(826)Shared Data and Algorithms for Deep Learning in Fundamental Physics
  • Lisa Benato,
  • Erik Buhmann,
  • Martin Erdmann,
  • Peter Fackeldey,
  • Jonas Glombitza
  • +8
  • Nikolai Hartmann,
  • Gregor Kasieczka,
  • William Korcari,
  • Thomas Kuhr,
  • Jan Steinheimer,
  • Horst Stöcker,
  • Tilman Plehn,
  • Kai Zhou
  • (less)
Computing and Software for Big Science, 6 (12/2022) doi:10.1007/s41781-022-00082-6
abstract + abstract -

We introduce a PYTHON package that provides simple and unified access to a collection of datasets from fundamental physics research—including particle physics, astroparticle physics, and hadron- and nuclear physics—for supervised machine learning studies. The datasets contain hadronic top quarks, cosmic-ray-induced air showers, phase transitions in hadronic matter, and generator-level histories. While public datasets from multiple fundamental physics disciplines already exist, the common interface and provided reference models simplify future work on cross-disciplinary machine learning and transfer learning in fundamental physics. We discuss the design and structure and line out how additional datasets can be submitted for inclusion. As showcase application, we present a simple yet flexible graph-based neural network architecture that can easily be applied to a wide range of supervised learning tasks. We show that our approach reaches performance close to dedicated methods on all datasets. To simplify adaptation for various problems, we provide easy-to-follow instructions on how graph-based representations of data structures, relevant for fundamental physics, can be constructed and provide code implementations for several of them. Implementations are also provided for our proposed method and all reference algorithms.


(825)Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism
  • J. M. Yao,
  • J. Meng,
  • Y. F. Niu,
  • P. Ring
Progress in Particle and Nuclear Physics, 126 (09/2022) doi:10.1016/j.ppnp.2022.103965
abstract + abstract -

Nuclear weak decays provide important probes to fundamental symmetries in nature. A precise description of these processes in atomic nuclei requires comprehensive knowledge on both the strong and weak interactions in the nuclear medium and on the dynamics of quantum many-body systems. In particular, an observation of the hypothetical double beta decay without emission of neutrinos (0 νββ) would unambiguously demonstrate the Majorana nature of neutrinos and the existence of the lepton-number-violation process. It would also provide unique information on the ordering and absolute scale of neutrino masses. The next-generation tonne-scale experiments with sensitivity up to 1028 years after a few years of running will probably provide a definite answer to these fundamental questions based on our current knowledge on the nuclear matrix element (NME), the precise determination of which is a challenge to nuclear theory. Beyond-mean-field approaches have been frequently adapted for the study of nuclear structure and decay throughout the nuclear chart for several decades. In this review, we summarize the status of beyond-mean-field calculations of the NMEs of 0 νββ decay assuming the standard mechanism of an exchange of light Majorana neutrinos. The challenges and prospects in the extension and application of beyond-mean-field approaches for 0 νββ decay are discussed.


(824)The static force from generalized Wilson loops using gradient flow
  • Viljami Leino,
  • Nora Brambilla,
  • Julian Mayer-Steudte,
  • Antonio Vairo
European Physical Journal Web of Conferences, 258 (08/2022) doi:10.1051/epjconf/202225804009
abstract + abstract -

We explore a novel approach to compute the force between a static quark-antiquark pair with the gradient flow algorithm on the lattice. The approach is based on inserting a chromoelectric field in a Wilson loop. The renormalization issues, associated with the finite size of the chromoelectric field on the lattice, can be solved with the use of gradient flow. We compare numerical results for the flowed static potential to our previous measurement of the same observable without a gradient flow.


(823)TimeEvolver: A program for time evolution with improved error bound
  • Marco Michel,
  • Sebastian Zell
Computer Physics Communications, 277 (08/2022) doi:10.1016/j.cpc.2022.108374
abstract + abstract -

We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where H is the Hamiltonian, with an initial vector v. The fact that H is Hermitian makes it possible to provide an easily computable bound on the accuracy of the Krylov approximation. Apart from effects of numerical roundoff, the resulting a posteriori error bound is rigorous, which represents a crucial novelty as compared to existing software packages such as Expokit[1]. On a standard notebook, TimeEvolver allows to compute time evolution with adjustable precision in Hilbert spaces of dimension greater than 106. Additionally, we provide routines for deriving the matrix H from a more abstract representation of the Hamiltonian operator.


(822)A panchromatic view of star cluster formation in a simulated dwarf galaxy starburst
  • Natalia Lahén,
  • Thorsten Naab,
  • Guinevere Kauffmann
Monthly Notices of the Royal Astronomical Society, 514, p21 (08/2022) doi:10.1093/mnras/stac1594
abstract + abstract -

We present a photometric analysis of star and star cluster (SC) formation in a high-resolution simulation of a dwarf galaxy starburst that allows the formation of individual stars to be followed. Previous work demonstrated that the properties of the SCs formed in the simulation are in good agreement with observations. In this paper, we create mock spectral energy distributions and broad-band photometric images using the radiative transfer code SKIRT 9. We test several observational star formation rate (SFR) tracers and find that 24 $\mu$m, total infrared and Hα trace the underlying SFR during the (post)starburst phase, while UV tracers yield a more accurate picture of star formation during quiescent phases prior to and after the merger. We then place the simulated galaxy at distances of 10 and 50 Mpc and use aperture photometry at Hubble Space Telescope resolution to analyse the simulated SC population. During the starburst phase, a hierarchically forming set of SCs leads inaccurate source separation because of crowding. This results in estimated SC mass function slopes that are up to ~0.3 shallower than the true slope of ~-1.9 to -2 found for the bound clusters identified from the particle data in the simulation. The masses of the largest clusters are overestimated by a factor of up to 2.9 due to unresolved clusters within the apertures. The aperture-based analysis also produces a relation between cluster formation efficiency and SFR surface density that is slightly flatter than that recovered from bound clusters. The differences are strongest in quiescent SF environments.


(821)Low-luminosity type IIP supermnovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions
  • Alexandra Kozyreva,
  • Hans-Thomas Janka,
  • Daniel Kresse,
  • Stefan Taubenberger,
  • Petr Baklanov
Monthly Notices of the Royal Astronomical Society, 514, p17 (08/2022) doi:10.1093/mnras/stac1518
abstract + abstract -

SN 2020cxd is a representative of the family of low-energy, underluminous Type IIP supernovae (SNe), whose observations and analysis were recently reported by Yang et al. (2021). Here, we re-evaluate the observational data for the diagnostic SN properties by employing the hydrodynamic explosion model of a 9 M red supergiant progenitor with an iron core and a pre-collapse mass of 8.75 M. The explosion of the star was obtained by the neutrino-driven mechanism in a fully self-consistent simulation in three dimensions (3D). Multiband light curves and photospheric velocities for the plateau phase are computed with the one-dimensional radiation-hydrodynamics code STELLA, applied to the spherically averaged 3D explosion model as well as sphericized radial profiles in different directions of the 3D model. We find that the overall evolution of the bolometric light curve, duration of the plateau phase, and basic properties of the multiband emission can be well reproduced by our SN model with its explosion energy of only 0.7 × 1050 erg and an ejecta mass of 7.4 M. These values are considerably lower than the previously reported numbers, but they are compatible with those needed to explain the fundamental observational properties of the prototype low-luminosity SN 2005cs. Because of the good compatibility of our photospheric velocities with line velocities determined for SN 2005cs, we conclude that the line velocities of SN 2020cxd are probably overestimated by up to a factor of about 3. The evolution of the line velocities of SN 2005cs compared to photospheric velocities in different explosion directions might point to intrinsic asymmetries in the SN ejecta.


(820)Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback
  • S. R. Ward,
  • C. M. Harrison,
  • T. Costa,
  • V. Mainieri
Monthly Notices of the Royal Astronomical Society, 514, p22 (08/2022) doi:10.1093/mnras/stac1219
abstract + abstract -

Negative feedback from active galactic nuclei (AGN) is the leading mechanism for the quenching of massive galaxies in the vast majority of modern galaxy evolution models. However, direct observational evidence that AGN feedback causes quenching on a population scale is lacking. Studies have shown that luminous AGN are preferentially located in gas-rich and star-forming galaxies, an observation that has sometimes been suggested to be in tension with a negative AGN feedback picture. We investigate three of the current cosmological simulations (IllustrisTNG, EAGLE, and SIMBA) along with post-processed models for molecular hydrogen gas masses and perform similar tests to those used by observers. We find that the simulations predict: (i) no strong negative trends between Lbol and $f_{\mathrm{ H}_2}$ or specific star formation rate (sSFR); (ii) both high-luminosity ($L_{\rm {bol}} \ge 10^{44}\rm {\, erg\, s^{-1}}$) and high Eddington ratio (λEdd $\ge 1{{\ \rm per\ cent}}$) AGN are preferentially located in galaxies with high molecular gas fractions and sSFR; and (iii) that the gas-depleted and quenched fractions of AGN host galaxies are lower than a control sample of non-active galaxies. These three findings are in qualitative agreement with observational samples at z = 0 and z = 2 and show that such results are not in tension with the presence of strong AGN feedback, which all simulations we employ require to produce realistic massive galaxies. However, we also find quantifiable differences between predictions from the simulations, which could allow us to observationally test the different subgrid feedback models.


(819)Spectroscopic analysis of VVV CL001 cluster with MUSE
  • J. Olivares Carvajal,
  • M. Zoccali,
  • A. Rojas-Arriagada,
  • R. Contreras Ramos,
  • F. Gran
  • +2
Monthly Notices of the Royal Astronomical Society, 513, p11 (07/2022) doi:10.1093/mnras/stac934
abstract + abstract -

Like most spiral galaxies, the Milky Way contains a population of blue, metal-poor globular clusters and another of red, metal-rich ones. Most of the latter belong to the bulge, and therefore they are poorly studied compared to the blue (halo) ones because they suffer higher extinction and larger contamination from field stars. These intrinsic difficulties, together with a lack of low-mass bulge globular clusters, are reasons to believe that their census is not complete yet. Indeed, a few new clusters have been confirmed in the last few years. One of them is VVV CL001, the subject of the present study. We present a new spectroscopic analysis of the recently confirmed globular cluster VVV CL001, made by means of MUSE@VLT integral field data. Individual spectra were extracted for stars in the VVV CL001 field. Radial velocities were derived by cross-correlation with synthetic templates. Coupled with proper motions from the VVV (VISTA Variables in the Vía Láctea) survey, these data allow us to select 55 potential cluster members, for which we derive metallicities using the public code THE CANNON. The mean radial velocity of the cluster is Vhelio = -324.9 ± 0.8 km s-1, as estimated from 55 cluster members. This high velocity, together with a low metallicity [Fe/H] = -2.04 ± 0.02 dex, suggests that VVV CL001 could be a very old cluster. The estimated distance is d = 8.23 ± 0.46 kpc, placing the cluster in the Galactic bulge. Furthermore, both its current position and the orbital parameters suggest that VVV CL001 is most probably a bulge globular cluster.


(818)Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation
  • Christoph Pfrommer,
  • Maria Werhahn,
  • Rüdiger Pakmor,
  • Philipp Girichidis,
  • Christine M. Simpson
Monthly Notices of the Royal Astronomical Society (07/2022) doi:10.1093/mnras/stac1808
abstract + abstract -

In star-forming galaxies, the far-infrared (FIR) and radio-continuum luminosities obey a tight empirical relation over a large range of star-formation rates (SFR). To understand the physics, we examine magneto-hydrodynamic galaxy simulations, which follow the genesis of cosmic ray (CR) protons at supernovae and their advective and anisotropic diffusive transport. We show that gravitational collapse of the proto-galaxy generates a corrugated accretion shock, which injects turbulence and drives a small-scale magnetic dynamo. As the shock propagates outwards and the associated turbulence decays, the large velocity shear between the supersonically rotating cool disc with respect to the (partially) pressure-supported hot circumgalactic medium excites Kelvin-Helmholtz surface and body modes. Those interact non-linearly, inject additional turbulence and continuously drive multiple small-scale dynamos, which exponentially amplify weak seed magnetic fields. After saturation at small scales, they grow in scale to reach equipartition with thermal and CR energies in Milky Way-mass galaxies. In small galaxies, the magnetic energy saturates at the turbulent energy while it fails to reach equipartition with thermal and CR energies. We solve for steady-state spectra of CR protons, secondary electrons/positrons from hadronic CR-proton interactions with the interstellar medium, and primary shock-accelerated electrons at supernovae. The radio-synchrotron emission is dominated by primary electrons, irradiates the magnetised disc and bulge of our simulated Milky Way-mass galaxy and weakly traces bubble-shaped magnetically-loaded outflows. Our star-forming and star-bursting galaxies with saturated magnetic fields match the global FIR-radio correlation (FRC) across four orders of magnitude. Its intrinsic scatter arises due to (i) different magnetic saturation levels that result from different seed magnetic fields, (ii) different radio synchrotron luminosities for different specific SFRs at fixed SFR and (iii) a varying radio intensity with galactic inclination. In agreement with observations, several 100-pc-sized regions within star-forming galaxies also obey the FRC, while the centres of starbursts substantially exceed the FRC.


(817)Extensive study of nuclear uncertainties and their impact on the r-process nucleosynthesis in neutron star mergers
  • I. Kullmann,
  • S. Goriely,
  • O. Just,
  • A. Bauswein,
  • H. -T. Janka
arXiv e-prints (07/2022) e-Print:2207.07421
abstract + abstract -

Theoretically predicted yields of elements created by the rapid neutron capture (r-) process carry potentially large uncertainties associated with incomplete knowledge of nuclear properties as well as approximative hydrodynamical modelling of the matter ejection processes. We present an in-depth study of the nuclear uncertainties by systematically varying theoretical nuclear input models that describe the experimentally unknown neutron-rich nuclei. This includes two frameworks for calculating the radiative neutron capture rates and six, four and four models for the nuclear masses, $\beta$-decay rates and fission properties, respectively. Our r-process nuclear network calculations are based on detailed hydrodynamical simulations of dynamically ejected material from NS-NS or NS-BH binary mergers plus the secular ejecta from BH-torus systems. The impact of nuclear uncertainties on the r-process abundance distribution and early radioactive heating rate is found to be modest (within a factor $\sim 20$ for individual $A>90$ nuclei and a factor 2 for the heating rate), however the impact on the late-time heating rate is more significant and depends strongly on the contribution from fission. We witness significantly larger sensitivity to the nuclear physics input if only a single trajectory is used compared to considering ensembles of $\sim$200-300 trajectories, and the quantitative effects of the nuclear uncertainties strongly depend on the adopted conditions for the individual trajectory. We use the predicted Th/U ratio to estimate the cosmochronometric age of six metal-poor stars to set a lower limit of the age of the Galaxy and find the impact of the nuclear uncertainties to be up to 2 Gyr.


(816)Condensed dark matter with a Yukawa interaction
  • Raghuveer Garani,
  • Michel H. G. Tytgat,
  • Jérôme Vandecasteele
arXiv e-prints (07/2022) e-Print:2207.06928
abstract + abstract -

We explore the possible phases of a condensed dark matter (DM) candidate taken to be in the form of a fermion with a Yukawa coupling to a scalar particle, at zero temperature but at finite density. This theory essentially depends on only four parameters, the Yukawa coupling, the fermion mass, the scalar mediator mass, and the DM density. At low fermion densities we delimit the Bardeen-Cooper-Schrieffer (BCS), Bose-Einstein Condensate (BEC) and crossover phases as a function of model parameters using the notion of scattering length. We further study the BCS phase by consistently including emergent effects such as the scalar density condensate and superfluid gaps. Within the mean field approximation, we derive the consistent set of gap equations, retaining their momentum dependence, and valid in both the non-relativistic and relativistic regimes. We present numerical solutions to the set of gap equations, in particular when the mediator mass is smaller and larger than the DM mass. Finally, we discuss the equation of state (EoS) and possible astrophysical implications for asymmetric DM.


(815)Three-loop helicity amplitudes for quark-gluon scattering in QCD
  • Fabrizio Caola,
  • Amlan Chakraborty,
  • Giulio Gambuti,
  • Andreas von Manteuffel,
  • Lorenzo Tancredi
arXiv e-prints (07/2022) e-Print:2207.03503
abstract + abstract -

We compute the three-loop helicity amplitudes for $q\bar{q} \to gg$ and its crossed partonic channels, in massless QCD. Our analytical results provide a non-trivial check of the color quadrupole contribution to the infrared poles for external states in different color representations. At high energies, the $qg \to qg$ amplitude shows the predicted factorized form from Regge theory and confirms previous results for the gluon Regge trajectory extracted from $qq' \to qq'$ and $gg \to gg$ scattering.


