observation, and can be optimized empirically by Monte Carlo Markov Chains or other similar schemes, thus eliminating or estimating parameters related to galaxy formation when constraining cosmology. Semi-analytic galaxy formation methods implemented on top of cosmological dark matter simulations offer a computationally efficient approach to construct physically based and flexibly parametrized galaxy formation models, and as such they are more potent than still faster, but purely empirical models. Here, we introduce an updated methodology for the semi-analytic L-GALAXIES code, allowing it to be applied to simulations of the new MillenniumTNG project, producing galaxies directly on fully continuous past lightcones, potentially over the full sky, out to high redshift, and for all galaxies more massive than $\sim 10^8\, {\rm M}_\odot$. We investigate the numerical convergence of the resulting predictions, and study the projected galaxy clustering signals of different samples. The new methodology can be viewed as an important step towards more faithful forward-modelling of observational data, helping to reduce systematic distortions in the comparison of theory to observations.
We address the issue of the compositeness of hadronic states and demonstrate that starting with a genuine state of nonmolecular nature, but which couples to some meson-meson component to be observable in that channel, if that state is blamed for a bound state appearing below the meson-meson threshold it gets dressed with a meson cloud and it becomes pure molecular in the limit case of zero binding. We discuss the issue of the scales, and see that if the genuine state has a mass very close to threshold, the theorem holds, but the molecular probability goes to unity in a very narrow range of energies close to threshold. The conclusion is that the value of the binding does not determine the compositeness of a state. However, in such extreme cases we see that the scattering length gets progressively smaller and the effective range grows indefinitely. In other words, the binding energy does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer. We also show that the consideration of a direct attractive interaction between the mesons in addition to having a genuine component, increases the compositeness of the state. Explicit calculations are done for the Tcc (3875) state, but are easily generalized to any hadronic system.
Gravity is the driving force of star formation. Although gravity is caused by the presence of matter, its role in complex regions is still unsettled. One effective way to study the pattern of gravity is to compute the accretion it exerts on the gas by providing gravitational acceleration maps. A practical way to study acceleration is by computing it using 2D surface density maps, yet whether these maps are accurate remains uncertain. Using numerical simulations, we confirm that the accuracy of the acceleration maps a2D(x, y) computed from 2D surface density are good representations for the mean acceleration weighted by mass. Due to the underestimations of the distances from projected maps, the magnitudes of accelerations will be overestimated $|\mathbf {a}_{\rm 2D}(x,y)| \approx 2.3 \pm 1.8 \,\, |\mathbf {a}_{\rm 3D}^{\rm proj}(x,y)|$, where $\mathbf {a}_{\rm 3D}^{\rm proj}(x,y)$ is mass-weighted projected gravitational acceleration, yet a2D(x, y) and $\mathbf {a}_{\rm 3D}^{\rm proj}(x,y)$ stay aligned within 20°. Significant deviations only occur in regions where multiple structures are present along the line of sight. The acceleration maps estimated from surface density provide good descriptions of the projection of 3D acceleration fields. We expect this technique useful in establishing the link between cloud morphology and star formation, and in understanding the link between gravity and other processes such as the magnetic field. A version of the code for calculating surface density gravitational potential is available at github.com/zhenzhen-research/phi_2d.
We aim at a direct measurement of the compactness of three galaxy-scale lenses in massive clusters, testing the accuracy of the scaling laws that describe the members in strong lensing (SL) models of galaxy clusters. We selected the multiply imaged sources MACS J0416.1−2403 ID14 (z=3.221), MACS J0416.1−2403 ID16 (z=2.095), and MACS J1206.2−0847 ID14 (z=3.753). Eight images were observed for the first SL system, and six for the latter two. We focused on the main deflector of each galaxy-scale SL system (identified as members 8971, 8785, and 3910, respectively), and modelled its total mass distribution with a truncated isothermal sphere. We accounted for the lensing effects of the remaining cluster components, and included the uncertainty on the cluster-scale mass distribution through a bootstrapping procedure. We measured a truncation radius value of 6.1+2.3−1.1kpc, 4.0+0.6−0.4kpc, and 5.2+1.3−1.1kpc for members 8971, 8785, and 3910, respectively. Alternative non-truncated models with a higher number of free parameters do not lead to an improved description of the SL system. We measured the stellar-to-total mass fraction within the effective radius Re for the three members, finding 0.51±0.21, 1.0±0.4, and 0.39±0.16, respectively. We find that a parameterisation of the properties of cluster galaxies in SL models based on power-law scaling relations with respect to the total luminosity cannot accurately describe their compactness over their full total mass range. Our results agree with modelling of the cluster members based on the Fundamental Plane relation. Finally, we report good agreement between our values of the stellar-to-total mass fraction within Re and those of early-type galaxies from the SLACS Survey. Our work significantly extends the regime of the current samples of lens galaxies.
RNA in extant biological systems is homochiral -- it consists exclusively of D-ribonucleotides rather than L-ribonucleotides. How the homochirality of RNA emerged is not known. Here, we use stochastic simulations to quantitatively explore the conditions for RNA homochirality to emerge in the prebiotic scenario of an `RNA reactor', in which RNA strands react in a non-equilibrium environment. These reactions include the hybridization, dehybridization, template-directed ligation, and cleavage of RNA strands. The RNA reactor is either closed, with a finite pool of ribonucleotide monomers of both chiralities (D and L), or the reactor is open, with a constant inflow of a racemic mixture of monomers. For the closed reactor, we also consider the interconversion between D- and L-monomers via a racemization reaction. We first show that template-free polymerization is unable to reach a high degree of homochirality, due to the lack of autocatalytic amplification. In contrast, in the presence of template-directed ligation, with base pairing and stacking between bases of the same chirality thermodynamically favored, a high degree of homochirality can arise and be maintained, provided that the non-equilibrium environment overcomes product inhibition, for instance via temperature cycling. Furthermore, if the experimentally observed kinetic stalling of ligation after chiral mismatches is also incorporated, the RNA reactor can evolve towards a fully homochiral state, in which one chirality is entirely lost. This is possible, because the kinetic stalling after chiral mismatches effectively implements a chiral cross-inhibition process. Taken together, our model supports a scenario, where the emergence of homochirality is assisted by template-directed ligation and polymerization in a non-equilibrium RNA reactor.
The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7<z<6.3 probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies with intermediate (R=7000) to high (R>40,000) resolution spectroscopic data for which at least one refractory (e.g. Fe) and one volatile (e.g. S or Zn) element have been detected at S/N>3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derive the redshift evolution of the dust-corrected, absorption-line based gas-phase metallicity [M/H]tot in these galaxies, for which we determine a linear relation with redshift [M/H]tot(z)=(−0.21±0.04)z−(0.47±0.14). We then examine the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction AV and the derived depletion level. We use a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust-phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the ISM probed by the GRBs, they provide strong implications for studies of dust masses to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.
Stars have always fascinated people and already decades ago observations showed that low-mass stars originate from filamentary structures. Nevertheless, the formation process of these filaments, as well as their evolution and fragmentation into individual cores, is not yet sufficiently understood. As I will show in this thesis, which provides new insights into the dynamics, fragmentation and collapse of filaments, determining, understanding and comparing timescales plays a crucial role, in this regard. [...]
We study the interactions between ’t Hooft-Polyakov magnetic monopoles and the domain walls formed by the same order parameter within an SU(2) gauge theory. We observe that the collision leads to the erasure of the magnetic monopoles, as suggested by Dvali et al. [Phys. Rev. Lett. 80, 2281 (1998)]. The domain wall represents a layer of vacuum with un-Higgsed SU(2) gauge symmetry. When the monopole enters the wall, it unwinds, and the magnetic charge spreads over the wall. We perform numerical simulations of the collision process and, in particular, analyze the angular distribution of the emitted electromagnetic radiation. As in the previous studies, we observe that erasure always occurs. Although not forbidden by any conservation laws, the monopole never passes through the wall. This is explained by entropy suppression. The erasure phenomenon has important implications for cosmology, as it sheds a very different light on the monopole abundance in postinflationary phase transitions and provides potentially observable imprints in the form of electromagnetic and gravitational radiation. The phenomenon also sheds light on fundamental aspects of gauge theories with coexisting phases, such as confining and Higgs phases.
In this in silico study, we show that phase-separated active nematics form −1/2 defects, contrary to the current paradigm. We also observe and characterize lateral arc-like structures separating from nematic bands and moving in transverse direction. Topological defects play a central role in the formation and organization of various biological systems. Historically, such nonequilibrium defects have been mainly studied in the context of homogeneous active nematics. Phase-separated systems, in turn, are known to form dense and dynamic nematic bands, but typically lack topological defects. In this paper, we use agent-based simulations of weakly aligning, self-propelled polymers and demonstrate that contrary to the existing paradigm phase-separated active nematics form −1/2 defects. Moreover, these defects, emerging due to interactions among dense nematic bands, constitute a novel second-order collective state. We investigate the morphology of defects in detail and find that their cores correspond to a strong increase in density, associated with a condensation of nematic fluxes. Unlike their analogs in homogeneous systems, such condensed defects form and decay in a different way and do not involve positively charged partners. We additionally observe and characterize lateral arc-like structures that separate from a band's bulk and move in transverse direction. We show that the key control parameters defining the route from stable bands to the coexistence of dynamic lanes and defects are the total density of particles and their path persistence length. We introduce a hydrodynamic theory that qualitatively recapitulates all the main features of the agent-based model, and use it to show that the emergence of both defects and arcs can be attributed to the same anisotropic active fluxes. Finally, we present a way to artificially engineer and position defects, and speculate about experimental verification of the provided model.