(814)A multi-simulation study of relativistic SZ temperature scalings in galaxy clusters and groups
  • Elizabeth Lee,
  • Dhayaa Anbajagane,
  • Priyanka Singh,
  • Jens Chluba,
  • Daisuke Nagai
  • +4
  • Scott T. Kay,
  • Weiguang Cui,
  • Klaus Dolag,
  • Gustavo Yepes
  • (less)
arXiv e-prints (07/2022) e-Print:2207.05834
abstract + abstract -

The Sunyaev-Zeldovich (SZ) effect is a powerful tool in modern cosmology. With future observations promising ever improving SZ measurements, the relativistic corrections to the SZ signals from galaxy groups and clusters are increasingly relevant. As such, it is important to understand the differences between three temperature measures: (a) the average relativistic SZ (rSZ) temperature, (b) the mass-weighted temperature relevant for the thermal SZ (tSZ) effect, and (c) the X-ray spectroscopic temperature. In this work, we compare these cluster temperatures, as predicted by the {\sc Bahamas} \& {\sc Macsis}, {\sc Illustris-TNG}, {\sc Magneticum}, and {\sc The Three Hundred Project} simulations. Despite the wide range of simulation parameters, we find the SZ temperatures are consistent across the simulations. We estimate a $\simeq 10\%$ level correction from rSZ to clusters with $Y\simeq10^{-4}$~Mpc$^{-2}$. Our analysis confirms a systematic offset between the three temperature measures; with the rSZ temperature $\simeq 20\%$ larger than the other measures, and diverging further at higher redshifts. We demonstrate that these measures depart from simple self-similar evolution and explore how they vary with the defined radius of haloes. We investigate how different feedback prescriptions and resolution affect the observed temperatures, and discover the SZ temperatures are rather insensitive to these details. The agreement between simulations indicates an exciting avenue for observational and theoretical exploration, determining the extent of relativistic SZ corrections. We provide multiple simulation-based fits to the scaling relations for use in future SZ modelling.


(813)Testing spin-dependent dark matter interactions with lithium aluminate targets in CRESST-III
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento,
  • A. Bertolini
  • +56
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • N. Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V. M. Ghete,
  • S. Gerster,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • L. Meyer,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
arXiv e-prints (07/2022) e-Print:2207.07640
abstract + abstract -

In the past decades, numerous experiments have emerged to unveil the nature of dark matter, one of the most discussed open questions in modern particle physics. Among them, the CRESST experiment, located at the Laboratori Nazionali del Gran Sasso, operates scintillating crystals as cryogenic phonon detectors. In this work, we present first results from the operation of two detector modules which both have 10.46 g LiAlO$_2$ targets in CRESST-III. The lithium contents in the crystal are $^6$Li, with an odd number of protons and neutrons, and $^7$Li, with an odd number of protons. By considering both isotopes of lithium and $^{27}$Al, we set the currently strongest cross section upper limits on spin-dependent interaction of dark matter with protons and neutrons for the mass region between 0.25 and 1.5 GeV/c$^2$.


(812)CRESCENDO: An on-the-fly Fokker-Planck Solver for Spectral Cosmic Rays in Cosmological Simulations
  • Ludwig M. Böss,
  • Ulrich P. Steinwandel,
  • Klaus Dolag,
  • Harald Lesch
arXiv e-prints (07/2022) e-Print:2207.05087
abstract + abstract -

Non-thermal emission from relativistic Cosmic Ray (CR) electrons gives insight into the strength and morphology of intra-cluster magnetic fields, as well as providing powerful tracers of structure formation shocks. Emission caused by CR protons on the other hand still challenges current observations and is therefore testing models of proton acceleration at intra-cluster shocks. Large-scale simulations including the effects of CRs have been difficult to achieve and have been mainly reduced to simulating an overall energy budget, or tracing CR populations in post-processing of simulation output and has often been done for either protons or electrons. We introduce CRESCENDO: Cosmic Ray Evolution with SpeCtral Electrons aND prOtons, an efficient on-the-fly Fokker-Planck solver to evolve distributions of CR protons and electrons within every resolution element of our simulation. The solver accounts for CR (re-)acceleration at intra-cluster shocks, based on results of recent PIC simulations, adiabatic changes and radiative losses of electrons. We show its performance in test cases as well as idealized galaxy cluster (GC) simulations. We apply the model to an idealized GC merger following best-fit parameters for CIZA J2242.4+5301-1 and study CR injection, radio relic morphology, spectral steepening and synchrotron emission.


(811)Anapole Moment of Majorana Fermions and Implications for Direct Detection of Neutralino Dark Matter
  • Alejandro Ibarra,
  • Merlin Reichard,
  • Ryo Nagai
arXiv e-prints (07/2022) e-Print:2207.01014
abstract + abstract -

For Majorana fermions the anapole moment is the only allowed electromagnetic multipole moment. In this work we calculate the anapole moment induced at one-loop by the Yukawa and gauge interactions of a Majorana fermion, using the pinch technique to ensure the finiteness and gauge-invariance of the result. As archetypical example of a Majorana fermion, we calculate the anapole moment for the lightest neutralino in the Minimal Supersymmetric Standard Model, and specifically in the bino, wino and higgsino limits. Finally, we briefly discuss the implications of the anapole moment for the direct detection of dark matter in the form of Majorana fermions.


(810)Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering
  • T.M.C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +156
  • J. Annis,
  • S. Avila,
  • D. Bacon,
  • E. Baxter,
  • K. Bechtol,
  • M.R. Becker,
  • G.M. Bernstein,
  • S. Birrer,
  • J. Blazek,
  • S. Bocquet,
  • A. Brandao-Souza,
  • S.L. Bridle,
  • D. Brooks,
  • D.L. Burke,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • F.J. Castander,
  • R. Cawthon,
  • C. Chang,
  • A. Chen,
  • R. Chen,
  • A. Choi,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • M. Crocce,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • C. Davis,
  • T.M. Davis,
  • J. DeRose,
  • S. Desai,
  • E. Di Valentino,
  • H.T. Diehl,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T.F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Farahi,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • D. Friedel,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • L. Giani,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N. Hamaus,
  • I. Harrison,
  • W.G. Hartley,
  • K. Herner,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • H. Huang,
  • E.M. Huff,
  • D. Huterer,
  • B. Jain,
  • D.J. James,
  • M. Jarvis,
  • N. Jeffrey,
  • T. Jeltema,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • S. Lee,
  • P.-F. Leget,
  • P. Lemos,
  • C.D. Leonard,
  • A.R. Liddle,
  • M. Lima,
  • H. Lin,
  • N. MacCrann,
  • J.L. Marshall,
  • J. McCullough,
  • J. Mena-Fernández,
  • F. Menanteau,
  • R. Miquel,
  • V. Miranda,
  • J.J. Mohr,
  • J. Muir,
  • J. Myles,
  • S. Nadathur,
  • A. Navarro-Alsina,
  • R.C. Nichol,
  • R.L.C. Ogando,
  • Y. Omori,
  • A. Palmese,
  • S. Pandey,
  • Y. Park,
  • M. Paterno,
  • F. Paz-Chinchón,
  • W.J. Percival,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • M. Rodriguez-Monroy,
  • P. Rogozenski,
  • R.P. Rollins,
  • A.K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A.J. Ross,
  • E.S. Rykoff,
  • S. Samuroff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • D. Sanchez Cid,
  • V. Scarpine,
  • D. Scolnic,
  • L.F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. Smith,
  • M. Soares-Santos,
  • E. Suchyta,
  • M. Tabbutt,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • A. Troja,
  • M.A. Troxel,
  • I. Tutusaus,
  • T.N. Varga,
  • M. Vincenzi,
  • A.R. Walker,
  • N. Weaverdyck,
  • R.H. Wechsler,
  • J. Weller,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz
  • (less)
(07/2022) e-Print:2207.05766
abstract + abstract -

We constrain extensions to the $\Lambda$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $\sigma_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $\Omega_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(\Delta N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $\Sigma(k,z) = \Sigma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ and $\mu(k,z)=\mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ respectively to $\Sigma_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(\Sigma_0,\mu_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $\Lambda$CDM.


(809)Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements
  • Isabelle Tanseri,
  • Steffen Hagstotz,
  • Sunny Vagnozzi,
  • Elena Giusarma,
  • Katherine Freese
(07/2022) e-Print:2207.01913
abstract + abstract -

We revisit cosmological constraints on the sum of the neutrino masses $\Sigma m_\nu$ from a combination of full-shape BOSS galaxy clustering [$P(k)$] data and measurements of the cross-correlation between Planck Cosmic Microwave Background (CMB) lensing convergence and BOSS galaxy overdensity maps [$C^{\kappa \text{g}}_{\ell}$], using a simple but theoretically motivated model for the scale-dependent galaxy bias in auto- and cross-correlation measurements. We improve upon earlier related work in several respects, particularly through a more accurate treatment of the correlation and covariance between $P(k)$ and $C^{\kappa \text{g}}_{\ell}$ measurements. When combining these measurements with Planck CMB data, we find a 95% confidence level upper limit of $\Sigma m_\nu<0.14\,{\rm eV}$, while slightly weaker limits are obtained when including small-scale ACTPol CMB data, in agreement with our expectations. We confirm earlier findings that (once combined with CMB data) the full-shape information content is comparable to the geometrical information content in the reconstructed BAO peaks given the precision of current galaxy clustering data, discuss the physical significance of our inferred bias and shot noise parameters, and perform a number of robustness tests on our underlying model. While the inclusion of $C^{\kappa \text{g}}_{\ell}$ measurements does not currently appear to lead to substantial improvements in the resulting $\Sigma m_{\nu}$ constraints, we expect the converse to be true for near-future galaxy clustering measurements, whose shape information content will eventually supersede the geometrical one.


(808)Towards an accurate model of small-scale redshift-space distortions in modified gravity
  • Cheng-Zong Ruan,
  • Carolina Cuesta-Lazaro,
  • Alexander Eggemeier,
  • César Hernández-Aguayo,
  • Carlton M. Baugh
  • +2
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1345
abstract + abstract -

The coming generation of galaxy surveys will provide measurements of galaxy clustering with unprecedented accuracy and data size, which will allow us to test cosmological models at much higher precision than achievable previously. This means that we must have more accurate theoretical predictions to compare with future observational data. As a first step towards more accurate modelling of the redshift space distortions (RSD) of small-scale galaxy clustering in modified gravity (MG) cosmologies, we investigate the validity of the so-called Skew-T (ST) probability distribution function (PDF) of halo pairwise peculiar velocities in these models. We show that, combined with the streaming model of RSD, the ST PDF substantially improves the small-scale predictions by incorporating skewness and kurtosis, for both Λ cold dark matter (ΛCDM) and two leading MG models: f(R) gravity and the DGP braneworld model. The ST model reproduces the velocity PDF and redshift-space halo clustering measured from MG N-body simulations very well down to $\sim 5 \, h^{-1}\, \mathrm{Mpc}$. In particular, we investigate the enhancements of halo pairwise velocity moments with respect to ΛCDM for a larger range of MG variants than previous works, and present simple explanations to the behaviours observed. By performing a simple Fisher analysis, we find a significant increase in constraining power to detect modifications of General Relativity by introducing small-scale information in the RSD analyses.


(807)The importance of X-ray frequency in driving photoevaporative winds
  • Andrew D. Sellek,
  • Cathie J. Clarke,
  • Barbara Ercolano
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1148
abstract + abstract -

Photoevaporative winds are a promising mechanism for dispersing protoplanetary discs, but so far theoretical models have been unable to agree on the relative roles that the X-ray, extreme ultraviolet or far-ultraviolet play in driving the winds. This has been attributed to a variety of methodological differences between studies, including their approach to radiative transfer and thermal balance, the choice of irradiating spectrum employed, and the processes available to cool the gas. We use the MOCASSIN radiative transfer code to simulate wind heating for a variety of spectra on a static density grid taken from simulations of an EUV-driven wind. We explore the impact of choosing a single representative X-ray frequency on their ability to drive a wind by measuring the maximum heated column as a function of photon energy. We demonstrate that for reasonable luminosities and spectra, the most effective energies are at a few 100 eV, firmly in the softer regions of the X-ray spectrum, while X-rays with energies ~1000 eV interact too weakly with disc gas to provide sufficient heating to drive a wind. We develop a simple model to explain these findings. We argue that further increases in the cooling above our models - for example due to molecular rovibrational lines - may further restrict the heating to the softer energies but are unlikely to prevent X-ray heated winds from launching entirely; increasing the X-ray luminosity has the opposite effect. The various results of photoevaporative wind models should therefore be understood in terms of the choice of irradiating spectrum.


(806)THE THREE HUNDRED project: The GIZMO-SIMBA run
  • Weiguang Cui,
  • Romeel Dave,
  • Alexander Knebe,
  • Elena Rasia,
  • Meghan Gray
  • +20
  • Frazer Pearce,
  • Chris Power,
  • Gustavo Yepes,
  • Dhayaa Anbajagane,
  • Daniel Ceverino,
  • Ana Contreras-Santos,
  • Daniel de Andres,
  • Marco De Petris,
  • Stefano Ettori,
  • Roan Haggar,
  • Qingyang Li,
  • Yang Wang,
  • Xiaohu Yang,
  • Stefano Borgani,
  • Klaus Dolag,
  • Ying Zu,
  • Ulrike Kuchner,
  • Rodrigo Cañas,
  • Antonio Ferragamo,
  • Giulia Gianfagna
  • (less)
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1402
abstract + abstract -

We introduce GIZMO-SIMBA, a new suite of galaxy cluster simulations within THE THREE HUNDRED project. THE THREE HUNDRED consists of zoom re-simulations of 324 clusters with $M_{200}\gtrsim 10^{14.8}\, \mathrm{M}_\odot$ drawn from the MultiDark-Planck N-body simulation, run using several hydrodynamic and semi-analytical codes. The GIZMO-SIMBA suite adds a state-of-the-art galaxy formation model based on the highly successful SIMBA simulation, mildly re-calibrated to match $z$ = 0 cluster stellar properties. Comparing to THE THREE HUNDRED zooms run with GADGET-X, we find intrinsic differences in the evolution of the stellar and gas mass fractions, BCG ages, and galaxy colour-magnitude diagrams, with GIZMO-SIMBA generally providing a good match to available data at $z$ ≍ 0. GIZMO-SIMBA's unique black hole growth and feedback model yields agreement with the observed BH scaling relations at the intermediate-mass range and predicts a slightly different slope at high masses where few observations currently lie. GIZMO-SIMBA provides a new and novel platform to elucidate the co-evolution of galaxies, gas, and black holes within the densest cosmic environments.


(805)Transport model comparison studies of intermediate-energy heavy-ion collisions
  • Hermann Wolter,
  • Maria Colonna,
  • Dan Cozma,
  • Pawel Danielewicz,
  • Che Ming Ko
  • +48
  • Rohit Kumar,
  • Akira Ono,
  • ManYee Betty Tsang,
  • Jun Xu,
  • Ying-Xun Zhang,
  • Elena Bratkovskaya,
  • Zhao-Qing Feng,
  • Theodoros Gaitanos,
  • Arnaud Le Fèvre,
  • Natsumi Ikeno,
  • Youngman Kim,
  • Swagata Mallik,
  • Paolo Napolitani,
  • Dmytro Oliinychenko,
  • Tatsuhiko Ogawa,
  • Massimo Papa,
  • Jun Su,
  • Rui Wang,
  • Yong-Jia Wang,
  • Janus Weil,
  • Feng-Shou Zhang,
  • Guo-Qiang Zhang,
  • Zhen Zhang,
  • Joerg Aichelin,
  • Wolfgang Cassing,
  • Lie-Wen Chen,
  • Hui-Gan Cheng,
  • Hannah Elfner,
  • K. Gallmeister,
  • Christoph Hartnack,
  • Shintaro Hashimoto,
  • Sangyong Jeon,
  • Kyungil Kim,
  • Myungkuk Kim,
  • Bao-An Li,
  • Chang-Hwan Lee,
  • Qing-Feng Li,
  • Zhu-Xia Li,
  • Ulrich Mosel,
  • Yasushi Nara,
  • Koji Niita,
  • Akira Ohnishi,
  • Tatsuhiko Sato,
  • Taesoo Song,
  • Agnieszka Sorensen,
  • Ning Wang,
  • Wen-Jie Xie,
  • (TMEP collaboration)
  • (less)
Progress in Particle and Nuclear Physics, 125 (07/2022) doi:10.1016/j.ppnp.2022.103962
abstract + abstract -

Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with periodic boundary conditions, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.


(804)DustPy -- A Python Package for Dust Evolution in Protoplanetary Disks
  • Sebastian Markus Stammler,
  • Tilman Birnstiel
arXiv e-prints (07/2022) e-Print:2207.00322
abstract + abstract -

Many processes during the evolution of protoplanetary disks and during planet formation are highly sensitive to the sizes of dust particles that are present in the disk: The efficiency of dust accretion in the disk and volatile transport on dust particles, gravoturbulent instabilities leading to the formation of planetesimals, or the accretion of pebbles onto large planetary embryos to form giant planets are typical examples of processes that depend on the sizes of the dust particles involved. Furthermore, radiative properties like absorption or scattering opacities depend on the particle sizes. To interpret observations of dust in protoplanetary disks, a proper estimate of the dust particle sizes is needed. We present DustPy - A Python package to simulate dust evolution in protoplanetary disks. DustPy solves gas and dust transport including viscous advection and diffusion as well as collisional growth of dust particles. DustPy is written with a modular concept, such that every aspect of the model can be easily modified or extended to allow for a multitude of research opportunities.