JEM-EUSO is an international program for the development of space-based Ultra-High Energy Cosmic Ray observatories. The program consists of a series of missions which are either under development or in the data analysis phase. All instruments are based on a wide-field-of-view telescope, which operates in the near-UV range, designed to detect the fluorescence light emitted by extensive air showers in the atmosphere. We describe the simulation software ESAF in the framework of the JEM-EUSO program and explain the physical assumptions used. We present here the implementation of the JEM-EUSO, POEMMA, K-EUSO, TUS, Mini-EUSO, EUSO-SPB1 and EUSO-TA configurations in ESAF. For the first time ESAF simulation outputs are compared with experimental data.
We analyse in detail the QED corrections to the total decay width and the moments of the electron energy spectrum of the inclusive semi-leptonic B → Xceν decay. Our calculation includes short-distance electroweak corrections, the complete
We explore the impact of highly excited bound states on the evolution of number densities of new physics particles, specifically dark matter, in the early Universe. Focusing on dipole transitions within perturbative, unbroken gauge theories, we develop an efficient method for including around a million bound state formation and bound-to-bound transition processes. This enables us to examine partial-wave unitarity and accurately describe the freeze-out dynamics down to very low temperatures. In the non-Abelian case, we find that highly excited states can prevent the particles from freezing out, supporting a continuous depletion in the regime consistent with perturbativity and unitarity. We apply our formalism to a simplified dark matter model featuring a colored and electrically charged t-channel mediator. Our focus is on the regime of superWIMP production which is commonly characterized by a mediator freeze-out followed by its late decay into dark matter. In contrast, we find that excited states render mediator depletion efficient all the way until its decay, introducing a dependence of the dark matter density on the mediator lifetime as a novel feature. The impact of bound states on the viable dark matter mass can amount to an order of magnitude, relaxing constraints from Lyman-α observations.
We present the first measurements of Lyman-α (Lyα) forest correlations using early data from the Dark Energy Spectroscopic Instrument (DESI). We measure the auto-correlation of Lyα absorption using 88,509 quasars at z>2, and its cross-correlation with quasars using a further 147,899 tracer quasars at z≳1.77. Then, we fit these correlations using a 13-parameter model based on linear perturbation theory and find that it provides a good description of the data across a broad range of scales. We detect the BAO peak with a signal-to-noise ratio of 3.8σ, and show that our measurements of the auto- and cross-correlations are fully-consistent with previous measurements by the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). Even though we only use here a small fraction of the final DESI dataset, our uncertainties are only a factor of 1.7 larger than those from the final eBOSS measurement. We validate the existing analysis methods of Lyα correlations in preparation for making a robust measurement of the BAO scale with the first year of DESI data.
For many years, various experiments have attempted to shed light on the nature of dark matter (DM). This work investigates the possibility of using CaWO4 crystals for the direct search of spin-dependent DM interactions using the isotope 17O with a nuclear spin of 5/2. Due to the low natural abundance of 0.038%, an enrichment of the CaWO4 crystals with 17O is developed during the crystal production process at the Technical University of Munich. Three CaWO4 crystals were enriched, and their 17O content was measured by nuclear magnetic resonance spectroscopy at the University of Leipzig. This paper presents the concept and first results of the 17O enrichment and discusses the possibility of using enriched crystals to increase the sensitivity for the spin-dependent DM search with CRESST.
The differential cross section for the quasi-free photoproduction reaction <inline-formula id="IEq5"><mml:math><mml:mrow><mml:mi>γ</mml:mi><mml:mi>n</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mi>K</mml:mi><mml:mn>0</mml:mn></mml:msup><mml:msup><mml:mi mathvariant="normal">Σ</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:mrow></mml:math></inline-formula> was measured at BGOOD at ELSA from threshold to a centre-of-mass energy of <inline-formula id="IEq6"><mml:math><mml:mrow><mml:mn>2400</mml:mn><mml:mspace width="0.166667em"></mml:mspace><mml:mtext>MeV</mml:mtext></mml:mrow></mml:math></inline-formula>. Close to threshold the results are consistent with existing data and are in agreement with partial wave analysis solutions over the full measured energy range, with a large coupling to the <inline-formula id="IEq7"><mml:math><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1900</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mo>-</mml:mo></mml:msup></mml:mrow></mml:math></inline-formula> evident. This is the first dataset covering the <inline-formula id="IEq8"><mml:math><mml:msup><mml:mi>K</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math></inline-formula> threshold region, where there are model predictions of dynamically generated vector meson-baryon resonance contributions.
We return to interpreting the historical SN 1987A neutrino data from a modern perspective. To this end, we construct a suite of spherically symmetric supernova models with the PROMETHEUS-VERTEX code, using four different equations of state and five choices of final baryonic neutron-star (NS) mass in the 1.36 - 1.93 M⊙ range. Our models include muons and proto-neutron star (PNS) convection by a mixing-length approximation. The time-integrated signals of our 1.44 M⊙ models agree reasonably well with the combined data of the four relevant experiments, IMB, Kam-II, BUST, and LSD, but the high-threshold IMB detector alone favors a NS mass of 1.7 - 1.8 M⊙ , whereas Kam-II alone prefers a mass around 1.4 M⊙ . The cumulative energy distributions in these two detectors are well-matched by models for such NS masses, and the previous tension between predicted mean neutrino energies and the combined measurements is gone, with and without flavor swap. Generally, our predicted signals do not strongly depend on assumptions about flavor mixing, because the PNS flux spectra depend only weakly on antineutrino flavor. While our models show compatibility with the events detected during the first seconds, PNS convection and nucleon correlations in the neutrino opacities lead to short PNS cooling times of 5-9 s, in conflict with the late-event bunches in Kam-II and BUST after 8-9 s, which are also difficult to explain by background. Speculative interpretations include the onset of fallback of transiently ejected material onto the NS, a late phase transition in the nuclear medium, e.g., from hadronic to quark matter, or other effects that add to the standard PNS cooling emission and either stretch the signal or provide a late source of energy. More research, including systematic 3D simulations, is needed to assess these open issues.
Bacterial protoplasts are known to reproduce independently of canonical molecular biological processes. Although their reproduction is thought to be influenced by environmental conditions, the growth of protoplasts in their natural habitat has never been empirically studied. Here, we studied the life cycle of protoplasts in their native environment. Contrary to the previous perception that protoplasts reproduce in an erratic manner, cells in our study reproduced in a defined sequence of steps, always leading to viable daughter cells. Their reproduction can be explained by an interplay between intracellular metabolism, the physicochemical properties of cell constituents, and the nature of cations in the growth media. The efficiency of reproduction is determined by the environmental conditions. Under favorable environmental conditions, protoplasts reproduce with nearly similar efficiency to cells that possess a cell wall. In short, here we demonstrate the simplest method of cellular reproduction and the influence of environmental conditions on this process.
The chiral anomaly is a fundamental property of quantum chromodynamics (QCD). It governs the transition amplitudes for processes involving an odd number of Goldstone bosons of chiral symmetry breaking. In case of the coupling of three pions to a photon, the magnitude of the resulting coupling is $F_{3\pi}$ and the value is predicted by chiral perturbation theory with small uncertainty. It can experimentally be measured in $\pi^-\gamma \to \pi^- \pi^0$ scattering. Here, we report on a precision experiment on $F_{3\pi}$ using the COMPASS experiment at CERN where pion-photon scattering is mediated via the Primakoff effect using heavy nuclei as target. We exploit the interference of the production of the $\pi^- \pi^0$ final state via the chiral anomaly with the photo-production of the $\rho(770)$ resonance over a wide mass range ($M_{\pi^- \pi^0}<1\textrm{ GeV}/c^2$). This is in contrast to previous measurements restricting themselves to the threshold region ($M_{\pi^- \pi^0}<370\textrm{ MeV}$) only. Our analysis allows to simultaneously extract the radiative width of the $\rho(770)$ resonance and gives a stronger handle on $F_{3\pi}$ in a unified approach thereby minimizing systematic effects rarely addressed previously.
Lattice-QCD predicts the exotic meson $\pi_1(1600)$ to dominantly decay to $b_1\pi$. The $b_1\pi$ decay channel is accessible via the $\omega\pi^{-}\pi^{0}$ final state. COMPASS recorded the so far largest data set of this final state. A partial-wave analysis allows to determine the resonant content in this final state including possible contributions from $\pi_1(1600)$. Decomposing the measured intensity into amplitudes of partial waves gives a first qualitative insight into contributing intermediate states. We observe signals in agreement with well-established states like the $\pi(1800)$ and $a_4(1970)$. Smaller resonance-like signals are visible in the $J^{PC}$ sectors $3^{++}$ and $6^{++}$, where possible states were claimed but none are established. For $J^{PC}=1^{-+}$ a signal at $1.65\,\mathrm{GeV/}c^{2}$ in $b_1(1235)\pi$ partial waves is consistent with the expected $\pi_1(1600)$.