(803)Updated bounds on axion-like particles from X-ray observations
  • Simon Schallmoser,
  • Sven Krippendorf,
  • Francesca Chadha-Day,
  • Jochen Weller
Monthly Notices of the Royal Astronomical Society, 514, p13 (07/2022) doi:10.1093/mnras/stac1224
abstract + abstract -

In this work, we revisit five different point sources within or behind galaxy clusters to constrain the coupling constant between axion-like particles (ALPs) and photons. We use three distinct machine learning (ML) techniques and compare our results with a standard χ2 analysis. For the first time, we apply approximate Bayesian computation to search for ALPs and find consistently good performance across ML classifiers. Further, we apply more realistic 3D magnetic field simulations of galaxy clusters and compare our results with previously used 1D simulations. We find constraints on the ALP-photon coupling at the level of state-of-the-art bounds with $g_{a\gamma \gamma } \lesssim 0.6 \times 10^{-12} \, \rm{GeV}^{-1}$, hence improving on previous constraints obtained from the same observations.


(802)Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS
  • Agne Semenaite,
  • Ariel G. Sánchez,
  • Andrea Pezzotta,
  • Jiamin Hou,
  • Roman Scoccimarro
  • +8
  • Alexander Eggemeier,
  • Martin Crocce,
  • Chia-Hsun Chuang,
  • Alexander Smith,
  • Cheng Zhao,
  • Joel R. Brownstein,
  • Graziano Rossi,
  • Donald P. Schneider
  • (less)
Monthly Notices of the Royal Astronomical Society, 512, p14 (06/2022) doi:10.1093/mnras/stac829
abstract + abstract -

We present the analysis of the full shape of anisotropic clustering measurement from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) quasar sample together with the combined galaxy sample from the Baryon Oscillation Spectroscopic Survey (BOSS), re-analysed using an updated recipe for the non-linear matter power spectrum and the non-local bias parameters. We obtain constraints for flat Lambda cold dark matter cosmologies, focusing on the cosmological parameters that are independent of the Hubble parameter h. Our recovered value for the Root Mean Square (RMS) linear perturbation theory variance as measured on the scale of $12\, {\rm Mpc}$ is σ12 = 0.805 ± 0.049, while using the traditional reference scale of $8\, h^{-1}\, {\rm Mpc}$ gives σ8 = 0.815 ± 0.044. We quantify the agreement between our measurements and the latest cosmic microwave background data from Planck using the suspiciousness metric, and find them to be consistent within 0.64 ± 0.03σ. Combining our clustering constraints with the 3 × 2pt data sample from the Dark Energy Survey Year 1 release slightly degrades this agreement to the level of 1.54 ± 0.08σ, while still showing an overall consistency with Planck. We furthermore study the effect of imposing a Planck - like prior on the parameters that define the shape of the linear matter power spectrum, and find significantly tighter constraints on the parameters that control the evolution of density fluctuations. In particular, the combination of low-redshift data sets prefers a value of the physical dark energy density ωDE = 0.335 ± 0.011, which is 1.7σ higher than the one preferred by Planck.


(801)Low-Energy Supernovae Severely Constrain Radiative Particle Decays
  • Andrea Caputo,
  • Hans-Thomas Janka,
  • Georg Raffelt,
  • Edoardo Vitagliano
Physical Review Letters, 128 (06/2022) doi:10.1103/PhysRevLett.128.221103
abstract + abstract -

The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly interacting particles such as sterile neutrinos, dark photons, axionlike particles (ALPs), and others. Radiative decays such as a →2 γ deposit this energy in the surrounding material if the mean free path is less than the radius of the progenitor star. For the first time, we use a supernova (SN) population with particularly low explosion energies as the most sensitive calorimeters to constrain this possibility. These SNe are observationally identified as low-luminosity events with low ejecta velocities and low masses of ejected 56Ni. Their low energies limit the energy deposition from particle decays to less than about 0.1 B, where 1 B (bethe)=1051 erg . For 1-500 MeV-mass ALPs, this generic argument excludes ALP-photon couplings Ga γ γ in the 10-10−10-8 GeV-1 range.


(800)Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution
  • Mark A. Hutchison,
  • Jean-David Bodénan,
  • Lucio Mayer,
  • Maria Schönbächler
Monthly Notices of the Royal Astronomical Society, 512, p21 (06/2022) doi:10.1093/mnras/stac765
abstract + abstract -

Meteoritic studies of Solar system objects show evidence of nucleosynthetic heterogeneities that are inherited from small presolar grains ($\lt 10\,\, \mu {\mathrm{m}}$) formed in stellar environments external to our own. The initial distribution and subsequent evolution of these grains are currently unconstrained. Using 3D, gas-dust simulations, we find that isotopic variations on the order of those observed in the Solar system can be generated and maintained by drag and viscosity. Small grains are dragged radially outwards without size/density sorting by viscous expansion and backreaction, enriching the outer disc with presolar grains. Meanwhile large aggregates composed primarily of silicates drift radially inwards due to drag, further enriching the relative portion of presolar grains in the outer disc and diluting the inner disc. The late accumulation of enriched aggregates outside Jupiter could explain some of the isotopic variations observed in Solar system bodies, such as the enrichment of supernovae derived material in carbonaceous chondrites. We also see evidence for isotopic variations in the inner disc that may hold implications for enstatite and ordinary chondrites that formed closer to the Sun. Initial heterogeneities in the presolar grain distribution that are not continuously reinforced are dispersed by diffusion, radial surface flows, and/or planetary interactions over the entire lifetime of the disc. For younger, more massive discs we expect turbulent diffusion to be even more homogenizing, suggesting that dust evolution played a more central role in forming the isotopic anomalies in the Solar system than originally thought.


(799)Rare radiative decays of charm baryons
  • Nico Adolph,
  • Gudrun Hiller
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.116001
abstract + abstract -

We study weak radiative |Δ c |=|Δ u |=1 decays of the charmed antitriplet (Λc, Ξc+, Ξc0) and sextet (Σc++, Σc+, Σc0, Ξc'+, Ξc'0, Ωc) baryons in the standard model (SM) and beyond. We work out S U (2 )- and S U (3 )F-symmetry relations. We propose to study self-analyzing decay chains such as Ξc+→Σ+(→p π0)γ and Ξc0→Λ (→p π-)γ , which enable new physics sensitive polarization studies. SM contributions can be controlled by a corresponding analysis of the Cabibbo-favored decays Λc+→Σ+(→p π0)γ and Ξc0→Ξ0(→Λ π0)γ . Further tests of the SM are available with initially polarized baryons including Λc→p γ together with Λc→Σ+γ decays, or Ωc→Ξ0γ together with Ωc→(Λ ,Σ0)γ . In addition, C P -violating new physics contributions to dipole operators can enhance C P asymmetries up to a few percent.


(798)Static Energy in ($2+1+1$)-Flavor Lattice QCD: Scale Setting and Charm Effects
  • TUMQCD Collaboration,
  • Nora Brambilla,
  • Rafael L. Delgado,
  • Andreas S. Kronfeld,
  • Viljami Leino
  • +4
  • Peter Petreczky,
  • Sebastian Steinbeißer,
  • Antonio Vairo,
  • Johannes H. Weber
  • (less)
arXiv e-prints (06/2022) e-Print:2206.03156
abstract + abstract -

We present results for the static energy in ($2+1+1$)-flavor QCD over a wide range of lattice spacings and several quark masses, including the physical quark mass, with ensembles of lattice-gauge-field configurations made available by the MILC Collaboration. We obtain results for the static energy out to distances of nearly $1$~fm, allowing us to perform a simultaneous determination of the scales $r_{1}$ and $r_{0}$ as well as the string tension, $\sigma$. For the smallest three lattice spacings we also determine the scale $r_{2}$. Our results for $r_{0}/r_{1}$ and $r_{0}\sqrt{\sigma}$ agree with published ($2+1$)-flavor results. However, our result for $r_{1}/r_{2}$ differs significantly from the value obtained in the ($2+1$)-flavor case, which is most likely due to the effect of the charm quark. We also report results for $r_{0}$, $r_{1}$, and $r_{2}$ in~fm, with the former two being slightly lower than published ($2+1$)-flavor results. We study in detail the effect of the charm quark on the static energy by comparing our results on the finest two lattices with the previously published ($2+1$)-flavor QCD results at similar lattice spacing. We find that for $r > 0.2$~fm our results on the static energy agree with the ($2+1$)-flavor result, implying the decoupling of the charm quark for these distances. For smaller distances, on the other hand, we find that the effect of the dynamical charm quark is noticeable. The lattice results agree well with the two-loop perturbative expression of the static energy incorporating finite charm mass effects. This is the first time that the decoupling of the charm quark is observed and quantitatively analyzed on lattice data of the static energy.


(797)Effects of boosting on extragalactic components: methods and statistical studies
  • William Coulton,
  • Sydney Feldman,
  • Karime Maamari,
  • Elena Pierpaoli,
  • Siavash Yasini
  • +1
Monthly Notices of the Royal Astronomical Society, 513, p19 (06/2022) doi:10.1093/mnras/stac1017
abstract + abstract -

In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and Sunyaev-Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by ${\sim}30{{\ \rm per\ cent}}$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $O(1){{\ \rm per\ cent}}$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky - in practice this anisotropy comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods.


(796)HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program
  • Yiping Shu,
  • Raoul Cañameras,
  • Stefan Schuldt,
  • Sherry H. Suyu,
  • Stefan Taubenberger
  • +2
  • Kaiki Taro Inoue,
  • Anton T. Jaelani
  • (less)
Astronomy and Astrophysics, 662, p22 (06/2022) doi:10.1051/0004-6361/202243203
abstract + abstract -

We carry out a search for strong-lens systems containing high-redshift lens galaxies with the goal of extending strong-lensing-assisted galaxy evolutionary studies to earlier cosmic time. Two strong-lens classifiers are constructed from a deep residual network and trained with datasets of different lens-redshift and brightness distributions. We classify a sample of 5 356 628 pre-selected objects from the Wide-layer fields in the second public data release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) by applying the two classifiers to their HSC gri-filter cutouts. Cutting off at thresholds that correspond to a false positive rate of 10−3 on our test set, the two classifiers identify 5468 and 6119 strong-lens candidates. Visually inspecting the cutouts of those candidates results in 735 grade-A or B strong-lens candidates in total, of which 277 candidates are discovered for the first time. This is the single largest set of galaxy-scale strong-lens candidates discovered with HSC data to date, and nearly half of it (331/735) contains lens galaxies with photometric redshifts above 0.6. Our discoveries will serve as a valuable target list for ongoing and scheduled spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, the Subaru Prime Focus Spectrograph project, and the Maunakea Spectroscopic Explorer.

Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/662/A4


(795)SHARP - VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging
  • Geoff C. -F. Chen,
  • Christopher D. Fassnacht,
  • Sherry H. Suyu,
  • Léon V. E. Koopmans,
  • David J. Lagattuta
  • +4
  • John P. McKean,
  • Matt W. Auger,
  • Simona Vegetti,
  • Tommaso Treu
  • (less)
Monthly Notices of the Royal Astronomical Society, 513, p11 (06/2022) doi:10.1093/mnras/stac1081
abstract + abstract -

Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131-1231, HE 0435-1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ~15 per cent precision.


(794)Heavy quark diffusion coefficient with gradient flow
  • Nora Brambilla,
  • Viljami Leino,
  • Julian Mayer-Steudte,
  • Peter Petreczky
arXiv e-prints (06/2022) e-Print:2206.02861
abstract + abstract -

We calculate chromo-electric and chromo-magnetic correlators in quenched QCD at $1.5T_c$ and $10^4 T_c$ with the aim to estimate the heavy quark diffusion coefficient at leading order in the inverse heavy quark mass expansion, $\kappa_E$, as well as the coefficient of first mass suppressed correction, $\kappa_B$. We use gradient flow for noise reduction. At $1.5T_c$ we obtain: $1.70 \le \kappa_E/T^3 \le 3.12$ and $1.23< \kappa_B/T^3 < 2.74$. The latter implies that the mass suppressed effects in the heavy quark diffusion coefficient are 20% for bottom quarks and 34% for charm quark at this temperature.


(793)Low-luminosity type IIP supernovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions
  • Alexandra Kozyreva,
  • Hans-Thomas Janka,
  • Daniel Kresse,
  • Stefan Taubenberger,
  • Petr Baklanov
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1518
abstract + abstract -

SN 2020cxd is a representative of the family of low-energy, underluminous Type IIP supernovae (SNe), whose observations and analysis were recently reported by Yang et al. (2021). Here we re-evaluate the observational data for the diagnostic SN properties by employing the hydrodynamic explosion model of a 9 M red supergiant progenitor with an iron core and a pre-collapse mass of 8.75 M. The explosion of the star was obtained by the neutrino-driven mechanism in a fully self-consistent simulation in three dimensions (3D). Multi-band light curves and photospheric velocities for the plateau phase are computed with the one-dimensional radiation-hydrodynamics code STELLA, applied to the spherically averaged 3D explosion model as well as sphericized radial profiles in different directions of the 3D model. We find that the overall evolution of the bolometric light curve, duration of the plateau phase, and basic properties of the multi-band emission can be well reproduced by our SN model with its explosion energy of only 0.7 × 1050 erg and an ejecta mass of 7.4 M. These values are considerably lower than the previously reported numbers, but they are compatible with those needed to explain the fundamental observational properties of the prototype low-luminosity SN 2005cs. Because of the good compatibility of our photospheric velocities with line velocities determined for SN 2005cs, we conclude that the line velocities of SN 2020cxd are probably overestimated by up to a factor of about 3. The evolution of the line velocities of SN 2005cs compared to photospheric velocities in different explosion directions might point to intrinsic asymmetries in the SN ejecta.


(792)Spin fields for the spinning particle
  • E. Boffo,
  • I. Sachs
arXiv e-prints (06/2022) e-Print:2206.03243
abstract + abstract -

We propose an analogue of spin fields for the relativistic RNS-particle in 4 dimensions, in order to describe Ramond-Ramond states as "two-particle" excitations on the world line. On a natural representation space we identify a differential whose cohomology agrees with RR-fields equations. We then discuss the non-linear theory encoded in deformations of the latter by background fields. We also formulate a sigma model for this spin field from which we recover the RNS-formulation by imposing suitable constraints.


(791){\Lambda}CDM with baryons vs. MOND: the time evolution of the universal acceleration scale in the Magneticum simulations
  • Alexander C. Mayer,
  • Adelheid F. Teklu,
  • Klaus Dolag,
  • Rhea-Silvia Remus
arXiv e-prints (06/2022) e-Print:2206.04333
abstract + abstract -

MOdified Newtonian Dynamics (MOND) is an alternative to the standard Cold Dark Matter (CDM) paradigm which proposes an alteration of Newton's laws of motion at low accelerations, characterized by a universal acceleration scale a_0. It attempts to explain observations of galactic rotation curves and predicts a specific scaling relation of the baryonic and total acceleration in galaxies, referred to as the Rotational Acceleration Relation (RAR), which can be equivalently formulated as a Mass Discrepancy Acceleration Relation (MDAR). The appearance of these relations in observational data such as SPARC has lead to investigations into the existence of similar relations in cosmological simulations using the standard {\Lambda}CDM model. Here, we report the existence of an RAR and MDAR similar to that predicted by MOND in {\Lambda}CDM using a large sample of galaxies extracted from a cosmological, hydrodynamical simulation (Magneticum). Furthermore, by using galaxies in Magneticum at different redshifts, a prediction for the evolution of the inferred acceleration parameter a_0 with cosmic time is derived by fitting a MOND force law to these galaxies. In Magneticum, the best fit for a_0 is found to increase by a factor of approximately 3 from redshift z = 0 to z = 2. This offers a powerful test from cosmological simulations to distinguish between MOND and {\Lambda}CDM observationally.


(790)Improved Theory Predictions and Global Analysis of Exclusive $\boldsymbol{b\to s\mu^+\mu^-}$ Processes
  • Nico Gubernari,
  • Méril Reboud,
  • Danny van Dyk,
  • Javier Virto
arXiv e-prints (06/2022) e-Print:2206.03797
abstract + abstract -

We provide improved Standard Model theory predictions for the exclusive rare semimuonic processes $B\to K^{(*)}\mu^+\mu^-$ and $B_s\to\phi\mu^+\mu^-$. Our results are based on a novel parametrization of the non-local form factors, which manifestly respects a recently developed dispersive bound. We critically compare our predictions to those obtained in the framework of QCD factorization. Our predictions provide, for the first time, parametric estimates of the systematic uncertainties due to non-local contributions. Comparing our predictions within the Standard Model to available experimental data, we find a large tension for $B\to K\mu^+\mu^-$. A simple model-independent analysis of potential effects beyond the Standard Model yields results compatible with other approaches, albeit with larger uncertainties for the $B\to K^*\mu^+\mu^-$ and $B_s\to \phi\mu^+\mu^-$ decays. Our approach yields systematically improvable predictions, and we look forward to its application in further analyses beyond the Standard Model.


(789)AAfrag 2.01: Interpolation routines for Monte Carlo results on secondary production including light antinuclei in hadronic interactions
  • M. Kachelriess,
  • S. Ostapchenko,
  • J. Tjemsland
arXiv e-prints (06/2022) e-Print:2206.00998
abstract + abstract -

Light antinuclei, like antideuteron and antihelium-3, are ideal probes for new, exotic physics because their astrophysical backgrounds are suppressed at low energies. In order to exploit fully the inherent discovery potential of light antinuclei, a reliable description of their production cross sections in cosmic ray interactions is crucial. We provide therefore the cross sections of antideuteron and antihelium-3 production in $pp$, $p$He, He$p$, HeHe, $\bar pp$ and $\bar p$He collisions at energies relevant for secondary production in the Milky Way, in a tabulated form which is convinient to use. These predictions are based on QGSJET-II-04m and the state of the art coalescence model WiFunC, which evaluates the coalesence probability on an event-by-event basis, including both momentum correlations and the dependence on the emission volume. In addition, we comment on the importance of a Monte Carlo description of the antideuteron production and on the use of event generators in general. In particular, we discuss the effect of two-particle momentum correlations provided by Monte Carlo event generators on antinuclei production.