While the spectrum of non-strange light mesons is well known, many predicted strange mesons have not yet been observed, and many potentially observed states require further confirmation. Using the $K^-$ component of the hadron beam at the M2 beamline at CERN, we study the strange-meson spectrum with the COMPASS experiment. The flagship channel is the $K^-\pi^-\pi^+$ final state, for which COMPASS has obtained the world's largest sample. Based on this sample, we have performed the most detailed and comprehensive partial-wave analysis of this final state to date. For example, we observe a clear signal from the well-known $K_2^*(1430)$, and for the first time we study the $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$ in a single analysis. We also find evidence for a supernumerary signal called $K(1630)$, suggesting that this signal is a pseudoscalar exotic strange meson.
We study weak gravitational lensing convergence maps produced from the MILLENNIUMTNG simulations by direct projection of the mass distribution on the past backwards lightcone of a fiducial observer. We explore the lensing maps over a large dynamic range in simulation mass and angular resolution, allowing us to establish a clear assessment of numerical convergence. By comparing full physics hydrodynamical simulations with corresponding dark-matter-only runs, we quantify the impact of baryonic physics on the most important weak lensing statistics. Likewise, we predict the impact of massive neutrinos reliably far into the non-linear regime. We also demonstrate that the 'fixed & paired' variance suppression technique increases the statistical robustness of the simulation predictions on large scales not only for time slices but also for continuously output lightcone data. We find that both baryonic and neutrino effects substantially impact weak lensing shear measurements, with the latter dominating over the former on large angular scales. Thus, both effects must explicitly be included to obtain sufficiently accurate predictions for stage IV lensing surveys. Reassuringly, our results agree accurately with other simulation results where available, supporting the promise of simulation modelling for precision cosmology far into the non-linear regime.
Merging of galaxy clusters are some of the most energetic events in the Universe, and they provide a unique environment to study galaxy evolution. We use a sample of 84 merging and relaxed SPT galaxy clusters candidates, observed with the Dark Energy Camera in the 0.11 < z < 0.88 redshift range, to build colour-magnitude diagrams to characterize the impact of cluster mergers on the galaxy population. We divided the sample between relaxed and disturbed, and in two redshifts bin at z = 0.55. When comparing the high-z to low-z clusters we find the high-z sample is richer in blue galaxies, independently of the cluster dynamical state. In the high-z bin, we find that disturbed clusters exhibit a larger scatter in the red sequence, with wider distribution and an excess of bluer galaxies compared to relaxed clusters, while in the low-z bin we find a complete agreement between the relaxed and disturbed clusters. Our results support the scenario in which massive cluster halos at z < 0.55 galaxies are quenched as satellites of another structure, i.e. outside the cluster, while at z ≥ 0.55 the quenching is dominated by in situ processes.
We present the first systematic follow-up of Planck Sunyaev-Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts, and richnesses and assign a parameter, fcont, that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90 per cent. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90 per cent to 97.5 per cent, depending on the adopted fcont threshold. Halo mass estimates M500, redshifts, richnesses, and optical centres are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck-selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-z performance with an RMS scatter in Δz/(1 + z) of 0.47 per cent. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck-selected candidate list, which is ~50 per cent. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues, this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z~1.3.
We present the dust properties of 125 bright Herschel galaxies selected from the z-GAL NOEMA spectroscopic redshift survey. All the galaxies have precise spectroscopic redshifts in the range 1.3 < z < 5.4. The large instantaneous bandwidth of NOEMA provides an exquisite sampling of the underlying dust continuum emission at 2 and 3 mm in the observed frame, with flux densities in at least four sidebands for each source. Together with the available Herschel 250, 350, and 500 μm and SCUBA-2 850 μm flux densities, the spectral energy distribution (SED) of each source can be analyzed from the far-infrared to the millimeter, with a fine sampling of the Rayleigh-Jeans tail. This wealth of data provides a solid basis to derive robust dust properties, in particular the dust emissivity index (β) and the dust temperature (Tdust). In order to demonstrate our ability to constrain the dust properties, we used a flux-generated mock catalog and analyzed the results under the assumption of an optically thin and optically thick modified black body emission. The robustness of the SED sampling for the z-GAL sources is highlighted by the mock analysis that showed high accuracy in estimating the continuum dust properties. These findings provided the basis for our detailed analysis of the z-GAL continuum data. We report a range of dust emissivities with β ∼ 1.5 − 3 estimated up to high precision with relative uncertainties that vary in the range 7%−15%, and an average of 2.2 ± 0.3. We find dust temperatures varying from 20 to 50 K with an average of Tdust ∼ 30 K for the optically thin case and Tdust ∼ 38 K in the optically thick case. For all the sources, we estimate the dust masses and apparent infrared luminosities (based on the optically thin approach). An inverse correlation is found between Tdust and β with β ∝ Tdust−0.69, which is similar to what is seen in the local Universe. Finally, we report an increasing trend in the dust temperature as a function of redshift at a rate of 6.5 ± 0.5 K/z for this 500 μm-selected sample. Based on this study, future prospects are outlined to further explore the evolution of dust temperature across cosmic time.
Full Tables A.1 and B.1 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A27
We report on our study of the supernova (SN) 2022xxf based on observations obtained during the first four months of its evolution. The light curves (LCs) display two humps of similar maximum brightness separated by 75 days, unprecedented for a broad-lined (BL) Type Ic supernova (SN IcBL). SN 2022xxf is the most nearby SN IcBL to date (in NGC 3705, z = 0.0037, at a distance of about 20 Mpc). Optical and near-infrared photometry and spectroscopy were used to identify the energy source powering the LC. Nearly 50 epochs of high signal-to-noise ratio spectroscopy were obtained within 130 days, comprising an unparalleled dataset for a SN IcBL, and one of the best-sampled SN datasets to date. The global spectral appearance and evolution of SN 2022xxf points to typical SN Ic/IcBL, with broad features (up to ~14 000 km s−1) and a gradual transition from the photospheric to the nebular phase. However, narrow emission lines (corresponding to ~ 1000-2500 km s−1) are present in the spectra from the time of the second rise, suggesting slower-moving circumstellar material (CSM). These lines are subtle, in comparison to the typical strong narrow lines of CSM-interacting SNe, for example, Type IIn, Ibn, and Icn, but some are readily noticeable at late times, such as in Mg I λ5170 and [O I] λ5577. Unusually, the near-infrared spectra show narrow line peaks in a number of features formed by ions of O and Mg. We infer the presence of CSM that is free of H and He. We propose that the radiative energy from the ejecta-CSM interaction is a plausible explanation for the second LC hump. This interaction scenario is supported by the color evolution, which progresses to blue as the light curve evolves along the second hump, and by the slow second rise and subsequent rapid LC drop. SN 2022xxf may be related to an emerging number of CSM-interacting SNe Ic, which show slow, peculiar LCs, blue colors, and subtle CSM interaction lines. The progenitor stars of these SNe likely experienced an episode of mass loss consisting of H/He-free material shortly prior to explosion.
Photometric and spectroscopic data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A209
Using the IRAM NOrthern Extended Millimetre Array (NOEMA), we conducted a Large Programme (z-GAL) to measure redshifts for 126 bright galaxies detected in the Herschel Astrophysical Large Area Survey (H-ATLAS), the HerMES Large Mode Survey (HeLMS), and the Herschel Stripe 82 (HerS) Survey. We report reliable spectroscopic redshifts for a total of 124 of the Herschel-selected galaxies. The redshifts are estimated from scans of the 3 and 2-mm bands (and, for one source, the 1-mm band), covering up to 31 GHz in each band, and are based on the detection of at least two emission lines. Together with the Pilot Programme, where 11 sources had their spectroscopic redshifts measured, our survey has derived precise redshifts for 135 bright Herschel-selected galaxies, making it the largest sample of high-z galaxies with robust redshifts to date. Most emission lines detected are from 12CO (mainly from J = 2-1 to 5-4), with some sources seen in [CI] and H2O emission lines. The spectroscopic redshifts are in the range 0.8 < z < 6.55 with a median value of z = 2.56 ± 0.10, centred on the peak epoch of galaxy formation. The linewidths of the sources are large, with a mean value for the full width at half maximum ΔV of 590 ± 25 km s−1 and with 35% of the sources having widths of 700 km s−1 < ΔV < 1800 km s−1. Most of the sources are unresolved or barely resolved on scales of ∼2 to 3″ (or linear sizes of ∼15 − 25 kpc, unlensed). Some fields reveal double or multiple sources in line emission and the underlying dust continuum and, in some cases, sources at different redshifts. Taking these sources into account, there are, in total, 165 individual sources with robust spectroscopic redshifts, including lensed galaxies, binary systems, and over-densities. This paper presents an overview of the z-GAL survey and provides the observed properties of the emission lines, the derived spectroscopic redshifts, and a catalogue of the entire sample. The catalogue includes, for each source, the combined continuum and emission lines' maps together with the spectra for each of the detected emission lines. The data presented here will serve as a foundation for the other z-GAL papers in this series reporting on the dust emission, the molecular and atomic gas properties, and a detailed analysis of the nature of the sources. Comparisons are made with other spectroscopic surveys of high-z galaxies and future prospects, including dedicated follow-up observations based on these redshift measurements, are outlined.
Context. Recent JWST observations of the Type Ia supernova (SN Ia) 2021aefx in the nebular phase have paved the way for late-time studies covering the full optical to mid-infrared (MIR) wavelength range, and with it the hope to better constrain SN Ia explosion mechanisms.