(788)Radioactive Decay
  • Roland Diehl
arXiv e-prints (06/2022) e-Print:2206.03193
abstract + abstract -

Radioactive decay of unstable atomic nuclei leads to liberation of nuclear binding energy in the forms of gamma-ray photons and secondary particles (electrons, positrons); their energy then energises surrounding matter. Unstable nuclei are formed in nuclear reactions, which can occur either in hot and dense extremes of stellar interiors or explosions, or from cosmic-ray collisions. In high-energy astronomy, direct observations of characteristic gamma-ray lines from the decay of radioactive isotopes are important tools to study the process of cosmic nucleosynthesis and its sources, as well as tracing the flows of ejecta from such sources of nucleosynthesis. These observations provide a valuable complement to indirect observations of radioactive energy deposits, such as the measurement of supernova light in the optical. Here we present basics of radioactive decay in astrophysical context, and how gamma-ray lines reveal details about stellar interiors, about explosions on stellar surfaces or of entire stars, and about the interstellar-medium processes that direct the flow and cooling of nucleosynthesis ashes once having left their sources. We address radioisotopes such as $^{56}$Ni, $^{44}$Ti, $^{26}$Al, $^{60}$Fe, $^{22}$Na, $^{7}$Be, and also how characteristic gamma-ray emission from the annihilation of positrons is connected to these.


(787)STRIDES: Automated uniform models for 30 quadruply imaged quasars
  • T. Schmidt,
  • T. Treu,
  • S. Birrer,
  • A. J. Shajib,
  • C. Lemon
  • +66
  • M. Millon,
  • D. Sluse,
  • A. Agnello,
  • T. Anguita,
  • M. W. Auger-Williams,
  • R. G. McMahon,
  • V. Motta,
  • P. Schechter,
  • C. Spiniello,
  • I. Kayo,
  • F. Courbin,
  • S. Ertl,
  • C. D. Fassnacht,
  • J. A. Frieman,
  • A. More,
  • S. Schuldt,
  • S. H. Suyu,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • D. L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L. N. da Costa,
  • M. E. S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • S. R. Hinton,
  • D. L. Hollowood,
  • K. Honscheid,
  • D. J. James,
  • K. Kuehn,
  • O. Lahav,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A. K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T. N. Varga
  • (less)
arXiv e-prints (06/2022) e-Print:2206.04696
abstract + abstract -

Gravitational time delays provide a powerful one step measurement of $H_0$, independent of all other probes. One key ingredient in time delay cosmography are high accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (10$^{5-6}$ CPU hours and $\sim$ 0.5-1 year, respectively). Major improvements in modeling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, building on the work by Shajib et al. (2019), we develop an automated modeling pipeline and apply it to a sample of 30 quadruply imaged quasars and one lensed compact galaxy, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in Fermat potential (proportional to time delay) w.r.t. modeling choices. We find that for 10/30 lenses our models are cosmography or nearly cosmography grade (<3% and 3-5% variations). For 6/30 lenses the models are close to cosmography grade (5-10%). These results are based on informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modeling sequence and options. In conclusion, we show that uniform cosmography grade modeling of large strong lens samples is within reach.


(786)A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback
  • P. Barrère,
  • J. Guilet,
  • A. Reboul-Salze,
  • R. Raynaud,
  • H. -T. Janka
arXiv e-prints (06/2022) e-Print:2206.01269
abstract + abstract -

Magnetars are isolated young neutron stars characterized by the most intense magnetic fields known in the universe. The origin of their magnetic field is still a challenging question. In situ magnetic field amplification by dynamo action is a promising process to generate ultra-strong magnetic fields in fast-rotating progenitors. However, it is unclear whether the fraction of progenitors harboring fast core rotation is sufficient to explain the entire magnetar population. To address this point, we propose a new scenario for magnetar formation, in which a slow-rotating proto-neutron star is spun up by the supernova fallback. We argue that this can trigger the development of the Tayler-Spruit dynamo while other dynamo processes are disfavored. Using previous works done on this dynamo and simulations to characterize the fallback, we derive equations modelling the coupled evolution of the proto-neutron star rotation and magnetic field. Their time integration for different fallback masses is successfully compared with analytical estimates of the amplification timescales and saturation value of the magnetic field. We find that the magnetic field is amplified within $20$ to $40$s after the core bounce, and that the radial magnetic field saturates at intensities $10^{14}-10^{15}$G, therefore spanning the full range of magnetar's dipolar magnetic fields. We also compare predictions of two proposed saturation mechanisms showing that magnetar-like magnetic fields can be generated for neutron star spun up to rotation periods $\lesssim8$ms and $\lesssim28$ms, corresponding to fallback masses $\gtrsim4\times10^{-2}{\rm M}_{\odot}$ and $\gtrsim10^{-2}{\rm M}_{\odot}$. Thus, our results suggest that magnetars can be formed from slow-rotating progenitors for fallback masses compatible with recent supernova simulations and leading to plausible initial rotation periods of the proto-neutron star.


(785)CO and [CII] line emission of molecular clouds -- the impact of stellar feedback and non-equilibrium chemistry
  • S. Ebagezio,
  • D. Seifried,
  • S. Walch,
  • P. C. Nürnberger,
  • T. E. Rathjen
  • +1
arXiv e-prints (06/2022) e-Print:2206.06393
abstract + abstract -

We analyse synthetic $^{12}$CO, $^{13}$CO, and [CII] emission maps of simulated molecular clouds of the SILCC-Zoom project, which include an on-the-fly evolution of H$_2$, CO, and C$^+$. We use simulations of hydrodynamical and magnetohydrodynamical clouds, both with and without stellar feedback. We introduce a novel post-processing of the C$^+$ abundance using CLOUDY, to account for further ionization states of carbon due to stellar radiation. We report the first self-consistent synthetic emission maps of [CII] in feedback bubbles, largely devoid of emission inside them, as recently found in observations. The C$^+$ mass is only poorly affected by stellar feedback but the [CII] luminosity increases by $50 - 85$ per cent compared to runs without feedback. Furthermore, we investigate the capability of the CO/[CII] line ratio as a tracer of the amount of H$_2$ in the clouds and their evolutionary stage. We obtain, for both $^{12}$CO and $^{13}$CO, no clear trend of the luminosity ratio, $L_\mathrm{CO}/L_\mathrm{[CII]}$. It can therefore \textit{not} be used as a reliable measure of the H$_2$ mass fraction. We note a monotonic relation between $L_\mathrm{CO}/L_\mathrm{[CII]}$ and the H$_2$ fraction when considering the ratio for individual pixels of our synthetic maps, but with large scatter. Moreover, we show that assuming chemical equilibrium results in an overestimation of H$_2$ and CO masses of up to 110 and 30 per cent, respectively, and in an underestimation of H and C$^+$ masses of 65 and 7 per cent, respectively. In consequence, $L_\mathrm{CO}$ would be overestimated by up to 50 per cent, and $L_\mathrm{C[II]}$ be underestimated by up to 35 per cent. Hence, the assumption of chemical equilibrium in molecular cloud simulations introduces intrinsic errors of a factor of up to $\sim2$ in chemical abundances, luminosities and luminosity ratios.


(784)Weak solutions of Mullins-Sekerka flow as a Hilbert space gradient flow
  • Sebastian Hensel,
  • Kerrek Stinson
arXiv e-prints (06/2022) e-Print:2206.08246
abstract + abstract -

We propose a novel weak solution theory for the Mullins-Sekerka equation primarily motivated from a gradient flow perspective. Previous existence results on weak solutions due to Luckhaus and Sturzenhecker (Calc. Var. PDE 3, 1995) or Röger (SIAM J. Math. Anal. 37, 2005) left open the inclusion of both a sharp energy dissipation principle and a weak formulation of the contact angle at the intersection of the interface and the domain boundary. To incorporate these, we introduce a functional framework encoding a weak solution concept for Mullins-Sekerka flow essentially relying only on (i) a single sharp energy dissipation inequality in the spirit of De~Giorgi, and (ii) a weak formulation for an arbitrary fixed contact angle through a distributional representation of the first variation of the underlying capillary energy. Both ingredients are intrinsic to the interface of the evolving phase indicator and an explicit distributional PDE formulation with potentials can be derived from them. Existence of weak solutions is established via subsequential limit points of the naturally associated minimizing movements scheme. Smooth solutions are consistent with the classical Mullins-Sekerka flow, and even further, we expect our solution concept to be amenable, at least in principle, to the recently developed relative entropy approach for curvature driven interface evolution.


(783)Strange physics of dark baryons
  • Gonzalo Alonso-Álvarez,
  • Gilly Elor,
  • Miguel Escudero,
  • Bartosz Fornal,
  • Benjamín Grinstein
  • +1
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.115005
abstract + abstract -

Dark sector particles at the GeV scale carrying baryon number provide an attractive framework for understanding the origin of dark matter and the matter-antimatter asymmetry of the universe. We demonstrate that dark decays of hadronic states containing strange quarks—hyperons—offer excellent prospects for discovering such dark baryons. Building up on novel calculations of the matrix elements relevant for hyperon dark decays, and in view of various collider, flavor, and astrophysical constraints, we determine the expected rates at hyperon factories like BESIII and LHCb. We also highlight the interesting theoretical connections of hyperon dark decays to the neutron lifetime anomaly and mesogenesis.


(782)Marginal Tail-Adaptive Normalizing Flows
  • Mike Laszkiewicz,
  • Johannes Lederer,
  • Asja Fischer
arXiv e-prints (06/2022) e-Print:2206.10311
abstract + abstract -

Learning the tail behavior of a distribution is a notoriously difficult problem. By definition, the number of samples from the tail is small, and deep generative models, such as normalizing flows, tend to concentrate on learning the body of the distribution. In this paper, we focus on improving the ability of normalizing flows to correctly capture the tail behavior and, thus, form more accurate models. We prove that the marginal tailedness of an autoregressive flow can be controlled via the tailedness of the marginals of its base distribution. This theoretical insight leads us to a novel type of flows based on flexible base distributions and data-driven linear layers. An empirical analysis shows that the proposed method improves on the accuracy -- especially on the tails of the distribution -- and is able to generate heavy-tailed data. We demonstrate its application on a weather and climate example, in which capturing the tail behavior is essential.


(781)The PEPSI exoplanet transit survey (PETS) I: investigating the presence of a silicate atmosphere on the super-earth 55 Cnc e
  • Engin Keles,
  • Matthias Mallonn,
  • Daniel Kitzmann,
  • Katja Poppenhaeger,
  • H. Jens Hoeijmakers
  • +24
  • Ilya Ilyin,
  • Xanthippi Alexoudi,
  • Thorsten A. Carroll,
  • Julian Alvarado-Gomez,
  • Laura Ketzer,
  • Aldo S. Bonomo,
  • Francesco Borsa,
  • B. Scott Gaudi,
  • Thomas Henning,
  • Luca Malavolta,
  • Karan Molaverdikhani,
  • Valerio Nascimbeni,
  • Jennifer Patience,
  • Lorenzo Pino,
  • Gaetano Scandariato,
  • Everett Schlawin,
  • Evgenya Shkolnik,
  • Daniela Sicilia,
  • Alessandro Sozzetti,
  • Mary G. Foster,
  • Christian Veillet,
  • Ji Wang,
  • Fei Yan,
  • Klaus G. Strassmeier
  • (less)
Monthly Notices of the Royal Astronomical Society, 513, p13 (06/2022) doi:10.1093/mnras/stac810
abstract + abstract -

The study of exoplanets and especially their atmospheres can reveal key insights on their evolution by identifying specific atmospheric species. For such atmospheric investigations, high-resolution transmission spectroscopy has shown great success, especially for Jupiter-type planets. Towards the atmospheric characterization of smaller planets, the super-Earth exoplanet 55 Cnc e is one of the most promising terrestrial exoplanets studied to date. Here, we present a high-resolution spectroscopic transit observation of this planet, acquired with the PEPSI instrument at the Large Binocular Telescope. Assuming the presence of Earth-like crust species on the surface of 55 Cnc e, from which a possible silicate-vapor atmosphere could have originated, we search in its transmission spectrum for absorption of various atomic and ionized species such as Fe , Fe +, Ca , Ca +, Mg, and K , among others. Not finding absorption for any of the investigated species, we are able to set absorption limits with a median value of 1.9 × RP. In conclusion, we do not find evidence of a widely extended silicate envelope on this super-Earth reaching several planetary radii.


(780)LYRA - II. Cosmological dwarf galaxy formation with inhomogeneous Population III enrichment
  • Thales A. Gutcke,
  • Rüdiger Pakmor,
  • Thorsten Naab,
  • Volker Springel
Monthly Notices of the Royal Astronomical Society, 513, p14 (06/2022) doi:10.1093/mnras/stac867
abstract + abstract -

We present the simulation of a $2\times 10^{9}\, \mathrm{M}_{\odot }$ halo mass cosmological dwarf galaxy run to z = 0 at 4 solar mass gas resolution with resolved supernova feedback. We compare three simple subgrid implementations for the inhomogeneous chemical enrichment from Population III stars and compare them to constraints from Local Group dwarf galaxies. The employed model, LYRA, is a novel high-resolution galaxy formation model built for the moving mesh code AREPO, which is marked by a resolved multiphase interstellar medium, single stars, and individual supernova events. The resulting reionization relic is characterized by a short (<1.5 Gyr) star formation history that is repeatedly brought to a standstill by violent bursts of feedback. Star formation is reignited for a short duration due to a merger at z ≍ 4 and then again at z ≍ 0.2-0 after sustained gas accretion. Our model z = 0 galaxy matches the stellar mass, size, stellar kinematics, and metallicity relations of Local Group dwarf galaxies well. The dark matter profile does not exhibit a core in any version of the model. We show that the host halo masses of Population III stars affect the assembly history of dwarf galaxies. This manifests itself through the initial gaseous collapse in the progenitor haloes, affecting the central density of the stellar component and through the accretion of luminous substructure.


(779)SN 2016dsg: A Thermonuclear Explosion Involving A Thick Helium Shell
  • Yize Dong,
  • Stefano Valenti,
  • Abigail Polin,
  • Aoife Boyle,
  • andreas flörs
  • +27
  • Christian Vogl,
  • Wolfgang Kerzendorf,
  • David Sand,
  • Saurabh Jha,
  • Lukasz Wyrzykowski,
  • K. Bostroem,
  • Jeniveve Pearson,
  • Curtis McCully,
  • Jennifer Andrew,
  • Stefano Benettii,
  • Stephane Blondin,
  • Lluís Galbany,
  • Mariusz Gromadzki,
  • Griffin Hosseinzadeh,
  • D. Andrew Howell,
  • Cosimo Inserra,
  • Jacob Jencson,
  • M. Lundquist,
  • Joseph Lyman,
  • Mark Magee,
  • Kate Maguire,
  • Nicolas Meza,
  • Shubham Srivastav,
  • Stefan Taubenberger,
  • J Terwel,
  • Samuel Wyatt,
  • David Young
  • (less)
arXiv e-prints (06/2022) e-Print:2206.07065
abstract + abstract -

A thermonuclear explosion triggered by a helium-shell detonation on a carbon-oxygen white dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during helium-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a sub-luminous peculiar Type I SN consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the $i$-band peak absolute magnitude is derived to be around -17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O I $\lambda$7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700-10500 Åis detected in the near-infrared spectrum and is likely from the unburnt helium in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar mass white dwarf with a thick helium shell, while the photometric evolution is not well described by existing models.


(778)Production and polarization of S -wave quarkonia in potential nonrelativistic QCD
  • Nora Brambilla,
  • Hee Sok Chung,
  • Antonio Vairo,
  • Xiang-Peng Wang
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.L111503
abstract + abstract -

Based on the potential nonrelativistic QCD formalism, we compute the nonrelativistic QCD long-distance matrix elements (LDMEs) for inclusive production of S -wave heavy quarkonia. This greatly reduces the number of nonperturbative unknowns and brings in a substantial enhancement in the predictive power of the nonrelativistic QCD factorization formalism. We obtain improved determinations of the LDMEs and find cross sections and polarizations of J /ψ , ψ (2 S ), and excited ϒ states that agree well with LHC data. Our results may have important implications in pinning down the heavy quarkonium production mechanism.


(777)Unusual gas structure in an otherwise normal spiral galaxy hosting GRB 171205A / SN 2017iuk
  • M. Arabsalmani,
  • S. Roychowdhury,
  • F. Renaud,
  • A. Burkert,
  • E. Emsellem
  • +2
arXiv e-prints (06/2022) e-Print:2206.07060
abstract + abstract -

We study the structure of atomic hydrogen (HI) in the host galaxy of GRB 171205A / SN 2017iuk at z=0.037 through HI 21cm emission line observations with the Karl G. Jansky Very Large Array. These observations reveal unusual morphology and kinematics of the HI in this otherwise apparently normal galaxy. High column density, cold HI is absent from an extended North-South region passing by the optical centre of the galaxy, but instead is extended towards the South, on both sides of the galaxy. Moreover, the HI kinematics do not show a continuous change along the major axis of the galaxy as expected in a classical rotating disk. We explore several scenarios to explain the HI structure and kinematics in the galaxy: feedback from a central starburst and/or an active galactic nucleus, ram pressure stripping, accretion, and tidal interaction from a companion galaxy. All of these options are ruled out. The most viable remaining explanation is the penetrating passage of a satellite through the disk only a few Myr ago, redistributing the HI in the GRB host without yet affecting its stellar distribution. It can also lead to the rapid formation of peculiar stars due to a violent induced shock. The location of GRB 171205A in the vicinity of the distorted area suggests that its progenitor star(s) originated in extreme conditions that share the same origin as the peculiarities in HI. This could explain the atypical location of GRB 171205A in its host galaxy.


(776)Lattice simulations of Abelian gauge fields coupled to axions during inflation
  • Angelo Caravano,
  • Eiichiro Komatsu,
  • Kaloian D. Lozanov,
  • Jochen Weller
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.123530
abstract + abstract -

We use a lattice simulation to study a model of axion inflation where the inflaton is coupled to a U(1) gauge field through Chern-Simons interaction. These kinds of models have already been studied with a lattice simulation in the context of reheating. In this work, we focus on the deep inflationary phase and discuss the new aspects that need to be considered in order to simulate gauge fields in this regime. Our main result is reproducing with precision the growth of the gauge field on the lattice induced by the rolling of the axion on its potential, thus recovering the results of linear perturbation theory for this model. In order to do so, we study in detail how the spatial discretization, through the choice of the spatial derivatives on the lattice, influences the dynamics of the gauge field. We find that the evolution of the gauge field is highly sensitive to the choice of the spatial discretization scheme. Nevertheless, we are able to identify a discretization scheme for which the growth of the gauge field on the lattice reproduces the one of continuous space with good precision.


(775)EOS: a software for flavor physics phenomenology
  • D. van Dyk,
  • F. Beaujean,
  • T. Blake,
  • C. Bobeth,
  • M. Bordone
  • +16
  • K. Dugic,
  • E. Eberhard,
  • N. Gubernari,
  • E. Graverini,
  • M. Jung,
  • A. Kokulu,
  • S. Kürten,
  • D. Leljak,
  • P. Lüghausen,
  • S. Meiser,
  • M. Rahimi,
  • M. Reboud,
  • R. Silva Coutinho,
  • J. Virto,
  • K. K. Vos,
  • EOS Authors
  • (less)
European Physical Journal C, 82 (06/2022) doi:10.1140/epjc/s10052-022-10177-4
abstract + abstract -

EOS is an open-source software for a variety of computational tasks in flavor physics. Its use cases include theory predictions within and beyond the Standard Model of particle physics, Bayesian inference of theory parameters from experimental and theoretical likelihoods, and simulation of pseudo events for a number of signal processes. EOS ensures high-performance computations through a C++ back-end and ease of usability through a Python front-end. To achieve this flexibility, EOS enables the user to select from a variety of implementations of the relevant decay processes and hadronic matrix elements at run time. In this article, we describe the general structure of the software framework and provide basic examples. Further details and in-depth interactive examples are provided as part of the EOS online documentation.


(774)STRIDES: Automated uniform models for 30 quadruply imaged quasars
  • T. Schmidt,
  • T. Treu,
  • S. Birrer,
  • A.J. Shajib,
  • C. Lemon
  • +66
  • M. Millon,
  • D. Sluse,
  • A. Agnello,
  • T. Anguita,
  • M.W. Auger-Williams,
  • R.G. McMahon,
  • V. Motta,
  • P. Schechter,
  • C. Spiniello,
  • I. Kayo,
  • F. Courbin,
  • S. Ertl,
  • C.D. Fassnacht,
  • J.A. Frieman,
  • A. More,
  • S. Schuldt,
  • S.H. Suyu,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • D.L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • K. Kuehn,
  • O. Lahav,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T.N. Varga
  • (less)
(06/2022) e-Print:2206.04696
abstract + abstract -

Gravitational time delays provide a powerful one step measurement of $H_0$, independent of all other probes. One key ingredient in time delay cosmography are high accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (10$^{5-6}$ CPU hours and $\sim$ 0.5-1 year, respectively). Major improvements in modeling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, building on the work by Shajib et al. (2019), we develop an automated modeling pipeline and apply it to a sample of 30 quadruply imaged quasars and one lensed compact galaxy, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in Fermat potential (proportional to time delay) w.r.t. modeling choices. We find that for 10/30 lenses our models are cosmography or nearly cosmography grade (<3% and 3-5% variations). For 6/30 lenses the models are close to cosmography grade (5-10%). These results are based on informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modeling sequence and options. In conclusion, we show that uniform cosmography grade modeling of large strong lens samples is within reach.


(773)Toward RNA Life on Early Earth: From Atmospheric HCN to Biomolecule Production in Warm Little Ponds
  • Ben K. D. Pearce,
  • Karan Molaverdikhani,
  • Ralph E. Pudritz,
  • Thomas Henning,
  • Kaitlin E. Cerrillo
The Astrophysical Journal, 932, p21 (06/2022) doi:10.3847/1538-4357/ac47a1
abstract + abstract -

The origin of life on Earth involves the early appearance of an information-containing molecule such as RNA. The basic building blocks of RNA could have been delivered by carbon-rich meteorites or produced in situ by processes beginning with the synthesis of hydrogen cyanide (HCN) in the early Earth's atmosphere. Here, we construct a robust physical and nonequilibrium chemical model of the early Earth's atmosphere. The atmosphere is supplied with hydrogen from impact degassing of meteorites, water evaporated from the oceans, carbon dioxide from volcanoes, and methane from undersea hydrothermal vents, and in it lightning and external UV-driven chemistry produce HCN. This allows us to calculate the rain-out of HCN into warm little ponds (WLPs). We then use a comprehensive numerical model of sources and sinks to compute the resulting abundances of nucleobases, ribose, and nucleotide precursors such as 2-aminooxazole resulting from aqueous and UV-driven chemistry within them. We find that 4.4 billion years ago the limit of adenine concentrations in ponds for habitable surfaces is 0.05 μM in the absence of seepage. Meteorite delivery of adenine to WLPs can provide boosts in concentration by 2-3 orders of magnitude, but these boosts deplete within months by UV photodissociation, seepage, and hydrolysis. The early evolution of the atmosphere is dominated by the decrease in hydrogen due to falling impact rates and atmospheric escape, and the rise of oxygenated species such as OH from H2O photolysis. The source of HCN is predominantly from UV radiation rather than lightning. Our work points to an early origin of RNA on Earth within ~200 Myr of the Moon-forming impact.


(772)Mapping "out-of-the-box" the properties of the baryons in massive halos
  • M. Angelinelli,
  • S. Ettori,
  • K. Dolag,
  • F. Vazza,
  • A. Ragagnin
arXiv e-prints (06/2022) e-Print:2206.08382
abstract + abstract -

We study the distributions of the baryons in massive halos ($M_{vir} > 10^{13} \ h^{-1}M_{\odot}$) in the $Magneticum$ suite of Smoothed Particle Hydrodynamical cosmological simulations, out to the unprecedented radial extent of $10 R_{500,\mathrm c}$. We confirm that, under the action of non-gravitational physical phenomena, the baryon mass fraction is lower in the inner regions ($<R_{500,\mathrm c}$) of increasingly less massive halos, and rises moving outwards, with values that spans from 51% (87%) in the regions around $R_{500,\mathrm c}$ to 95% (100%) at $10R_{500,\mathrm c}$ of the cosmological value in the systems with the lowest (highest; $M_{vir} \sim 5 \times 10^{14} \ h^{-1}M_{\odot}$) masses. The galaxy groups almost match the gas (and baryon) fraction measured in the most massive halos only at very large radii ($r>6 R_{500,\mathrm c}$), where the baryon depletion factor $Y_{\rm bar} = f_{\rm bar} / (\Omega_{\rm b}/\Omega_{\rm m})$ approaches the value of unity, expected for "closed-box" systems. We find that both the radial and mass dependency of the baryon, gas, and hot depletion factors are predictable and follow a simple functional form. The star mass fraction is higher in less massive systems, decreases systematically with increasing radii, and reaches a constant value of $Y_{\rm star} \approx 0.09$, where also the gas metallicity is constant, regardless of the host halo mass, as a result of the early ($z>2$) enrichment process.


(771)A detailed analysis of the Gl 486 planetary system
  • J. A. Caballero,
  • E. Gonzalez-Alvarez,
  • M. Brady,
  • T. Trifonov,
  • T. G. Ellis
  • +62
  • C. Dorn,
  • C. Cifuentes,
  • K. Molaverdikhani,
  • J. L. Bean,
  • T. Boyajian,
  • E. Rodriguez,
  • J. Sanz-Forcada,
  • M. R. Zapatero Osorio,
  • C. Abia,
  • P. J. Amado,
  • N. Anugu,
  • V. J. S. Bejar,
  • C. L. Davies,
  • S. Dreizler,
  • F. Dubois,
  • J. Ennis,
  • N. Espinoza,
  • C. D. Farrington,
  • A. Garcia Lopez,
  • T. Gardner,
  • A. P. Hatzes,
  • Th. Henning,
  • E. Herrero,
  • E. Herrero-Cisneros,
  • A. Kaminski,
  • D. Kasper,
  • R. Klement,
  • S. Kraus,
  • A. Labdon,
  • C. Lanthermann,
  • J. -B. Le Bouquin,
  • M. J. Lopez Gonzalez,
  • R. Luque,
  • A. W. Mann,
  • E. Marfil,
  • J. D. Monnier,
  • D. Montes,
  • J. C. Morales,
  • E. Palle,
  • S. Pedraz,
  • A. Quirrenbach,
  • S. Reffert,
  • A. Reiners,
  • I. Ribas,
  • C. Rodriguez-Lopez,
  • G. Schaefer,
  • A. Schweitzer,
  • A. Seifahrt,
  • B. R. Setterholm,
  • Y. Shan,
  • D. Shulyak,
  • E. Solano,
  • K. R. Sreenivas,
  • G. Stefansson,
  • J. Stuermer,
  • H. M. Tabernero,
  • L. Tal-Or,
  • T. ten Brummelaar,
  • S. Vanaverbeke,
  • K. von Braun,
  • A. Youngblood,
  • M. Zechmeister
  • (less)
arXiv e-prints (06/2022) e-Print:2206.09990
abstract + abstract -

The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R_Terra and 3.0 M_Terra that is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. To prepare for future studies, we collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X/Gemini North and CARMENES/Calar Alto telescopes, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes. From interferometry, we measure a limb-darkened disc angular size of the star Gl 486. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius. We also measure a stellar rotation period at P_rot ~ 49.9 d, an upper limit to its XUV (5-920 AA) flux with new Hubble/STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Besides, we impose restrictive constraints on the presence of additional components, either stellar or substellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R_p = 1.343+/0.063 R_Terra and M_p = 3.00+/-0.13 M_Terra. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope observations (abridged).


(770)Large-scale Hydrodynamical Shocks as the Smoking Gun Evidence for a Bar in M31
  • Zi-Xuan Feng,
  • Zhi Li,
  • Juntai Shen,
  • Ortwin Gerhard,
  • Roberto Saglia
  • +1
arXiv e-prints (06/2022) e-Print:2206.10026
abstract + abstract -

The formation and evolutionary history of M31 are closely related to its dynamical structures, which remain unclear due to its high inclination. Gas kinematics could provide crucial evidence for the existence of a rotating bar in M31. Using the position-velocity diagram of [OIII] and HI, we are able to identify clear sharp velocity jump (shock) features with a typical amplitude over 100 km/s in the central region of M31 (4.6 kpc X 2.3 kpc, or 20 arcmin X 10 arcmin). We also simulate gas morphology and kinematics in barred M31 potentials and find that the bar-induced shocks can produce velocity jumps similar to those in [OIII]. The identified shock features in both [OIII] and HI are broadly consistent, and they are found mainly on the leading sides of the bar/bulge, following a hallmark pattern expected from the bar-driven gas inflow. Shock features on the far side of the disk are clearer than those on the near side, possibly due to limited data coverage on the near side, as well as obscuration by the warped gas and dust layers. Further hydrodynamical simulations with more sophisticated physics are desired to fully understand the observed gas features and to better constrain the parameters of the bar in M31.


(769)Super-resolution trends in the ALMA Taurus survey: Structured inner discs and compact discs
  • Jeff Jennings,
  • Marco Tazzari,
  • Cathie J. Clarke,
  • Richard A. Booth,
  • Giovanni P. Rosotti
arXiv e-prints (06/2022) e-Print:2206.11308
abstract + abstract -

The 1.33 mm survey of protoplanetary discs in the Taurus molecular cloud found annular gaps and rings to be common in extended sources (>~55 au), when their 1D visibility distributions were fit parametrically. We first demonstrate the advantages and limitations of nonparametric visibility fits for data at the survey's 0.12" resolution. Then we use the nonparametric model in Frankenstein ('frank') to identify new substructure in three compact and seven extended sources. Among the new features we identify three trends: a higher occurrence rate of substructure in the survey's compact discs than previously seen, underresolved (potentially azimuthally asymmetric) substructure in the innermost disc of extended sources, and a 'shoulder' on the trailing edge of a ring in discs with strong depletion at small radii. Noting the shoulder morphology is present in multiple discs observed at higher resolution, we postulate it is tracing a common physical mechanism. We further demonstrate how a super-resolution frank brightness profile is useful in motivating an accurate parametric model, using the highly structured source DL Tau in which frank finds two new rings. Finally we show that sparse (u, v) plane sampling may be masking the presence of substructure in several additional compact survey sources.


(768)Dark Matter Dilution Mechanism through the Lens of Large Scale Structure
  • Miha Nemevšek,
  • Yue Zhang
arXiv e-prints (06/2022) e-Print:2206.11293
abstract + abstract -

Entropy production is a necessary ingredient for addressing the over-population of thermal relics. It is widely employed in particle physics models for explaining the origin of dark matter. A long-lived particle that decays to the known particles, while dominating the universe, plays the role of the dilutor. We point out the impact of its partial decay to dark matter on the primordial matter power spectrum. For the first time, we derive a stringent limit on the branching ratio of the dilutor to dark matter from large scale structure observation using the SDSS data. This offers a novel tool for testing models with a dark matter dilution mechanism. We apply it to the left-right symmetric model and show that it firmly excludes a large portion of parameter space for right-handed neutrino warm dark matter.


(767)Implications for the $\Delta A_{FB}$ anomaly in ${\bar B}^0\to D^{*+}\ell^- {\bar\nu}$ using a new Monte Carlo Event Generator
  • Bhubanjyoti Bhattacharya,
  • Thomas E. Browder,
  • Quinn Campagna,
  • Alakabha Datta,
  • Shawn Dubey
  • +2
  • Lopamudra Mukherjee,
  • Alexei Sibidanov
  • (less)
arXiv e-prints (06/2022) e-Print:2206.11283
abstract + abstract -

Recent experimental results in $B$ physics from Belle, BaBar and LHCb suggest new physics (NP) in the weak $b\to c$ charged-current and the $b\to s$ neutral-current processes. Here we focus on the charged-current case and specifically on the decay modes $\overline{B}^0\to D^{*+}\ell^- \bar{\nu}$ with $\ell = e$ and $\mu$. The world averages of the ratios $R_D$ and $R_D^{*}$ currently differ from the Standard Model (SM) predictions by $3.4\sigma$ while recently a new anomaly has been observed in the forward-backward asymmetry measurement, $A_{FB}$, in $ \overline{B}^0\to D^{*+}\mu^- \bar{\nu}$ decay. It is found that $\Delta A_{FB} = A_{FB}(B\to D^{*} \mu\nu) - A_{FB} (B\to D^{*} e \nu)$ is around $4.1\sigma$ away from the SM prediction in an analysis of 2019 Belle data. In this work we explore possible solutions to the $\Delta A_{FB}$ anomaly and point out correlated NP signals in other angular observables. These correlations between angular observables must be present in the case of beyond the Standard Model physics. We stress the importance of $\Delta$ type observables that are obtained by taking the difference of the observable for the muon and the electron mode. These quantities cancel form factor uncertainties in the SM and allow for clean tests of NP. These intriguing results also suggest an urgent need for improved simulation and analysis techniques in $\overline{B}^0\to D^{*+}\ell^- \bar{\nu}$ decays. Here we also describe a new Monte Carlo Event-generator tool based on EVTGEN that we developed to allow simulation of the NP signatures in $\overline{B}^0\to D^{*+}\ell^- \nu$, which arise due to the interference between the SM and NP amplitudes. We then discuss prospects for improved observables sensitive to NP couplings with 1, 5, 50, and 250 ab$^{-1}$ of Belle II data, which seem to be ideally suited for this class of measurements.