Aims: We investigate whether public SN Ia models covering a broad range of progenitor scenarios and explosion mechanisms (Chandrasekhar-mass, or MCh, delayed detonations, pulsationally assisted gravitationally confined detonations, sub-MCh double detonations, and violent mergers) can reproduce the full optical-MIR spectrum of SN 2021aefx at ∼270 days post explosion.
Methods: We consider spherically averaged 3D models available from the Heidelberg Supernova Model Archive with a 56Ni yield in the range 0.5-0.8 M⊙. We performed 1D steady-state non-local thermodynamic equilibrium simulations with the radiative-transfer code CMFGEN, and compared the predicted spectra to SN 2021aefx.
Results: The models can explain the main features of SN 2021aefx over the full wavelength range. However, no single model, or mechanism, emerges as a preferred match, and the predicted spectra are similar to each other despite the very different explosion mechanisms. We discuss possible causes for the mismatch of the models, including ejecta asymmetries and ionisation effects. Our new calculations of the collisional strengths for Ni III have a major impact on the two prominent lines at 7.35 μm and 11.00 μm, and highlight the need for more accurate collisional data for forbidden transitions. Using updated atomic data, we identify a strong feature due to [Ca IV] 3.21 μm, attributed to [Ni I] in previous studies. We also provide a tentative identification of a forbidden line due to [Ne II] 12.81 μm, whose peaked profile indicates the presence of neon all the way to the innermost region of the ejecta, as predicted for instance in violent merger models. Contrary to previous claims, we show that the [Ar III] 8.99 μm line can be broader in sub-MCh models compared to near-MCh models. Last, the total luminosity in lines of Ni is found to correlate strongly with the stable nickel yield, although ionisation effects can bias the inferred abundance.
Conclusions: Our models suggest that key physical ingredients are missing from either the explosion models, or the radiative-transfer post-processing, or both. Nonetheless, they also show the potential of the near- and MIR to uncover new spectroscopic diagnostics of SN Ia explosion mechanisms.
Full Tables F.1 and F.2 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A170
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
We describe the formalism to analyze the mathematical ambiguities arising in partial-wave analysis of two spinless mesons produced with a linearly polarized photon beam. We show that partial waves are uniquely defined when all accessible observables are considered, for a wave set which includes S and D waves. The inclusion of higher partial waves does not affect our results, and we conclude that there are no mathematical ambiguities in partial-wave analysis of two mesons produced with a linearly polarized photon beam. We present Monte Carlo simulations to illustrate our results.
We analyze the impact of positivity conditions on static spherically symmetric deformations of the Schwarzschild space-time. The metric is taken to satisfy, at least asymptotically, the Einstein equation in the presence of a nontrivial stress-energy tensor, on which we impose various physicality conditions. We systematically study and compare the impact of these conditions on the space-time deformations. The universal nature of our findings applies to both classical and quantum metric deformations with and without event horizons. We further discuss minimal realizations of the asymptotic stress energy tensor in terms of physical fields. Finally, we illustrate our results by discussing concrete models of quantum black holes.
An outstanding question is whether the α/Fe bimodality exists in disk galaxies other than in the Milky Way. Here we present a bimodality using our state-of-the-art galactic chemical evolution models that can explain various observations in the Andromeda galaxy (M31) disks, namely, elemental abundances both of planetary nebulae and of red giant branch stars recently observed with the James Webb Space Telescope. We find that in M31 a high-α thicker-disk population out to 30 kpc formed by a more intense initial starburst than that in the Milky Way. We also find a young low-α thin disk within 14 kpc, which is formed by a secondary star formation M31 underwent about 2-4.5 Gyr ago, probably triggered by a wet merger. In the outer disk, however, the planetary nebula observations indicate a slightly higher-α young (~2.5 Gyr) population at a given metallicity, possibly formed by secondary star formation from almost pristine gas. Therefore, an α/Fe bimodality is seen in the inner disk (≲14 kpc), while only a slight α/Fe offset of the young population is seen in the outer disk (≳18 kpc). The appearance of the α/Fe bimodality depends on the merging history at various galactocentric radii, and wide-field multiobject spectroscopy is required for unveiling the history of M31.
I highlight a few thoughts on the contribution to the dipole moments from the so-called θ parameter. The dipole moments are known can be generated by θ . In fact, the renowned strong CP problem was formulated as a result of nonobservation of the dipole moments. What is less known is that there is another parameter of the theory, the θQED which becomes also a physical and observable parameter of the system when some conditions are met. This claim should be contrasted with conventional (and very naive) viewpoint that the θQED is unphysical and unobservable. A specific manifestation of this phenomenon is the so-called Witten effect when the magnetic monopole becomes the dyon with induced electric charge e'=-e θ/QED 2 π . We argued that the similar arguments suggest that the electric magnetic dipole moment μ of any microscopical configuration in the background of θQED generates the electric dipole moment ⟨dind⟩ proportional to θQED, i.e., ⟨dind⟩=-θ/QED.α π μ . We also argue that many CP odd correlations such as ⟨B→ ext.E → ⟩=-α/θQED π B→ext 2 will be generated in the background of an external magnetic field B→ext as a result of the same physics.
How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.
We explore the features of interpolating gauge for QCD. This gauge, defined by Doust and by Baulieu and Zwanziger, interpolates between Feynman gauge or Lorenz gauge and Coulomb gauge. We argue that it could be useful for defining the splitting functions for a parton shower beyond order αs or for defining the infrared subtraction terms for higher order perturbative calculations.
We discover analytic equations that can infer the value of Ωm from the positions and velocity moduli of halo and galaxy catalogs. The equations are derived by combining a tailored graph neural network (GNN) architecture with symbolic regression. We first train the GNN on dark matter halos from Gadget N-body simulations to perform field-level likelihood-free inference, and show that our model can infer Ωm with ~6% accuracy from halo catalogs of thousands of N-body simulations run with six different codes: Abacus, CUBEP3M, Gadget, Enzo, PKDGrav3, and Ramses. By applying symbolic regression to the different parts comprising the GNN, we derive equations that can predict Ωm from halo catalogs of simulations run with all of the above codes with accuracies similar to those of the GNN. We show that, by tuning a single free parameter, our equations can also infer the value of Ωm from galaxy catalogs of thousands of state-of-the-art hydrodynamic simulations of the CAMELS project, each with a different astrophysics model, run with five distinct codes that employ different subgrid physics: IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE. Furthermore, the equations also perform well when tested on galaxy catalogs from simulations covering a vast region in parameter space that samples variations in 5 cosmological and 23 astrophysical parameters. We speculate that the equations may reflect the existence of a fundamental physics relation between the phase-space distribution of generic tracers and Ωm, one that is not affected by galaxy formation physics down to scales as small as 10 h -1 kpc.
The recently reported observation of VFTS 243 is the first example of a massive black-hole binary system with negligible binary interaction following black-hole formation. The black-hole mass ($\approx 10\ M_{\odot}$) and near-circular orbit ($e\approx 0.02$) of VFTS 243 suggest that the progenitor star experienced complete collapse, with energy-momentum being lost predominantly through neutrinos. VFTS 243 enables us to constrain the natal kick and neutrino-emission asymmetry during black-hole formation. At 68% C.L., the natal kick velocity (mass decrement) is $\lesssim 10$ km/s ($\lesssim 1.0\ M_{\odot}$). Most likely $\approx 0.3\ M_{\odot}$ were ejected, presumably in neutrinos, and the black hole experienced a natal kick of $4$ km/s. The neutrino-emission asymmetry is $\lesssim 4$%, with best fit values of $\sim$0-0.2%. Such a small neutrino natal kick accompanying black-hole formation is in agreement with theoretical predictions.
Scattering experiments with three free nucleons in the ingoing channel are extremely challenging in terrestrial laboratories. Recently, the ALICE Collaboration has successfully measured the scattering of three protons indirectly, by using the femtoscopy method in high-energy proton-proton collisions at the Large Hadron Collider. In order to establish a connection with current and future measurements of femtoscopic three-particle correlation functions, we analyse the scenarios involving $nnn$ and $ppp$ systems using the hyperspherical adiabatic basis. The correlation function is a convolution of the source function and the corresponding scattering wave function. The finite size of the source allows for the use of the free scattering wave function in most of the adiabatic channels except the lowest ones. The scattering wave function has been computed using two different potential models: $(i)$ a spin-dependent Gaussian potential with parameters fixed to reproduce the scattering length and effective range and $(ii)$ the Argonne $v_{18}$ nucleon-nucleon interaction. Moreover, in the case of three protons, the Coulomb interaction has been considered in its hypercentral form. The results presented here have to be considered as a first step in the description of three-particle correlation functions using the hyperspherical adiabatic basis, opening the door to the investigation of other systems, such as the $pp\Lambda$ system. For completeness, the comparison with the measurement by the ALICE Collaboration is shown assuming different values of the source radius.
We compute the first moments of the $q^2$ distribution in inclusive semileptonic $B$ decays as functions of the lower cut on $q^2$, confirming a number of results given in the literature and adding the $O(\alpha_s^2\beta_0)$ BLM contributions. We then include the $q^2$-moments recently measured by Belle and Belle II in a global fit to the moments. The new data are compatible with the other measurements and slightly decrease the uncertainty on the nonperturbative parameters and on $|V_{cb}|$. Our updated value is $|V_{cb}|=(41.97\pm 0.48)\times 10^{-3}$.