(766)Is cosmic birefringence due to dark energy or dark matter? A tomographic approach
  • Hiromasa Nakatsuka,
  • Toshiya Namikawa,
  • Eiichiro Komatsu
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.123509
abstract + abstract -

A pseudoscalar "axionlike" field, ϕ , may explain the 3 σ hint of cosmic birefringence observed in the E B power spectrum of the cosmic microwave background polarization data. Is ϕ dark energy or dark matter? A tomographic approach can answer this question. The effective mass of dark energy field responsible for the accelerated expansion of the Universe today must be smaller than mϕ≃10-33 eV . If mϕ≳10-32 eV , ϕ starts evolving before the epoch of reionization and we should observe different amounts of birefringence from the E B power spectrum at low (l ≲10 ) and high multipoles. Such an observation, which requires a full-sky satellite mission, would rule out ϕ being dark energy. If mϕ≳10-28 eV , ϕ starts oscillating during the epoch of recombination, leaving a distinct signature in the E B power spectrum at high multipoles, which can be measured precisely by ground-based cosmic microwave background observations. Our tomographic approach relies on the shape of the E B power spectrum and is less sensitive to miscalibration of polarization angles.


(765)A Spectroscopic Study of Blue Supergiant Stars in Local Group Spiral Galaxies: Andromeda and Triangulum
  • Cheng Liu,
  • Rolf-Peter Kudritzki,
  • Gang Zhao,
  • Miguel A. Urbaneja,
  • Yang Huang
  • +2
The Astrophysical Journal, 932, p17 (06/2022) doi:10.3847/1538-4357/ac69cc
abstract + abstract -

Low-resolution LAMOST and Keck spectra of blue supergiant stars distributed over the disks of the Local Group spiral galaxies M31 and M33 are analyzed to determine stellar effective temperatures, gravities, metallicities, and reddening. Logarithmic metallicities at the center of the galaxies (in solar units) of 0.30 ± 0.09 and 0.11 ± 0.04 and metallicity gradients of -0.37 ± 0.13 dex/R 25 and -0.36 ± 0.16 dex/R 25 are measured for M31 and M33, respectively. For M33 the 2D distribution of metallicity indicates a deviation from azimuthal symmetry with an off-center peak. The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars is used to determine a distance modulus of 24.51 ± 0.13 mag for M31 and 24.93 ± 0.07 mag for M33. For M31 the FGLR distance agrees well with other methods. For M33 the FGLR-based distance is larger than the distances from Cepheids studies, but it is in good agreement with work on eclipsing binaries, planetary nebulae, long-period variables, and the tip of the red giant branch.


(764)Cosmic nucleosynthesis: a multi-messenger challenge
  • Roland Diehl,
  • Andreas Korn,
  • Bruno Leibundgut,
  • Maria Lugaro,
  • Anton Wallner
arXiv e-prints (06/2022) e-Print:2206.12246
abstract + abstract -

The origins of the elements and isotopes of cosmic material is a critical aspect of understanding the evolution of the universe. Nucleosynthesis typically requires physical conditions of high temperatures and densities. These are found in the Big Bang, in the interiors of stars, and in explosions with their compressional shocks and high neutrino and neutron fluxes. Many different tools are available to disentangle the composition of cosmic matter, in material of extraterrestrial origins such as cosmic rays, meteorites, stardust grains, lunar and terrestrial sediments, and through astronomical observations across the electromagnetic spectrum. Understanding cosmic abundances and their evolution requires combining such measurements with approaches of astrophysical, nuclear theories and laboratory experiments, and exploiting additional cosmic messengers, such as neutrinos and gravitational waves. Recent years have seen significant progress in almost all these fields; they are presented in this review. Models are required to explore nuclear fusion of heavier elements. These have been confirmed by observations of nucleosynthesis products in the ejecta of stars and supernovae, as captured by stardust grains and by characteristic lines in spectra seen from these objects, and also by ejecta material captured by Earth over millions of years in sediments. All these help to piece together how cosmic materials are transported in interstellar space and re-cycled into and between generations of stars. Our description of cosmic compositional evolution needs observational support, as it rests on several assumptions that appear challenged. This overview presents the flow of cosmic matter and the various sites of nucleosynthesis, as understood from combining many techniques and observations, towards the current knowledge of how the universe is enriched with elements.


(763)$B$-meson decay into a proton and dark antibaryon from QCD light-cone sum rules
  • Alexander Khodjamirian,
  • Marcel Wald
arXiv e-prints (06/2022) e-Print:2206.11601
abstract + abstract -

The recently developed $B$-Mesogenesis scenario predicts decays of $B$ mesons into a baryon and hypothetical dark antibaryon $\Psi$. We suggest a method to calculate the amplitude of the simplest exclusive decay mode $B^+\to p \Psi$. Considering two models of $B$-Mesogenesis, we obtain the $B\to p$ hadronic matrix elements by applying QCD light-cone sum rules with the proton light-cone distribution amplitudes. We estimate the $B^+\to p \Psi$ decay width as a function of the mass and effective coupling of the dark antibaryon.


(762)Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck III: Combined cosmological constraints
  • T. M. C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +166
  • F. Andrade-Oliveira,
  • J. Annis,
  • B. Ansarinejad,
  • S. Avila,
  • D. Bacon,
  • E. J. Baxter,
  • K. Bechtol,
  • M. R. Becker,
  • B. A. Benson,
  • G. M. Bernstein,
  • E. Bertin,
  • J. Blazek,
  • L. E. Bleem,
  • S. Bocquet,
  • D. Brooks,
  • E. Buckley-Geer,
  • D. L. Burke,
  • H. Camacho,
  • A. Campos,
  • J. E. Carlstrom,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • R. Cawthon,
  • C. Chang,
  • C. L. Chang,
  • R. Chen,
  • A. Choi,
  • R. Chown,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • T. Crawford,
  • A. T. Crites,
  • M. Crocce,
  • L. N. da Costa,
  • C. Davis,
  • T. M. Davis,
  • T. de Haan,
  • J. De Vicente,
  • J. DeRose,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • W. Everett,
  • X. Fang,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. M. George,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N. W. Halverson,
  • I. Harrison,
  • K. Herner,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • B. Jain,
  • D. J. James,
  • M. Jarvis,
  • T. Jeltema,
  • S. Kent,
  • L. Knox,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • A. T. Lee,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • C. Lidman,
  • D. Luong-Van,
  • J. J. McMahon,
  • N. MacCrann,
  • M. March,
  • J. L. Marshall,
  • P. Martini,
  • J. McCullough,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • J. Muir,
  • J. Myles,
  • T. Natoli,
  • A. Navarro-Alsina,
  • R. C. Nichol,
  • Y. Omori,
  • S. Padin,
  • S. Pandey,
  • Y. Park,
  • F. Paz-Chinchón,
  • M. E. S. Pereira,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • C. Pryke,
  • M. Raveri,
  • C. L. Reichardt,
  • R. P. Rollins,
  • A. K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • J. E. Ruhl,
  • E. S. Rykoff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • K. K. Schaffer,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • M. E. C. Swanson,
  • G. Tarle,
  • C. To,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • J. D. Vieira,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • J. Weller,
  • R. Williamson,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz
  • (less)
arXiv e-prints (06/2022) e-Print:2206.10824
abstract + abstract -

We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find $\Omega_{\rm m} = 0.344\pm 0.030$ and $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.773\pm 0.016$, assuming $\Lambda$CDM. When additionally combining with measurements of the CMB lensing autospectrum, we find $\Omega_{\rm m} = 0.306^{+0.018}_{-0.021}$ and $S_8 = 0.792\pm 0.012$. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redMaGiC galaxies and high-redshift MagLim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems.


(761)HOLISMOKES -- IX. Neural network inference of strong-lens parameters and uncertainties from ground-based images
  • S. Schuldt,
  • R. Cañameras,
  • Y. Shu,
  • S. H. Suyu,
  • S. Taubenberger
  • +2
arXiv e-prints (06/2022) e-Print:2206.11279
abstract + abstract -

Modeling of strong gravitational lenses is a necessity for further applications in astrophysics and cosmology. Especially with the large number of detections in current and upcoming surveys such as the Rubin Legacy Survey of Space and Time (LSST), it is timely to investigate in automated and fast analysis techniques beyond the traditional and time consuming Markov chain Monte Carlo sampling methods. Building upon our convolutional neural network (CNN) presented in Schuldt et al. (2021b), we present here another CNN, specifically a residual neural network (ResNet), that predicts the five mass parameters of a Singular Isothermal Ellipsoid (SIE) profile (lens center $x$ and $y$, ellipticity $e_x$ and $e_y$, Einstein radius $\theta_E$) and the external shear ($\gamma_{ext,1}$, $\gamma_{ext,2}$) from ground-based imaging data. In contrast to our CNN, this ResNet further predicts a 1$\sigma$ uncertainty for each parameter. To train our network, we use our improved pipeline from Schuldt et al. (2021b) to simulate lens images using real images of galaxies from the Hyper Suprime-Cam Survey (HSC) and from the Hubble Ultra Deep Field as lens galaxies and background sources, respectively. We find overall very good recoveries for the SIE parameters, while differences remain in predicting the external shear. From our tests, most likely the low image resolution is the limiting factor for predicting the external shear. Given the run time of milli-seconds per system, our network is perfectly suited to predict the next appearing image and time delays of lensed transients in time. Therefore, we also present the performance of the network on these quantities in comparison to our simulations. Our ResNet is able to predict the SIE and shear parameter values in fractions of a second on a single CPU such that we are able to process efficiently the huge amount of expected galaxy-scale lenses in the near future.


(760)A panchromatic view of star cluster formation in a simulated dwarf galaxy starburst
  • Natalia Lahén,
  • Thorsten Naab,
  • Guinevere Kauffmann
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1594
abstract + abstract -

We present a photometric analysis of star and star cluster (SC) formation in a high-resolution simulation of a dwarf galaxy starburst that allows the formation of individual stars to be followed. Previous work demonstrated that the properties of the SCs formed in the simulation are in good agreement with observations. In this paper, we create mock spectral energy distributions and broad-band photometric images using the radiative transfer code SKIRT 9. We test several observational star formation rate (SFR) tracers and find that 24 μm, total infrared and Hα trace the underlying SFR during the (post)starburst phase, while UV tracers yield a more accurate picture of star formation during quiescent phases prior to and after the merger. We then place the simulated galaxy at distances of 10 and 50 Mpc and use aperture photometry at Hubble Space Telescope resolution to analyse the simulated SC population. During the starburst phase, a hierarchically forming set of SCs leads inaccurate source separation because of crowding. This results in estimated SC mass function slopes that are up to ~0.3 shallower than the true slope of ~-1.9 to -2 found for the bound clusters identified from the particle data in the simulation. The masses of the largest clusters are overestimated by a factor of up to 2.9 due to unresolved clusters within the apertures. The aperture-based analysis also produces a relation between cluster formation efficiency and SFR surface density that is slightly flatter than that recovered from bound clusters. The differences are strongest in quiescent SF environments.


(759)QFT with stubs
  • Christoph Chiaffrino,
  • Ivo Sachs
Journal of High Energy Physics, 2022 (06/2022) doi:10.1007/JHEP06(2022)120
abstract + abstract -

The BV-Laplacian ∆ in quantum field theory is singular, by construction, but can be regularized by deforming the classical BV-action. Taking inspiration from string theory we describe a non-local deformation of the latter by adding stubs to the interaction vertices while keeping classical BV-invariance manifest. This is achieved using a version of homotopy transfer resulting in a non-polynomial action for which the quantum master equation is now well defined and will be satisfied by adding additional vertices at loop level. The latter can be defined with the help of standard regularization schemes and is independent of the definition of ∆. In particular, the determination of anomalies reduces to the standard text-book calculation. Finally, we describe how the deformed (quantum) action can be obtained as a canonical transformation. As an example, we illustrate this procedure for quantum electrodynamics.


(758)Euclid: Forecasts from the void-lensing cross-correlation
  • M. Bonici,
  • C. Carbone,
  • P. Vielzeuf,
  • L. Paganin,
  • V. Cardone
  • +126
  • N. Hamaus,
  • A. Pisani,
  • A. J. Hawken,
  • A. Kovacs,
  • S. Nadathur,
  • S. Contarini,
  • G. Verza,
  • I. Tutusaus,
  • F. Marulli,
  • L. Moscardini,
  • M. Aubert,
  • C. Giocoli,
  • A. Pourtsidou,
  • S. Camera,
  • S. Escoffier,
  • A. Caminata,
  • M. Martinelli,
  • M. Pallavicini,
  • V. Pettorino,
  • Z. Sakr,
  • D. Sapone,
  • G. Testera,
  • S. Tosi,
  • V. Yankelevich,
  • A. Amara,
  • N. Auricchio,
  • M. Baldi,
  • D. Bonino,
  • E. Branchini,
  • M. Brescia,
  • J. Brinchmann,
  • V. Capobianco,
  • J. Carretero,
  • M. Castellano,
  • S. Cavuoti,
  • R. Cledassou,
  • G. Congedo,
  • L. Conversi,
  • Y. Copin,
  • L. Corcione,
  • F. Courbin,
  • M. Cropper,
  • A. Da Silva,
  • H. Degaudenzi,
  • M. Douspis,
  • F. Dubath,
  • C. A. J. Duncan,
  • X. Dupac,
  • S. Dusini,
  • A. Ealet,
  • S. Farrens,
  • S. Ferriol,
  • P. Fosalba,
  • M. Frailis,
  • E. Franceschi,
  • M. Fumana,
  • P. Gomez-Alvarez,
  • B. Garilli,
  • B. Gillis,
  • A. Grazian,
  • F. Grupp,
  • L. Guzzo,
  • S. V. H. Haugan,
  • W. Holmes,
  • F. Hormuth,
  • A. Hornstrup,
  • K. Jahnke,
  • M. Kummel,
  • S. Kermiche,
  • A. Kiessling,
  • M. Kilbinger,
  • M. Kunz,
  • H. Kurki-Suonio,
  • R. Laureijs,
  • S. Ligori,
  • P. B. Lilje,
  • I. Lloro,
  • E. Maiorano,
  • O. Mansutti,
  • O. Marggraf,
  • K. Markovic,
  • R. Massey,
  • E. Medinaceli,
  • M. Melchior,
  • M. Meneghetti,
  • G. Meylan,
  • M. Moresco,
  • E. Munari,
  • S. M. Niemi,
  • C. Padilla,
  • S. Paltani,
  • F. Pasian,
  • K. Pedersen,
  • W. J. Percival,
  • S. Pires,
  • G. Polenta,
  • M. Poncet,
  • L. Popa,
  • F. Raison,
  • R. Rebolo,
  • A. Renzi,
  • J. Rhodes,
  • E. Rossetti,
  • R. Saglia,
  • B. Sartoris,
  • M. Scodeggio,
  • A. Secroun,
  • G. Seidel,
  • C. Sirignano,
  • G. Sirri,
  • L. Stanco,
  • J. -L. Starck,
  • C. Surace,
  • P. Tallada-Crespi,
  • D. Tavagnacco,
  • A. N. Taylor,
  • I. Tereno,
  • R. Toledo-Moreo,
  • F. Torradeflot,
  • E. A. Valentijn,
  • L. Valenziano,
  • Y. Wang,
  • J. Weller,
  • G. Zamorani,
  • J. Zoubian,
  • S. Andreon
  • (less)
arXiv e-prints (06/2022) e-Print:2206.14211
abstract + abstract -

The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing and their cross-correlation. To this aim, we implement a Fisher matrix approach tailored for voids from the Euclid photometric dataset and present the first forecasts on cosmological parameters that include the void-lensing correlation. We examine two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carry out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, $M_\nu$, and a dynamical dark energy (DE) equation of state, $w(z)$, described by the CPL parametrisation. We find that void clustering constraints on $h$ and $\Omega_b$ are competitive with galaxy lensing alone, while errors on $n_s$ decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by $10-15\%$, and enhances the joint void clustering and galaxy lensing Figure of Merit (FoM) by $10\%$ and $25\%$, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void-clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on $h$, $\Omega_b$, the neutrino mass, and the DE evolution.


(757)Evolution mapping: a new approach to describe matter clustering in the non-linear regime
  • Ariel G. Sánchez,
  • Andrés N. Ruiz,
  • Jenny Gonzalez Jara,
  • Nelson D. Padilla
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1656
abstract + abstract -

We present a new approach to describe statistics of the non-linear matter density field that exploits a degeneracy in the impact of different cosmological parameters on the linear dimensionless matter power spectrum, $\Delta ^2_{\rm L}(k)$. We classify all cosmological parameters into two groups, shape parameters, which determine the shape of $\Delta ^2_{\rm L}(k)$, and evolution parameters, which only affect its amplitude at any given redshift. With this definition, the time evolution of $\Delta ^2_{\rm L}(k)$ in models with identical shape parameters but different evolution parameters can be mapped from one to the other by relabelling the redshifts that correspond to the same clustering amplitude, which we characterize by the linear mass fluctuation in spheres of radius 12 Mpc, σ12(z). We use N-body simulations to show that the same evolution mapping relation gives a good description of the non-linear power spectrum, the halo mass function, or the full density field. The deviations from the exact degeneracy are the result of the different structure formation histories experienced by each model to reach the same clustering amplitude and can be accurately described in terms of differences in the suppression factor g(a) = D(a)/a. These relations can be used to drastically reduce the number of parameters required to describe the cosmology dependence of the power spectrum. We show how this can help to speed up the inference of parameter constraints from cosmological observations. We also present a new design of an emulator of the non-linear power spectrum whose predictions can be adapted to an arbitrary choice of evolution parameters and redshift.


(756)Stellar labels for hot stars from low-resolution spectra. I. The HotPayne method and results for 330 000 stars from LAMOST DR6
  • Maosheng Xiang,
  • Hans-Walter Rix,
  • Yuan-Sen Ting,
  • Rolf-Peter Kudritzki,
  • Charlie Conroy
  • +7
  • Eleonora Zari,
  • Jian-Rong Shi,
  • Norbert Przybilla,
  • Maria Ramirez-Tannus,
  • Andrew Tkachenko,
  • Sarah Gebruers,
  • Xiao-Wei Liu
  • (less)
Astronomy and Astrophysics, 662, p30 (06/2022) doi:10.1051/0004-6361/202141570
abstract + abstract -

We set out to determine stellar labels from low-resolution survey spectra of hot stars, specifically OBA stars with Teff ≳ 7500 K. This fills a gap in the scientific analysis of large spectroscopic stellar surveys such as LAMOST, which offers spectra for millions of stars at R ~ 1800 and covers 3800 Å ≤ λ ≤ 9000 Å. We first explore the theoretical information content of such spectra to determine stellar labels via the Cramér-Rao bound. We show that in the limit of perfect model spectra and observed spectra with signal-to-noise ratio ~50-100, precise estimates are possible for a wide range of stellar labels: not only the effective temperature, Teff, surface gravity, log g, and projected rotation velocity, vsin i, but also the micro-turbulence velocity,vmic, helium abundance, NHe/Ntot, and the elemental abundances [C/H], [N/H], [O/H], [Si/H], [S/H], and [Fe/H]. Our analysis illustrates that the temperature regime of Teff ~ 9500 K is challenging as the dominant Balmer and Paschen line strengths vary little with Teff. We implement the simultaneous fitting of these 11 stellar labels to LAMOST hot-star spectra using the Payne approach, drawing on Kurucz's ATLAS12/SYNTHE local thermodynamic equilibrium spectra as the underlying models. We then obtain stellar parameter estimates for a sample of about 330 000 hot stars with LAMOST spectra, an increase by about two orders of magnitude in sample size. Among them, about 260 000 have good Gaia parallaxes (ω/σω > 5), and their luminosities imply that ≳95% of them are luminous stars, mostly on the main sequence; the rest are evolved lower luminosity stars, such as hot subdwarfs and white dwarfs. We show that the fidelity of the results, particularly for the abundance estimates, is limited by the systematics of the underlying models as they do not account for nonlocal thermodynamic equilibrium effects. Finally, we show the detailed distribution of vsin i of stars with 8000-15 000 K, illustrating that it extends to a sharp cutoff at the critical rotation velocity, vcrit, across a wide range of temperatures.

The catalog is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/662/A66


(755)Runaway relaxion from finite density
  • Reuven Balkin,
  • Javi Serra,
  • Konstantin Springmann,
  • Stefan Stelzl,
  • Andreas Weiler
Journal of High Energy Physics, 2022 (06/2022) doi:10.1007/JHEP06(2022)023
abstract + abstract -

Finite density effects can destabilize the metastable vacua in relaxion models. Focusing on stars as nucleation seeds, we derive the conditions that lead to the formation and runaway of a relaxion bubble of a lower energy minimum than in vacuum. The resulting late-time phase transition in the universe allows us to set new constraints on the parameter space of relaxion models. We also find that similar instabilities can be triggered by the large electromagnetic fields around rotating neutron stars.


(754)Rare decays of b and c hadrons
  • Wolfgang Altmannshofer,
  • Flavio Archilli
arXiv e-prints (06/2022) e-Print:2206.11331
abstract + abstract -

In this white paper for the Snowmass process, we review the status and prospects of the field of rare decays of b and c hadrons. The role that rare decays play in the search for physics beyond the Standard Model is emphasised. We stress the complementarity of a large set of relevant processes and outline the most promising directions. The experimental opportunities at Belle II, BES III, ATLAS, CMS, LHCb, and at future machines are discussed. We also summarize the challenges that need to be addressed on the theory side to achieve theory uncertainties for rare decays that match the expected experimental sensitivities.


(753)The Mechanism of Efficient Electron Acceleration at Parallel Nonrelativistic Shocks
  • Mohamad Shalaby,
  • Rouven Lemmerz,
  • Timon Thomas,
  • Christoph Pfrommer
The Astrophysical Journal, 932, p13 (06/2022) doi:10.3847/1538-4357/ac6ce7
abstract + abstract -

Thermal electrons cannot directly participate in the process of diffusive acceleration at electron-ion shocks because their Larmor radii are smaller than the shock transition width: this is the well-known electron injection problem of diffusive shock acceleration. Instead, an efficient pre-acceleration process must exist that scatters electrons off of electromagnetic fluctuations on scales much shorter than the ion gyroradius. The recently found intermediate-scale instability provides a natural way to produce such fluctuations in parallel shocks. The instability drives comoving (with the upstream plasma) ion-cyclotron waves at the shock front and only operates when the drift speed is smaller than half of the electron Alfvén speed. Here we perform particle-in-cell simulations with the SHARP code to study the impact of this instability on electron acceleration at parallel nonrelativistic, electron-ion shocks. To this end, we compare a shock simulation in which the intermediate-scale instability is expected to grow to simulations where it is suppressed. In particular, the simulation with an Alfvénic Mach number large enough to quench the intermediate instability shows a great reduction (by two orders of magnitude) of the electron acceleration efficiency. Moreover, the simulation with a reduced ion-to-electron mass ratio (where the intermediate instability is also suppressed) not only artificially precludes electron acceleration but also results in erroneous electron and ion heating in the downstream and shock transition regions. This finding opens up a promising route for a plasma physical understanding of diffusive shock acceleration of electrons, which necessarily requires realistic mass ratios in simulations of collisionless electron-ion shocks.


(752)Are the host galaxies of Long Gamma-Ray Bursts more compact than star-forming galaxies of the field?
  • B. Schneider,
  • E. Le Floc'h,
  • M. Arabsalmani,
  • S.D. Vergani,
  • J.T. Palmerio
(06/2022) e-Print:2206.14873
abstract + abstract -

(Abridged) Long Gamma-Ray Bursts (GRBs) offer a promising tool to trace the cosmic history of star formation, especially at high redshift where conventional methods are known to suffer from intrinsic biases. Previous studies of GRB host galaxies at low redshift showed that high surface densities of stellar mass and star formation rate (SFR) can potentially enhance the GRB production. We assess how the size, the stellar mass and SFR surface densities of distant galaxies affect their probability to host a long GRB, using a sample of GRB hosts at $z > 1$ and a control sample of star-forming sources from the field. We gather a sample of 45 GRB host galaxies at $1 < z < 3.1$ observed with the Hubble Space Telescope WFC3 camera in the near-infrared. Using the GALFIT parametric approach, we model the GRB host light profile and derive the half-light radius for 35 GRB hosts, which we use to estimate the SFR and stellar mass surface densities of each object. We compare the distribution of these physical quantities to the SFR-weighted properties of a complete sample of star-forming galaxies from the 3D-HST deep survey at comparable redshift and stellar mass. We show that, similarly to $z < 1$, GRB hosts are smaller in size and they have higher stellar mass and SFR surface densities than field galaxies at $1 < z < 2$. Interestingly, this result is robust even when considering separately the hosts of GRBs with optically-bright afterglows and the hosts of dark GRBs. At $z > 2$ though, GRB hosts appear to have sizes and stellar mass surface densities more consistent with those characterizing the field galaxies. In addition to a possible trend toward low metallicity environment, other environmental properties such as stellar density appears to play a role in the formation of long GRBs, at least up to $z \sim 2$. This might suggest that GRBs require special environments to be produced.


(751)ΛCDM with baryons vs. MOND: the time evolution of the universal acceleration scale in the Magneticum simulations
  • Alexander C. Mayer,
  • Adelheid F. Teklu,
  • Klaus Dolag,
  • Rhea-Silvia Remus
(06/2022) e-Print:2206.04333
abstract + abstract -

MOdified Newtonian Dynamics (MOND) is an alternative to the standard Cold Dark Matter (CDM) paradigm which proposes an alteration of Newton's laws of motion at low accelerations, characterized by a universal acceleration scale a_0. It attempts to explain observations of galactic rotation curves and predicts a specific scaling relation of the baryonic and total acceleration in galaxies, referred to as the Rotational Acceleration Relation (RAR), which can be equivalently formulated as a Mass Discrepancy Acceleration Relation (MDAR). The appearance of these relations in observational data such as SPARC has lead to investigations into the existence of similar relations in cosmological simulations using the standard ΛCDM model. Here, we report the existence of an RAR and MDAR similar to that predicted by MOND in ΛCDM using a large sample of galaxies extracted from a cosmological, hydrodynamical simulation (Magneticum). Furthermore, by using galaxies in Magneticum at different redshifts, a prediction for the evolution of the inferred acceleration parameter a_0 with cosmic time is derived by fitting a MOND force law to these galaxies. In Magneticum, the best fit for a_0 is found to increase by a factor of approximately 3 from redshift z = 0 to z = 2. This offers a powerful test from cosmological simulations to distinguish between MOND and ΛCDM observationally.


(750)The role of physical and numerical viscosity in hydrodynamical instabilities
  • Tirso Marin-Gilabert,
  • Milena Valentini,
  • Ulrich P. Steinwandel,
  • Klaus Dolag
(05/2022) e-Print:2205.09135
abstract + abstract -

The evolution of the Kelvin-Helmholtz Instability (KHI) is widely used to assess the performance of numerical methods. We employ this instability to test both the smoothed particle hydrodynamics (SPH) and the meshless finite mass (MFM) implementation in OpenGadget3. We quantify the accuracy of SPH and MFM in reproducing the linear growth of the KHI with different numerical and physical set-ups. Among them, we consider: $i)$ numerical induced viscosity, and $ii)$ physically motivated, Braginskii viscosity, and compare their effect on the growth of the KHI. We find that the changes of the inferred numerical viscosity when varying nuisance parameters such as the set-up or the number of neighbours in our SPH code are comparable to the differences obtained when using different hydrodynamical solvers, i.e. MFM. SPH reproduces the expected reduction of the growth rate in the presence of physical viscosity and recovers well the threshold level of physical viscosity needed to fully suppress the instability. In the case of galaxy clusters with a virial temperature of $3\times10^7$ K, this level corresponds to a suppression factor of $\approx10^{-3}$ of the classical Braginskii value. The intrinsic, numerical viscosity of our SPH implementation in such an environment is inferred to be at least an order of magnitude smaller (i.e. $\approx10^ {-4}$), re-ensuring that modern SPH methods are suitable to study the effect of physical viscosity in galaxy clusters.


(749)Can we actually constrain $f_{\rm NL}$ using the scale-dependent bias effect? An illustration of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power spectrum
  • Alexandre Barreira
(05/2022) e-Print:2205.05673
abstract + abstract -

The scale-dependent bias effect on the galaxy power spectrum is a very promising probe of the local primordial non-Gaussianity (PNG) parameter $f_{\rm NL}$, but the amplitude of the effect is proportional to $f_{\rm NL}b_{\phi}$, where $b_{\phi}$ is the linear PNG galaxy bias parameter. Our knowledge of $b_{\phi}$ is currently very limited, yet nearly all existing $f_{\rm NL}$ constraints and forecasts assume precise knowledge for it. Here, we use the BOSS DR12 galaxy power spectrum to illustrate how our uncertain knowledge of $b_{\phi}$ currently prevents us from constraining $f_{\rm NL}$ with a given statistical precision $\sigma_{f_{\rm NL}}$. Assuming different fixed choices for the relation between $b_{\phi}$ and the linear density bias $b_1$, we find that $\sigma_{f_{\rm NL}}$ can vary by as much as an order of magnitude. Our strongest bound is $f_{\rm NL} = 16 \pm 16\ (1\sigma)$, while the loosest is $f_{\rm NL} = 230 \pm 226\ (1\sigma)$ for the same BOSS data. The impact of $b_{\phi}$ can be especially pronounced because it can be close to zero. We also show how marginalizing over $b_{\phi}$ with wide priors is not conservative, and leads in fact to biased constraints through parameter space projection effects. Independently of galaxy bias assumptions, the scale-dependent bias effect can only be used to detect $f_{\rm NL} \neq 0$ by constraining the product $f_{\rm NL}b_{\phi}$, but the error bar $\sigma_{f_{\rm NL}}$ remains undetermined and the results cannot be compared with the CMB; we find $f_{\rm NL}b_{\phi} \neq 0$ with $1.6\sigma$ significance. We also comment on why these issues are important for analyses with the galaxy bispectrum. Our results strongly motivate simulation-based research programs aimed at robust theoretical priors for the $b_{\phi}$ parameter, without which we may never be able to competitively constrain $f_{\rm NL}$ using galaxy data.


(748)Observations of PAHs in the atmospheres of discs and exoplanets
  • Barbara Ercolano,
  • Christian Rab,
  • Karan Molaverdikhani,
  • Billy Edwards,
  • Thomas Preibisch
  • +3
  • Leonardo Testi,
  • Inga Kamp,
  • Wing-Fai Thi
  • (less)
Monthly Notices of the Royal Astronomical Society, 512, p9 (05/2022) doi:10.1093/mnras/stac505
abstract + abstract -

Polycyclic aromatic hydrocarbons (PAHs) play a key role in the chemical and hydrodynamical evolution of the atmospheres of exoplanets and planet-forming discs. If they can survive the planet formation process, PAHs are likely to be involved in pre-biotic chemical reactions eventually leading to more complex molecules such as amino acids and nucleotides, which form the basis for life as we know it. However, the abundance and specific role of PAHs in these environments is largely unknown due to limitations in sensitivity and range of wavelength of current and previous space-borne facilities. Upcoming infrared space spectroscopy missions, such as Twinkle and Ariel, present a unique opportunity to detect PAHs in the atmospheres of exoplanets and planet-forming discs. In this work, we present synthetic observations based on conservative numerical modelling of typical planet-forming discs and a transiting hot Saturnian planet around solar-type star. Our models show that Twinkle and Ariel might both be able to detect the 3.3 $\mu$m PAH feature within reasonable observing time in discs and transiting planets, assuming that PAHs are present with an abundance of at least one-tenth of the interstellar medium value.


(747)Black hole mergers in compact star clusters and massive black hole formation beyond the mass gap
  • Francesco Paolo Rizzuto,
  • Thorsten Naab,
  • Rainer Spurzem,
  • Manuel Arca-Sedda,
  • Mirek Giersz
  • +2
  • Jeremiah Paul Ostriker,
  • Sambaran Banerjee
  • (less)
Monthly Notices of the Royal Astronomical Society, 512, p15 (05/2022) doi:10.1093/mnras/stac231
abstract + abstract -

We present direct N-body simulations, carried out with NBODY6+ + GPU, of young and compact low-metallicity (Z = 0.0002) star clusters with 1.1 × 105 stars, a velocity dispersion of ~15 $\mathrm{km\, s^{-1}}$, a half-mass radius Rh = 0.6 pc, and a binary fraction of $10{{\ \rm per\,cent}}$ including updated evolution models for stellar winds and (pulsation) pair-instability supernovae (PSNe). Within the first tens of megayears, each cluster hosts several black hole (BH) merger events which nearly cover the complete mass range of primary and secondary BH masses for current LIGO-Virgo-KAGRA gravitational wave detections. The importance of gravitational recoil is estimated statistically during post-processing analysis. We present possible formation paths of massive BHs above the assumed lower PSN mass-gap limit ($45\, {\rm M}_\odot$) into the intermediate-mass black hole (IMBH) regime ($\gt 100\, {\rm M}_\odot$) which include collisions of stars, BHs, and the direct collapse of stellar merger remnants with low core masses. The stellar evolution updates result in the early formation of heavier stellar BHs compared to the previous model. The resulting higher collision rates with massive stars support the rapid formation of massive BHs. For models assuming a high accretion efficiency for star-BH mergers, we present a first-generation formation scenario for GW190521-like events: a merger of two BHs which reached the PSN mass-gap merging with massive stars. This event is independent of gravitational recoil and therefore conceivable in dense stellar systems with low escape velocities. One simulated cluster even forms an IMBH binary (153, 173 M) which is expected to merge within a Hubble time.


(746)Probing vainsthein-screening gravity with galaxy clusters using internal kinematics and strong and weak lensing
  • Lorenzo Pizzuti,
  • Ippocratis D. Saltas,
  • Keiichi Umetsu,
  • Barbara Sartoris
Monthly Notices of the Royal Astronomical Society, 512, p11 (05/2022) doi:10.1093/mnras/stac746
abstract + abstract -

We use high-precision combined strong/weak lensing and kinematics measurements of the total mass profiles of the observed galaxy clusters MACS J1206.2-0847 and Abell S1063, to constrain the relativistic sector of the general DHOST dark energy theories, which exhibit a partial breaking of the so called Vainsthein screening mechanism, on the linear level of scalar fluctuations around a cosmological background. In particular, by using the MG-MAMMPOSST framework developed in Pizzuti et al., for the kinematics analysis of member galaxies in clusters, along with lensing mass profile reconstructions, we provide new constraints on the coupling Y2 that governs the theory's relativistic contribution to the lensing potential. The new bound from the combination of kinematics and lensing measurements of MACS 1206, $Y_2=-0.12^{+0.66}_{-0.67}$ at 2σ, provides about a two-fold improvement on previous constraints. In the case of Abell S1063, a >2σ tension with the GR expectation arises. We discuss this in some detail, and we investigate the possible sources of systematics that can explain the tension. We further discuss why the combination of kinematics of member galaxies with lensing is capable of providing much tighter bounds compared to kinematics or lensing alone, and we explain how the number density profile of tracers, as well as the choice of the velocity anisotropy profile, affects the final results.