One of the main scientific goals of the TESS mission is the discovery of transiting small planets around the closest and brightest stars in the sky. Here, using data from the CARMENES, MAROON-X, and HIRES spectrographs together with TESS, we report the discovery and mass determination of aplanetary system around the M1.5 V star GJ 806 (TOI-4481). GJ 806 is a bright (V ≈ 10.8mag, J ≈ 7.3 mag) and nearby (d = 12 pc) M dwarf that hosts at least two planets. The innermost planet, GJ 806 b, is transiting and has an ultra-short orbital period of 0.93 d, a radius of 1.331 ± 0.023 R⊕, a mass of 1.90 ± 0.17 M⊕, a mean density of 4.40 ± 0.45 g cm−3, and an equilibrium temperature of 940 ± 10 K. We detect a second, non-transiting, super-Earth planet in the system, GJ 806 c, with an orbital period of 6.6 d, a minimum mass of 5.80 ± 0.30 M⊕, and an equilibrium temperature of 490 ± 5 K. The radial velocity data also shows evidence for a third periodicity at 13.6 d, although the current dataset does not provide sufficient evidence to unambiguously distinguish between a third super-Earth mass (M sin i = 8.50 ± 0.45 M⊕) planet or stellar activity. Additionally, we report one transit observation of GJ 806 b taken with CARMENES in search of a possible extended atmosphere of H or He, but we can only place upper limits to its existence. This is not surprising as our evolutionary models support the idea that any possible primordial H/He atmosphere that GJ 806 b might have had would be long lost. However, the bulk density of GJ 806 b makes it likely that the planet hosts some type of volatile atmosphere. With transmission spectroscopy metrics (TSM) of 44 and emission spectroscopy metrics (ESM) of 24, GJ 806 b is to date the third-ranked terrestrial planet around an M dwarf suitable for transmission spectroscopy studies using JWST, and the most promising terrestrial planet for emission spectroscopy studies. GJ 806b is also an excellent target for the detection of radio emission via star-planet interactions.
Context. Polycyclic aromatic hydrocarbons, largely known as PAHs, are widespread in the Universe and have been identified in a vast array of astronomical observations, from the interstellar medium to protoplanetary disks. They are likely to be associated with the chemical history of the Universe and the emergence of life on Earth. However, their abundance on exoplanets remains unknown.
Aims: We aim to investigate the feasibility of PAH formation in the thermalized atmospheres of irradiated and non-irradiated hot Jupiters around Sun-like stars.
Methods: To this aim, we introduced PAHs in the 1D, self-consistent forward modeling code petitCODE. We simulated a large number of planet atmospheres with different parameters (e.g., carbon to oxygen ratio, metallicity, and effective planetary temperature) to study PAH formation. By coupling the thermochemical equilibrium solution from petitCODE with the 1D radiative transfer code, petitRADTRANS, we calculated the synthetic transmission and emission spectra for irradiated and non-irradiated planets, respectively, and explored the role of PAHs in planet spectra.
Results: Our models show strong correlations between PAH abundance and the aforementioned parameters. In thermochemical equilibrium scenarios, an optimal temperature, elevated carbon to oxygen ratio, and increased metallicity values are conducive to the formation of PAHs, with the carbon to oxygen ratio having the largest effect.
We explore the Emergence Proposal for the moduli metric and the gauge couplings in a concrete model with 7 saxionic and 7 axionic moduli fields, namely the compactification of the type IIA superstring on a 6-dimensional toroidal orbifold. We show that consistency requires integrating out precisely the 12 towers of light particle species arising from KK and string/brane winding modes and one asymptotically tensionless string up to the species scale. After pointing out an issue with the correct definition of the species scale in the presence of string towers, we carry out the emergence computation and find that the KK and winding modes indeed impose the classical moduli dependence on the one-loop corrections, while the emergent string induces moduli dependent logarithmic suppressions. The interpretation of these results for the Emergence Proposal are discussed revealing a couple of new and still not completely settled aspects.
Context. Classical Cepheids (CCs) are solid distance indicators and tracers of young stellar populations. Dating back to the beginning of the 20th century, they have been safely adopted to trace the rotation, kinematics, and chemical enrichment history of the Galactic thin disk.
Aims: The main aim of this investigation is to provide iron, oxygen, and sulfur abundances for the largest and most homogeneous sample of Galactic CCs analyzed so far (1118 spectra of 356 objects). The current sample, containing 70 CCs for which spectroscopic metal abundances are provided for the first time, covers a wide range in galactocentric distances, pulsation modes, and pulsation periods.
Methods: Optical high-resolution spectra with a high signal-to-noise ratio that were collected with different spectrographs were adopted to provide homogeneous estimates of the atmospheric parameters (effective temperature, surface gravity, and microturbulent velocity) that are required to determine the abundance. Individual distances were based either on trigonometric parallaxes by the Gaia Data Release 3 (Gaia DR3) or on distances based on near-infrared period-luminosity relations.
Results: We found that iron and α-element radial gradients based on CCs display a well-defined change in the slope for galactocentric distances larger than ~12 kpc. We also found that logarithmic regressions account for the variation in [X/H] abundances from the inner to the outer disk. Radial gradients for the same elements, but based on open clusters covering a wide range in cluster ages, display similar trends. This means that the flattening in the outer disk is an intrinsic feature of the radial gradients because it is independent of age. Empirical evidence indicates that the S radial gradient is steeper than the Fe radial gradient. The difference in the slope is a factor of two in the linear fit (−0.081 vs. −0.041 dex kpc−1) and changes from −1.62 to −0.91 in the logarithmic distance. Moreover, we found that S (explosive nucleosynthesis) is underabundant on average when compared with O (hydrostatic nucleosynthesis). The difference becomes clearer in the metal-poor regime and for the [O/Fe] and [S/Fe] abundance ratios. We performed a detailed comparison with Galactic chemical evolution models and found that a constant star formation efficiency for galactocentric distances larger than 12 kpc accounts for the flattening observed in both iron and α-elements. To further constrain the impact of the predicted S yields for massive stars on radial gradients, we adopted a toy model and found that the flattening in the outermost regions requires a decrease of a factor of four in the current S predictions.
Conclusions: CCs are solid beacons for tracing the recent chemical enrichment of young stellar populations. Sulfur photospheric abundances, when compared with other α-elements, have the key advantage of being a volatile element. Therefore, stellar S abundances can be directly compared with nebular sulfur abundances in external galaxies.
The full versions of Tables 1-3 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A195
Partly based on observations made with ESO Telescopes at the La Silla/Paranal Observatories under program IDs: 072.D-0419, 073.D-0136, and 190.D-0237 for HARPS spectra; 084.B-0029, 087.A-9013, 074.D-0008, 075.D-0676, and 60.A-9120 for FEROS spectra; 081.D-0928, 082.D-0901, 089.D-0767, and 093.D-0816 for UVES spectra.
Partly based on data obtained with the STELLA robotic telescopes in Tenerife, a facility of The Leibniz Institute for Astrophysics Potsdam (AIP) jointly operated by the AIP and by the Instituto de Astrofisica de Canarias (IAC).
We introduce an observable relevant for the determination of the W-boson mass mW at hadron colliders. This observable is defined as an asymmetry around the jacobian peak of the charged-lepton transverse-momentum distribution in the charged-current Drell-Yan process. We discuss the observable's theoretical prediction, presenting results at different orders in QCD, and showing its perturbative stability. Its definition as a single scalar number and its linear sensitivity to mW allow a clean extraction of the latter and a straightforward discussion of the associated theoretical systematics: a perturbative QCD uncertainty of O (±5 ) MeV on mW can be established by means of this observable, relying solely on charged-current Drell-Yan information. Owing to its relatively inclusive nature, the observable displays desirable properties also from the experimental viewpoint, especially for the unfolding of detector effects. We show that a measurement of this observable can lead to a competitive experimental error on mW at the LHC.
Context. The distance to the Whirlpool galaxy, M 51, is still debated, even though the galaxy has been studied in great detail. Current estimates range from 6.02 to 9.09 Mpc, and different methods yield discrepant results. No Cepheid distance has been published for M 51 to date.
Aims: We aim to estimate a more reliable distance to M 51 through two independent methods: Cepheid variables and their period-luminosity relation, and an augmented version of the expanding photosphere method (EPM) on the type IIP supernova SN 2005cs, which exploded in this galaxy.
Methods: For the Cepheid variables, we analysed a recently published Hubble Space Telescope catalogue of stars in M 51. By applying filtering based on the light curve and colour-magnitude diagram, we selected a high-quality sample of M 51 Cepheids to estimate the distance through the period-luminosity relation. For SN 2005cs, an emulator-based spectral fitting technique was applied, which allows for the fast and reliable estimation of the physical parameters of the supernova atmosphere. We augmented the established framework of EPM with these spectral models to obtain a precise distance to M 51.
Results: The two resulting distance estimates are DCep = 7.59 ± 0.30 Mpc and D2005cs = 7.34 ± 0.39 Mpc using the Cepheid period-luminosity relation and the spectral modelling of SN 2005cs, respectively. This is the first published Cepheid distance for this galaxy. The obtained values are precise to 4-5% and are fully consistent within 1σ uncertainties. Because these two estimates are completely independent, they can be combined for an even more precise estimate, which yields DM 51 = 7.50 ± 0.24 Mpc (3.2% uncertainty).
Conclusions: Our distance estimates agree with most of the results obtained previously for M 51, but they are more precise than the earlier counterparts. However, they are significantly lower than the TRGB estimates, which are often adopted for the distance to this galaxy. The results highlight the importance of direct cross-checks between independent distance estimates so that systematic uncertainties can be quantified. Because of the large discrepancy, this finding can also affect distance-sensitive studies and their discussion for objects within M 51, as well as the estimation of the Hubble constant through the type IIP standardizable candle method, for which SN 2005cs is a calibrator object.
The Cepheid catalogue shown in Table B.1 is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A44
The data produced in this work, such as the final M 51 Cepheid catalogue and the flux calibrated spectral time series of SN 2005cs are available at the GitHub page of the author (https://github.com/Csogeza/M51).
We present a simple parton-shower model that replaces the explicit angular ordering of the coherent branching formalism with a differentially accurate simulation of soft-gluon radiation by means of a non-trivial dependence of the splitting functions on azimuthal angles. We introduce a global kinematics mapping and provide an analytic proof that it satisfies the criteria for next-to leading logarithmic accuracy. In the new algorithm, initial and final state evolution are treated on the same footing. We provide an implementation for final-state evolution in the numerical code ALARIC and present a first comparison to experimental data.
Quasars experiencing strong lensing offer unique viewpoints on subjects related to the cosmic expansion rate, the dark matter profile within the foreground deflectors, and the quasar host galaxies. Unfortunately, identifying them in astronomical images is challenging since they are overwhelmed by the abundance of non-lenses. To address this, we have developed a novel approach by ensembling cutting-edge convolutional networks (CNNs) - for instance, ResNet, Inception, NASNet, MobileNet, EfficientNet, and RegNet - along with vision transformers (ViTs) trained on realistic galaxy-quasar lens simulations based on the Hyper Suprime-Cam (HSC) multiband images. While the individual model exhibits remarkable performance when evaluated against the test dataset, achieving an area under the receiver operating characteristic curve of >97.3% and a median false positive rate of 3.6%, it struggles to generalize in real data, indicated by numerous spurious sources picked by each classifier. A significant improvement is achieved by averaging these CNNs and ViTs, resulting in the impurities being downsized by factors up to 50. Subsequently, combining the HSC images with the UKIRT, VISTA, and unWISE data, we retrieve approximately 60 million sources as parent samples and reduce this to 892 609 after employing a photometry preselection to discover z > 1.5 lensed quasars with Einstein radii of θE < 5″. Afterward, the ensemble classifier indicates 3080 sources with a high probability of being lenses, for which we visually inspect, yielding 210 prevailing candidates awaiting spectroscopic confirmation. These outcomes suggest that automated deep learning pipelines hold great potential in effectively detecting strong lenses in vast datasets with minimal manual visual inspection involved.
We propose a new strategy to probe the Z boson couplings to bottom and charm quarks at the LHC. In this work we mainly focus on the case of bottom quarks. Here, the Z boson is produced in association with two b-jets and decays to electrons or muons. In this final state, tagging the charge of the b-jets allows us to measure the charge asymmetry and thus to directly probe the Zb b ¯ couplings. The leptonic final state not only allows us to cleanly reconstruct the Z boson but also to mitigate the otherwise overwhelming backgrounds. Furthermore, while LEP could only scan a limited range of dilepton invariant masses, there is no such limitation at the LHC. Consequently, this allows us to make full use of the interference between the amplitudes mediated by a Z boson and a photon. Using the full high-luminosity LHC dataset of 3 ab−1 and with the current flavor and charge-tagging capabilities would allow us to reject the wrong-sign right-handed coupling solution by 4σ. Further improving the charge-tagging efficiency would disfavor it by 6σ.
The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data from high-energy colliders. We present the first formulation of parton showers with accuracy 1 order beyond state-of-the-art next-to-leading logarithms, for classes of observables that are dominantly sensitive to low-energy (soft) emissions, specifically nonglobal observables and subjet multiplicities. This represents a major step toward general next-to-next-to-leading logarithmic accuracy for parton showers.
Sagittarius A* (Sgr A*), the supermassive black hole at the heart of our galaxy, provides unique opportunities to study black hole accretion, jet formation, and gravitational physics. The rapid structural changes in Sgr A*'s emission pose a significant challenge for traditional imaging techniques. We present dynamic reconstructions of Sgr A* using Event Horizon Telescope (EHT) data from April 6th and 7th, 2017, analyzed with a one-minute temporal resolution with the Resolve framework. This Bayesian approach employs adaptive Gaussian Processes and Variational Inference for data-driven self-regularization. Our results not only fully confirm the initial findings by the EHT Collaboration for a time-averaged source but also reveal intricate details about the temporal dynamics within the black hole environment. We find an intriguing dynamic feature on April 6th that propagates in a clock-wise direction. Geometric modelling with ray-tracing, although not fully conclusive, indicates compatibility with high-inclination configurations of about $\theta_o = 160^\circ$, as seen in other studies.
The z-GAL survey observed 137 bright Herschel-selected targets with the IRAM Northern Extended Millimeter Array, with the aim to measure their redshift and study their properties. Several of them have been resolved into multiple sources. Consequently, robust spectroscopic redshifts have been measured for 165 individual galaxies in the range 0.8 < z < 6.5. In this paper we analyse the millimetre spectra of the z-GAL sources, using both their continuum and line emission to derive their physical properties. At least two spectral lines are detected for each source, including transitions of 12CO, [CI], and H2O. The observed 12CO line ratios and spectral line energy distributions of individual sources resemble those of local starbursts. In seven sources the para-H2O (211−202) transition is detected and follows the IR versus H2O luminosity relation of sub-millimetre galaxies. The molecular gas mass of the z-GAL sources is derived from their 12CO, [CI], and sub-millimetre dust continuum emission. The three tracers lead to consistent results, with the dust continuum showing the largest scatter when compared to 12CO. The gas-to-dust mass ratio of these sources was computed by combining the information derived from 12CO and the dust continuum and has a median value of 107, similar to star-forming galaxies of near-solar metallicity. The same combined analysis leads to depletion timescales in the range between 0.1 and 1.0 Gyr, which place the z-GAL sources between the `main sequence' of star formation and the locus of starbursts. Finally, we derived a first estimate of stellar masses - modulo possible gravitational magnification - by inverting known gas scaling relations: the z-GAL sample is confirmed to be mostly composed by starbursts, whereas ∼25% of its members lie on the main sequence of star-forming galaxies (within ±0.5 dex).
High-velocity stellar collisions driven by a supermassive black hole (BH) or BH-driven disruptive collisions, in dense, nuclear clusters can rival the energetics of supergiant star explosions following gravitational collapse of their iron core. Here, starting from a sample of red-giant star collisions simulated with the hydrodynamics code AREPO, we generate photometric and spectroscopic observables using the nonlocal thermodynamic equilibrium time-dependent radiative transfer code CMFGEN. Collisions from more extended giants or stronger collisions (higher velocity or smaller impact parameter) yield bolometric luminosities on the order of 1e43 erg/s at 1d, evolving on a timescale of a week to a bright plateau at ~1e41 erg/s, before plunging precipitously after 20-40d at the end of the optically-thick phase. This luminosity falls primarily in the UV in the first days, thus when it is at its maximum, and shifts to the optical thereafter. Collisions at lower velocity or from less extended stars produce ejecta that are fainter but may remain optically thick for up to 40d if they have a small expansion rate. These collision debris show a similar spectral evolution as that observed or modeled for blue-supergiant star explosions of massive stars, differing only in the more rapid transition to the nebular phase. Such BH-driven disruptive collisions should be detectable by high-cadence surveys in the UV like ULTRASAT.
A puzzling population of extremely massive quiescent galaxies at redshifts beyond z=3 has recently been revealed by JWST and ALMA, some of them with stellar ages that show their quenching times to be as high as z=6, while their stellar masses are already above 5e10Msun. These extremely massive yet quenched galaxies challenge our understanding of galaxy formation at the earliest stages. Using the hydrodynamical cosmological simulation suite Magneticum Pathfinder, we show that such massive quenched galaxies at high redshifts can be successfully reproduced with similar number densities as observed. The stellar masses, sizes, formation redshifts, and star formation histories of the simulated quenched galaxies match those determined with JWST. Following these quenched galaxies at z=3.4 forward in time, we find 20% to be accreted onto a more massive structure by z=2, and from the remaining 80% about 30% rejuvenate up to z=2, another 30% stay quenched, and the remaining 40% rejuvenated on a very low level of star formation. Stars formed through rejuvenation are mostly formed on the outer regions of the galaxies, not in the centres. Furthermore, we demonstrate that the massive quenched galaxies do not reside in the most massive nodes of the cosmic web, but rather live in side-nodes of approximately Milky-Way halo mass. Even at z=0, only about 10% end up in small-mass galaxy clusters, while most of the quenched galaxies at z=3.4 end up in group-mass halos, with about 20% actually not even reaching 1e13Msun in halo mass.
The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being sub-dominant to dark matter and dark energy, the baryonic component in our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model to precisely quantify the impact of baryons on galaxy cluster virial halo masses, using the baryon fraction within a cluster as proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters calibrated using non-radiative cosmological hydrodynamical simulations and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable one percent relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters, starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against varying the numerical implementation of the sub-resolution physical processes included in the simulations. Our work substantiates previous claims about the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model, arising from baryonic corrections to cluster masses, are sub-dominant when compared to the precision with which mass-observable relations will be calibrated using Euclid, as well as our current understanding of the baryon fraction within galaxy clusters.
This thesis extends Standard Perturbation Theory (SPT) for cosmic structure formation by introducing higher cumulants via orbit crossing, inventing Vlasov Perturbation Theory (VPT). VPT addresses SPT limitations, e.g. small-scale backreaction. Linear/Nonlinear kernels in VPT suppress modes crossing dispersion scale, enabling nonlinear corrections even for blue power spectra. N-body comparisons confirm agreement up to nonlinear scale. Vorticity power spectrum, momentum conservation, and stochastic GW background are discussed. Techniques for dark matter clustering can improve through understanding collisionless dynamics.
Fine-grained dust is the fundamental building block of terrestrial planets, like Earth, that form around young stars. At the same time, the dust distribution in the gaseous disks around forming stars, so-called protoplanetary disks, influences astronomical observations, because dust is the main contributor to the opacity in protoplanetary disks. Therefore, accurate models of the distribution and dynamics of dust are critical to understanding the initial stages of planet formation and interpreting astronomical observations of forming planetary and stellar systems. This is particularly relevant because recent astronomical observations of protoplanetary disks have reached new heights in terms of resolution and sensitivity, challenging our current understanding and models.
Accurately estimating the C/O ratio of hot Jupiter atmospheres is a promising pathway towards understanding planet formation and migration, as well as the formation of clouds and the overall atmospheric composition. The atmosphere of the hot Jupiter WASP-43b has been extensively analysed using low-resolution observations with HST and Spitzer, but these previous observations did not cover the K band, which hosts prominent spectral features of major carbon-bearing species such as CO and CH4. As a result, the ability to establish precise constraints on the C/O ratio was limited. Moreover, the planet has not been studied at high spectral resolution, which can provide insights into the atmospheric dynamics.
In this study, we present the first high-resolution dayside spectra of WASP-43b with the new CRIRES+ spectrograph. By observing the planet in the K band, we successfully detected the presence of CO and provide evidence for the existence of H2O using the cross-correlation method. This discovery represents the first direct detection of CO in the atmosphere of WASP-43b. Furthermore, we retrieved the temperature-pressure profile, abundances of CO and H2O, and a super-solar C/O ratio of 0.78 by applying a Bayesian retrieval framework to the data. Our findings also shed light on the atmospheric characteristics of WASP-43b. We found no evidence for a cloud deck on the dayside, and recovered a line broadening indicative of an equatorial super-rotation corresponding to a jet with a wind speed of ∼ 5 km s−1, matching the results of previous forward models and low-resolution atmospheric retrievals for this planet.
The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.
A forward modelling approach provides simple, fast and realistic simulations of galaxy surveys, without a complex underlying model. For this purpose, galaxy clustering needs to be simulated accurately, both for the usage of clustering as its own probe and to control systematics. We present a forward model to simulate galaxy surveys, where we extend the Ultra-Fast Image Generator to include galaxy clustering. We use the distribution functions of the galaxy properties, derived from a forward model adjusted to observations. This population model jointly describes the luminosity functions, sizes, ellipticities, SEDs and apparent magnitudes. To simulate the positions of galaxies, we then use a two-parameter relation between galaxies and halos with Subhalo Abundance Matching (SHAM). We simulate the halos and subhalos using the fast PINOCCHIO code, and a method to extract the surviving subhalos from the merger history. Our simulations contain a red and a blue galaxy population, for which we build a SHAM model based on star formation quenching. For central galaxies, mass quenching is controlled with the parameter Mlimit, with blue galaxies residing in smaller halos. For satellite galaxies, environmental quenching is implemented with the parameter tquench, where blue galaxies occupy only recently merged subhalos. We build and test our model by comparing to imaging data from the Dark Energy Survey Year 1. To ensure completeness in our simulations, we consider the brightest galaxies with i<20. We find statistical agreement between our simulations and the data for two-point correlation functions on medium to large scales. Our model provides constraints on the two SHAM parameters Mlimit and tquench and offers great prospects for the quick generation of galaxy mock catalogues, optimized to agree with observations.
Much of what is known of the chemical composition of the universe is based on emission line spectra from star forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z=2.1-4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed R̂ metallicity diagnostic (+/-0.2dex). This agreement implies a relatively chemically-homogeneous multi-phase interstellar medium, and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB090323 at z=4.7, consistent with what has been seen in other z>4 galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample.
Life as we know it is built on complex and perfectly interlocking processes that have evolved over millions of years through evolutionary optimization processes. The emergence of life from nonliving matter and the evolution of such highly efficient systems therefore constitute an enormous synthetic and systems chemistry challenge. Advances in supramolecular and systems chemistry are opening new perspectives that provide insights into living and self-sustaining reaction networks as precursors for life. However, the ab initio synthesis of such a system requires the possibility of autonomous optimization of catalytic properties and, consequently, of an evolutionary system at the molecular level. In this Account, we present our discovery of the formation of substituted imidazolidine-4-thiones (photoredox) organocatalysts from simple prebiotic building blocks such as aldehydes and ketones under Strecker reaction conditions with ammonia and cyanides in the presence of hydrogen sulfide. The necessary aldehydes are formed from CO2 and hydrogen under prebiotically plausible meteoritic or volcanic iron-particle catalysis in the atmosphere of the early Earth. Remarkably, the investigated imidazolidine-4-thiones undergo spontaneous resolution by conglomerate crystallization, opening a pathway for symmetry breaking, chiral amplification, and enantioselective organocatalysis. These imidazolidine-4-thiones enable α-alkylations of aldehydes and ketones by photoredox organocatalysis. Therefore, these photoredox organocatalysts are able to modify their aldehyde building blocks, which leads in an evolutionary process to mutated second-generation and third-generation catalysts. In our experimental studies, we found that this mutation can occur not only by new formation of the imidazolidine core structure of the catalyst from modified aldehyde building blocks or by continuous supply from a pool of available building blocks but also by a dynamic exchange of the carbonyl moiety in ring position 2 of the imidazolidine moiety. Remarkably, it can be shown that by incorporating aldehyde building blocks from their environment, the imidazolidine-4-thiones are able to change and adapt to altering environmental conditions without undergoing the entire formation process. The selection of the mutated catalysts is then based on the different catalytic activities in the modification of the aldehyde building blocks and on the catalysis of subsequent processes that can lead to the formation of molecular reaction networks as progenitors for cellular processes. We were able to show that these imidazolidine-4-thiones not only enable α-alkylations but also facilitate other important transformations, such as the selective phosphorylation of nucleosides to nucleotides as a key step leading to the oligomerization to RNA and DNA. It can therefore be expected that evolutionary processes have already taken place on a small molecular level and have thus developed chemical tools that change over time, representing a hidden layer on the path to enzymatically catalyzed biochemical processes.
In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He ¯ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of 3He ¯ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He ¯ momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He ¯ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.
We compute the six-particle maximally-helicity-violating (MHV) amplitude in planar N = 4 super-Yang-Mills theory at eight loops, using antipodal duality and the recently computed eight-loop three-point form factor for the chiral stress energy tensor multiplet. Antipodal duality maps the form factor symbol to the amplitude symbol on a two-dimensional parity-preserving surface in the three-dimensional amplitude kinematics. There are remarkably few ambiguities in lifting from two to three dimensions, nor in promoting the symbol to a function. The amplitude passes many tests, including near-collinear, multi-Regge, factorization, self-crossing and origin limits. These checks also constitute a validation of antipodal duality at eight loops.
Polarization of the cosmic microwave background (CMB) is sensitive to new physics violating parity symmetry, such as the presence of a pseudoscalar "axionlike" field. Such a field may be responsible for early dark energy (EDE), which is active prior to recombination and provides a solution to the so-called Hubble tension. The EDE field coupled to photons in a parity-violating manner would rotate the plane of linear polarization of the CMB and produce a cross-correlation power spectrum of E - and B -mode polarization fields with opposite parities. In this Letter, we fit the E B power spectrum predicted by the photon-axion coupling of the EDE model with a potential V (ϕ )∝[1 -cos (ϕ /f )]3 to polarization data from Planck. We find that the unique shape of the predicted E B power spectrum is not favored by the data and obtain a first constraint on the photon-axion coupling constant, g =(0.04 ±0.16 )MPl-1 (68% C.L.), for the EDE model that best fits the CMB and galaxy clustering data. This constraint is independent of the miscalibration of polarization angles of the instrument or the polarized Galactic foreground emission. Our limit on g may have important implications for embedding EDE in fundamental physics, such as string theory.
We analyse deuterated water (HDO) and sulfur dioxide (SO2) at high-angular resolution in the binary system SVS13-A. We propose that molecular emission is produced by an accretion shock at the interface between the accretion streamer and the disk. We report Atacama Large Millimeter/submillimeter Array (ALMA) high-angular resolution (∼50 au) observations of the binary system SVS13-A. More specifically, we analyse deuterated water (HDO) and sulfur dioxide (SO2) emission. The molecular emission is associated with both the components of the binary system, VLA4A and VLA4B. The spatial distribution is compared to that of formamide (NH2CHO), previously analysed in the system. Deuterated water shows an additional emitting component spatially coincident with the dust-accretion streamer, at a distance ≥120 au from the protostars, and at blue-shifted velocities (>3 km s−1 from the systemic velocities). We investigate the origin of the molecular emission in the streamer, in light of thermal sublimation temperatures calculated using updated binding energy (BE) distributions. We propose that the observed emission is produced by an accretion shock at the interface between the accretion streamer and the disk of VLA4A. Thermal desorption is not completely excluded in case the source is actively experiencing an accretion burst.
We present a novel unbinned method to combine B± → DK± and charm threshold data for the amplitude-model unbiased measurement of the CKM angle γ in cases where the D meson decays to a three-body final state. The new unbinned approach avoids any kind of integration over the D Dalitz plot, to make optimal use the available information. We verify the method with simulated signal data where the D decays to KSπ+π−. Using realistic sample sizes, we find that the new method reaches the statistical precision on γ of an unbinned model-dependent fit, i.e. as good as possible and better than the widely used model-independent binned approach, without suffering from biases induced by a mis-modeled D decay amplitude.
A configurable calorimeter simulation for AI (CoCoA) applications is presented, based on the GEANT4 toolkit and interfaced with the PYTHIA event generator. This open-source project is aimed to support the development of machine learning algorithms in high energy physics that rely on realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level analysis. Specifications such as the granularity and material of its nearly hermetic geometry are user-configurable. The tool is supplemented with simple event processing including topological clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided to visualise events using the Phoenix event display software.
We compute the two-loop Quantum Chromodynamics (QCD) corrections to all partonic channels relevant for the production of an electroweak boson V = Z, W±, γ* and a jet at hadron colliders. We consider the decay of a vector boson V to three partons V → q q ¯g , V → ggg with a vector and axial vector coupling in both channels, including singlet and non-singlet contributions. For the quark channel, we use a recent tensor decomposition and extend the calculation to O (ϵ2). For the gluonic channel, we define a new tensor decomposition which allows us to compute the vector and the axial vector amplitudes at once and to perform the computation of the amplitudes to O (ϵ2). We provide finite remainders of the helicity amplitudes analytically continued to all relevant scattering regions q q ¯ → Vg, qg → Vq and gg → Vg. The axial vector contribution to the gluon-induced channel completes the set of two-loop amplitudes for this process, while the extension to O (ϵ2) represents the first step in the calculation of next-to-next-to-next-to-leading-order (N3LO) QCD corrections to Z+jet production at hadron colliders.
Photonuclear reactions of light nuclei below a mass of A =60 are planned to be studied experimentally and theoretically with the PANDORA (Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics) project. Two experimental methods, virtual photon excitation by proton scattering and real photo absorption by a high-brilliance γ -ray beam produced by laser Compton scattering, will be applied to measure the photoabsorption cross sections and decay branching ratio of each decay channel as a function of the photon energy. Several nuclear models, e.g. anti-symmetrized molecular dynamics, mean-field and beyond-mean-field models, a large-scale shell model, and ab initio models, will be employed to predict the photonuclear reactions. The uncertainty in the model predictions will be evaluated based on the discrepancies between the model predictions and experimental data. The data and predictions will be implemented in the general reaction calculation code, TALYS. The results will be applied to the simulation of the photo-disintegration process of ultra-high-energy cosmic rays in inter-galactic propagation.
The fast flavor conversions (FFCs) of neutrinos generally exist in core-collapse supernovae and binary neutron-star merger remnants and can significantly change the flavor composition and affect the dynamics and nucleosynthesis processes. Several analytical prescriptions were proposed recently to approximately explain or predict the asymptotic outcome of FFCs for systems with different initial or boundary conditions, with the aim for providing better understandings of FFCs and for practical implementation of FFCs in hydrodynamic modeling. In this work, we obtain the asymptotic survival probability distributions of FFCs in a survey over thousands of randomly sampled initial angular distributions by means of numerical simulations in one-dimensional boxes with the periodic boundary condition. We also propose improved prescriptions that guarantee the continuity of the angular distributions after FFCs. Detailed comparisons and evaluation of all these prescriptions with our numerical survey results are performed. The survey dataset is made publicly available to inspire the exploration and design for more effective methods applicable to realistic hydrodynamic simulations.
Electromagnetic resonant systems, such as cavities or LC circuits, have emerged as powerful detectors for probing ultralight boson dark matter and high-frequency gravitational waves. However, the limited resonant bandwidth of conventional single-mode resonators, imposed by quantum fluctuations, necessitates numerous scan steps to cover broad unexplored frequency regions. The incorporation of multiple auxiliary modes can realize a broadband detector while maintaining a substantial signal response. The broadened sensitive width can be on the same order as the resonant frequency, encompassing several orders of the source frequency for heterodyne detection, where a background cavity mode transitions into another. Consequently, our approach enables significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.
Context. Embedded planets are potentially the cause of substructures, such as gaps and cavities, observed in the continuum images of several protoplanetary discs. Likewise, gas distribution is expected to change in the presence of one or several planets, and the effect can be detected with current observational facilities. Thus, the properties of the substructures observed in the continuum as well as in line emission encode information about the presence of planets in a system and how they interact with the natal disc. The pre-transitional disc around the star PDS 70 is the first case of two young planets being imaged within a dust-depleted gap that was likely carved by the planets themselves.
Aims: We aim to determine the spatial distribution of the gas and dust components in the PDS 70 disc. The axisymmetric substructures observed in the resulting profiles are interpreted in the context of planet-disc interactions.
Methods: We developed a thermo-chemical forward model for an axisymmetric disc to explain a subset of the Atacama Large Millimeter/Submillimeter Array (ALMA) band 6 observations of three CO isotopologues plus the continuum towards PDS 70. The model accounts for the continuum radiative transfer, steady-state chemistry, and gas thermal balance in a self-consistent way and produces synthetic observables via ray tracing.
Results: We demonstrate that the combination of a homogeneous dust size distribution across the disc and relatively low values of viscosity (α ≲ 5 × 10−3) can explain the band 6 continuum observations. For the gas phase, analysis of the synthetic observables points to a gas density peak value of ~0.1 g cm−2 located at 75 au and a minimum of ~10−3 g cm−2 at 20 au. The location of the minimum matches the semi-major axis of the innermost planet PDS 70 b. Combining the gas and dust distributions, the model results in a variable gas-to-dust ratio profile throughout the disc that spans two orders of magnitude within the first 130 au and shows a step gradient towards the outer disc, which is consistent with the presence of a pressure maxima driven by planet-disc interactions. Particularly, the mean gas-to-dust ratio within the dust gap between 16 and 41 au is found to be ~630. We find a gas density drop factor of ~19 at the location of the planet PDS 70 c with respect to the peak gas density at 75 au. Combining this value with results from the literature on the hydrodynamics of planet-disc interactions, we find this gas gap depth to be consistent with independent planet mass estimates from infrared observations. Our findings point towards gas stirring processes taking place in the common gap due to the gravitational perturbation of the two planets.
Conclusions: The distribution of gas and dust in the PDS 70 disc can be constrained by forward modelling the spatially resolved observations from high-resolution and high-sensitivity instruments like ALMA. This information is a key piece in the qualitative and quantitative interpretation of the observable signatures of planet-disc interactions.
The chiral anomaly, a fundamental property of QCD, relates the coupling of an odd number of Goldstone bosons to vector bosons, e.g. of the coupling of three pions to one photon. This coupling can experimentally be measured in pion-photon scattering. We report on a precision experiment using the COMPASS experiment at CERN where pion-photon scattering is mediated via the Primakoff effect. We present also improvements of monitoring beam stability and of controlling the DAQ of COMPASS.
In this paper, we introduce and numerically simulate a quantum field theoretic phenomenon called the gauge ``slingshot" effect and study its production of gravitational waves. The effect occurs when a source, such as a magnetic monopole or a quark, crosses the boundary between the Coulomb and confining phases. The corresponding gauge field of the source, either electric or magnetic, gets confined into a flux tube stretching in the form of a string (cosmic or a QCD type) that attaches the source to the domain wall separating the two phases. The string tension accelerates the source towards the wall as sort of a slingshot. The slingshot phenomenon is also exhibited by various sources of other co-dimensionality, such as cosmic strings confined by domain walls or vortices confined by Z2 strings. Apart from the field-theoretic value, the slingshot effect has important cosmological implications, as it provides a distinct source for gravitational waves. The effect is expected to be generic in various extensions of the standard model such as grand unification.
We describe a new table-top electrostatic storage ring concept for 30 keV polarized ions with fixed spin orientation. The device will ultimately be capable of measuring magnetic fields with a resolution of 10−20 T with sub-mHz bandwidth. With the possibility to store different kinds of ions or ionic molecules and access to prepare and probe states of the systems using lasers and SQUIDs, it can be used to search for electric dipole moments (EDMs) of electrons and nucleons, as well as axion-like particle dark matter and dark photon dark matter. Its sensitivity potential stems from several hours of storage time, comparably long spin coherence times, and the possibility to trap up to 109 particles in bunches with possibly different state preparations for differential measurements. As a dark matter experiment, it is most sensitive in the mass range of 10−10 to 10−19 eV, where it can potentially probe couplings orders of magnitude below current and proposed laboratory experiments.