(745)Pulsational pair-instability supernovae: gravitational collapse, black hole formation, and beyond
  • N. Rahman,
  • H. -T. Janka,
  • G. Stockinger,
  • S. E. Woosley
Monthly Notices of the Royal Astronomical Society, 512, p38 (05/2022) doi:10.1093/mnras/stac758
abstract + abstract -

We investigate the final collapse of rotating and non-rotating pulsational pair-instability supernova progenitors with zero-age-main-sequence masses of 60, 80, and 115 M and iron cores between 2.37 and 2.72 M by 2D hydrodynamics simulations. Using the general relativistic NADA-FLD code with energy-dependent three-flavour neutrino transport by flux-limited diffusion allows us to follow the evolution beyond the moment when the transiently forming neutron star (NS) collapses to a black hole (BH), which happens within 350-580 ms after bounce in all cases. Because of high neutrino luminosities and mean energies, neutrino heating leads to shock revival within ≲ 250 ms post bounce in all cases except the rapidly rotating 60 M model. In the latter case, centrifugal effects support a 10 per cent higher NS mass but reduce the radiated neutrino luminosities and mean energies by ~20 per cent and ~10 per cent, respectively, and the neutrino-heating rate by roughly a factor of two compared to the non-rotating counterpart. After BH formation, the neutrino luminosities drop steeply but continue on a 1-2 orders of magnitude lower level for several 100 ms because of aspherical accretion of neutrino and shock-heated matter, before the ultimately spherical collapse of the outer progenitor shells suppresses the neutrino emission to negligible values. In all shock-reviving models BH accretion swallows the entire neutrino-heated matter and the explosion energies decrease from maxima around 1.5 × 1051 erg to zero within a few seconds latest. Nevertheless, the shock or a sonic pulse moves outward and may trigger mass-loss, which we estimate by long-time simulations with the PROMETHEUS code. We also provide gravitational-wave signals.


(744)Symplectic quantization of multifield generalized Proca electrodynamics
  • Verónica Errasti Díez,
  • Marina Krstic Marinkovic
Physical Review D, 105 (05/2022) doi:10.1103/PhysRevD.105.105022
abstract + abstract -

We explicitly carry out the symplectic quantization of a family of multifield generalized Proca (GP) electrodynamics theories. In the process, we provide an independent derivation of the so-called secondary constraint enforcing relations—consistency conditions that significantly restrict the allowed interactions in multifield settings already at the classical level. Additionally, we unveil the existence of quantum consistency conditions, which apply in both single- and multifield GP scenarios. Our newly found conditions imply that not all classically well-defined (multi-)GP theories are amenable to quantization. The extension of our results to the most general multi-GP class is conceptually straightforward, albeit algebraically cumbersome.


(743)Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory
  • Fabrizio Caola,
  • Amlan Chakraborty,
  • Giulio Gambuti,
  • Andreas von Manteuffel,
  • Lorenzo Tancredi
Physical Review Letters, 128 (05/2022) doi:10.1103/PhysRevLett.128.212001
abstract + abstract -

We compute the three-loop helicity amplitudes for the scattering of four gluons in QCD. We employ projectors in the 't Hooft-Veltman scheme and construct the amplitudes from a minimal set of physical building blocks, which allows us to keep the computational complexity under control. We obtain relatively compact results that can be expressed in terms of harmonic polylogarithms. In addition, we consider the Regge limit of our amplitude and extract the gluon Regge trajectory in full three-loop QCD. This is the last missing ingredient required for studying single-Reggeon exchanges at next-to-next-to-leading logarithmic accuracy.


(742)Hadronic vacuum polarization contribution to the muon g -2 in holographic QCD
  • Josef Leutgeb,
  • Anton Rebhan,
  • Michael Stadlbauer
Physical Review D, 105 (05/2022) doi:10.1103/PhysRevD.105.094032
abstract + abstract -

We evaluate the leading-order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon with two light flavors in minimal hard-wall and soft-wall holographic QCD models, as well as in simple generalizations thereof, and compare it to the rather precise results available from dispersive and lattice approaches. While holographic QCD cannot be expected to shed light on the existing small discrepancies between the latter, this comparison in turn provides useful information on the holographic models, which have been used to evaluate hadronic light-by-light contributions where errors in data-driven and lattice approaches are more sizable. In particular, in the hard-wall model that has recently been used to implement the Melnikov-Vainshtein short-distance constraint on hadronic light-by-light contributions, a matching of the hadronic vacuum polarization to the data-driven approach points to the same correction of parameters that has been proposed recently in order to account for next-to-leading-order effects.


(741)Probing Red Supergiant dynamics through photo-center displacements measured by Gaia
  • A. Chiavassa,
  • R. Kudritzki,
  • B. Davies,
  • B. Freytag,
  • S. E. de Mink
arXiv e-prints (05/2022)
abstract + abstract -

Red supergiant (RSGs) are cool massive stars in a late phase of their evolution when the stellar envelope becomes fully convective. They are the brightest stars in the universe at infrared light and can be detected in galaxies far beyond the Local Group, allowing for accurate determination of chemical composition of galaxies. The study of their physical properties is extremely important for various phenomena including the final fate of massive stars as type II supernovae and gravitational wave progenitors. We explore the well-studied nearby young stellar cluster chi Per. Using Gaia EDR3 data, we find the distance of the cluster (d = 2.260+-0.020 kpc). We then investigate the variability of the convection-related surface structure as a source for parallax measurement uncertainty. We use state-of-the-art 3D radiative hydrodynamics simulations with CO5BOLD and the post-processing radiative transfer code OPTIM3D to compute intensity maps in the Gaia G photometric system. We calculate the variabiltiy, as a function of time, of the intensity-weighted mean from the synthetic maps. We then select the RSG stars in the cluster and compare their uncertainty on parallaxes to the predictions of photocentre displacements. The synthetic maps of RSG show extremely irregular and temporal variable surfaces due to convection-related dynamics. Consequentially, the position of the photo-center varies during Gaia measurements between 0.033 and 0.130 AU (up to 5% of the corresponding simulation stellar radius). We argue that the variability of the convection-related surface structures accounts for a substantial part of the Gaia EDR3 parallax error of the RSG sample. We suggest that the variation of the uncertainty on Gaia parallax could be exploited quantitatively using appropriate 3D simulations to extract, in a unique way, important information about the stellar dynamics and parameters of RSG stars.


(740)Tidal Love Numbers of Novel and Admixed Celestial Objects
  • Michael Collier,
  • Djuna Croon,
  • Rebecca K. Leane
arXiv e-prints (05/2022) e-Print:2205.15337
abstract + abstract -

A sub-fraction of dark matter or new particles trapped inside celestial objects can significantly alter their macroscopic properties. We investigate the new physics imprint on celestial objects by using a generic framework to solve the Tolman-Oppenheimer-Volkoff (TOV) equations for up to two fluids. We test the impact of populations of new particles on celestial objects, including the sensitivity to self-interaction sizes, new particle mass, and net population mass. Applying our setup to neutron stars and boson stars, we find rich phenomenology for a range of these parameters, including the creation of extended atmospheres. These atmospheres are detectable by their impact on the tidal love number, which can be measured at upcoming gravitational wave experiments such as Advanced LIGO, the Einstein Telescope, and LISA. We release our calculation framework as a publicly available code, allowing the TOV equations to be generically solved for arbitrary new physics models in novel and admixed celestial objects.


(739)Can we actually constrain $f_{\rm NL}$ using the scale-dependent bias effect? An illustration of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power spectrum
  • Alexandre Barreira
arXiv e-prints (05/2022)
abstract + abstract -

The scale-dependent bias effect on the galaxy power spectrum is a very promising probe of the local primordial non-Gaussianity (PNG) parameter $f_{\rm NL}$, but the amplitude of the effect is proportional to $f_{\rm NL}b_{\phi}$, where $b_{\phi}$ is the linear PNG galaxy bias parameter. Our knowledge of $b_{\phi}$ is currently very limited, yet nearly all existing $f_{\rm NL}$ constraints and forecasts assume precise knowledge for it. Here, we use the BOSS DR12 galaxy power spectrum to illustrate how our uncertain knowledge of $b_{\phi}$ currently prevents us from constraining $f_{\rm NL}$ with a given statistical precision $\sigma_{f_{\rm NL}}$. Assuming different fixed choices for the relation between $b_{\phi}$ and the linear density bias $b_1$, we find that $\sigma_{f_{\rm NL}}$ can vary by as much as an order of magnitude. Our strongest bound is $f_{\rm NL} = 16 \pm 16\ (1\sigma)$, while the loosest is $f_{\rm NL} = 230 \pm 226\ (1\sigma)$ for the same BOSS data. The impact of $b_{\phi}$ can be especially pronounced because it can be close to zero. We also show how marginalizing over $b_{\phi}$ with wide priors is not conservative, and leads in fact to biased constraints through parameter space projection effects. Independently of galaxy bias assumptions, the scale-dependent bias effect can only be used to detect $f_{\rm NL} \neq 0$ by constraining the product $f_{\rm NL}b_{\phi}$, but the error bar $\sigma_{f_{\rm NL}}$ remains undetermined and the results cannot be compared with the CMB; we find $f_{\rm NL}b_{\phi} \neq 0$ with $1.6\sigma$ significance. We also comment on why these issues are important for analyses with the galaxy bispectrum. Our results strongly motivate simulation-based research programs aimed at robust theoretical priors for the $b_{\phi}$ parameter, without which we may never be able to competitively constrain $f_{\rm NL}$ using galaxy data.


(738)Gravitational wave constraints on extended dark matter structures
  • Djuna Croon,
  • Seyda Ipek,
  • David McKeen
arXiv e-prints (05/2022) e-Print:2205.15396
abstract + abstract -

We generalise existing constraints on primordial black holes to dark objects with extended sizes using the aLIGO design sensitivity. We show that LIGO is sensitive to dark objects with radius $O(10-10^3~{\rm km})$ if they make up more than $\sim O(10^{-2}-10^{-3})$ of dark matter.


(737)Characterization of a large mass archaeological lead-based cryogenic detectors for the RES-NOVA experiment
  • J. W. Beeman,
  • G. Benato,
  • C. Bucci,
  • L. Canonica,
  • P. Carniti
  • +39
  • E. Celi,
  • M. Clemenza,
  • A. D'Addabbo,
  • F. A. Danevich,
  • S. Di Domizio,
  • S. Di Lorenzo,
  • O. M. Dubovik,
  • N. Ferreiro Iachellini,
  • F. Ferroni,
  • E. Fiorini,
  • S. Fu,
  • A. Garai,
  • S. Ghislandi,
  • L. Gironi,
  • P. Gorla,
  • C. Gotti,
  • P. V. Guillaumon,
  • D. L. Helis,
  • G. P. Kovtun,
  • M. Mancuso,
  • L. Marini,
  • M. Olmi,
  • L. Pagnanini,
  • L. Pattavina,
  • G. Pessina,
  • F. Petricca,
  • S. Pirro,
  • S. Pozzi,
  • A. Puiu,
  • S. Quitadamo,
  • J. Rothe,
  • A. P. Scherban,
  • S. Schönert,
  • D. A. Solopikhin,
  • R. Strauss,
  • E. Tarabini,
  • V. I. Tretyak,
  • I. A. Tupitsyna,
  • V. Wagner
  • (less)
arXiv e-prints (05/2022) e-Print:2206.05116
abstract + abstract -

One of the most energetic events in the Universe are core-collapse Supernovae (SNe), where almost all the star's binding energy is released as neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first ton-scale array of cryogenic detectors made from archaeological lead. Pb offers the highest neutrino interaction cross-section via coherent elastic neutrino-nucleus scattering (CE$\nu$NS). Such process will enable RES-NOVA to be equally sensitive to all neutrino flavors. For the first time, we propose to use archaeological Pb as sensitive target material in order to achieve an ultra-low background level in the region of interest (\textit{O}(1keV)). All these features make possible the deployment of the first cm-scale neutrino telescope for the investigation of astrophysical sources. In this contribution, we will characterize the radiopurity level and the performance of a small-scale proof-of-principle detector of RES-NOVA, consisting in a PbWO$_4$ crystal made from archaeological-Pb operated as cryogenic detector.


(736)Gaussian Processes and Bayesian Optimization for High Precision Experiments
  • Max Lamparth,
  • Mattis Bestehorn,
  • Bastian Märkisch
arXiv e-prints (05/2022) e-Print:2205.07625
abstract + abstract -

High-precision measurements require optimal setups and analysis tools to achieve continuous improvements. Systematic corrections need to be modeled with high accuracy and known uncertainty to reconstruct underlying physical phenomena. To this end, we present Gaussian processes for modeling experiments and usage with Bayesian optimization, on the example of an electron energy detector, achieving optimal performance. We demonstrate the method's strengths and outline stochastic variational Gaussian processes for physics applications with large data sets, enabling new solutions for current problems.


(735)A new and Homogeneous metallicity scale for Galactic classical Cepheids. II. Abundance of iron and α elements
  • R. da Silva,
  • J. Crestani,
  • G. Bono,
  • V. F. Braga,
  • V. D'Orazi
  • +16
  • B. Lemasle,
  • M. Bergemann,
  • M. Dall'Ora,
  • G. Fiorentino,
  • P. François,
  • M. A. T. Groenewegen,
  • L. Inno,
  • V. Kovtyukh,
  • R. -P. Kudritzki,
  • N. Matsunaga,
  • M. Monelli,
  • A. Pietrinferni,
  • L. Porcelli,
  • J. Storm,
  • M. Tantalo,
  • F. Thévénin
  • (less)
Astronomy and Astrophysics, 661, p31 (05/2022) doi:10.1051/0004-6361/202142957
abstract + abstract -

Context. Classical Cepheids are the most popular distance indicators and tracers of young stellar populations. The key advantage is that they are bright and they can be easily identified in Local Group and Local Volume galaxies. Their evolutionary and pulsation properties depend on their chemical abundances.
Aims: The main aim of this investigation is to perform a new and accurate abundance analysis of 20 calibrating Galactic Cepheids. We used high spectral resolution (R ~ 40 000-115 000) and high S/N spectra (~400), covering the entire pulsation cycle.
Methods: We focused our attention on plausible systematics that would affect the estimate of atmospheric parameters and elemental abundances along the pulsation cycle. We cleaned the line list by using atomic transition parameters based on laboratory measurements and by removing lines that are either blended or that display abundance variations along the pulsation cycle.
Results: The spectroscopic approach we developed brings forward small dispersions in the variation of the atmospheric parameters (σ(Teff) ~ 50 K, σ(log g) ~ 0.2 dex, and σ(ξ) ~ 0.2 kms−1) as well as in the abundance of both iron (≲0.05 dex) and α elements (≲0.10 dex) over the entire pulsation cycle. We also provide new and accurate effective temperature templates by splitting the calibrating Cepheids into four different period bins, ranging from short to long periods. For each period bin, we performed an analytical fit with Fourier series providing θ = 5040/Teff as a function of the pulsation phase.
Conclusions: The current findings are a good viaticum for tracing the chemical enrichment of the Galactic thin disk by using classical Cepheids as a fundamental stepping stone for further investigations into the more metal-poor regime that is typical of Magellanic Cepheids.

Full Tables 2, 3, 4, 8, and 9 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A104

Partly based on observations made with ESO Telescopes at the La Silla/Paranal Observatories under program IDs: 072.D-0419, 073.D-0136, and 190.D-0237 for HARPS spectra; 084.B-0029, 087.A-9013, 074.D-0008, 075.D-0676, and 60.A-9120 for FEROS spectra; 081.D-0928, 082.D-0901, 089.D-0767, and 093.D-0816 for UVES spectra.

Partly based on data obtained with the STELLA robotic telescopes in Tenerife, a facility of The Leibniz Institute for Astrophysics Potsdam (AIP) jointly operated by the AIP and by the Instituto de Astrofisica de Canarias (IAC).


(734)3D printed protein-based robotic structures actuated by molecular motor assemblies
  • Haiyang Jia,
  • Johannes Flommersfeld,
  • Michael Heymann,
  • Sven K. Vogel,
  • Henri G. Franquelim
  • +4
  • David B. Brückner,
  • Hiromune Eto,
  • Chase P. Broedersz,
  • Petra Schwille
  • (less)
Nature Materials, 21, p7 (05/2022) doi:10.1038/s41563-022-01258-6
abstract + abstract -

Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.


(733)Studying the merging cluster Abell 3266 with eROSITA
  • J. S. Sanders,
  • V. Biffi,
  • M. Brüggen,
  • E. Bulbul,
  • K. Dennerl
  • +13
  • K. Dolag,
  • T. Erben,
  • M. Freyberg,
  • E. Gatuzz,
  • V. Ghirardini,
  • D. N. Hoang,
  • M. Klein,
  • A. Liu,
  • A. Merloni,
  • F. Pacaud,
  • M. E. Ramos-Ceja,
  • T. H. Reiprich,
  • J. A. ZuHone
  • (less)
Astronomy and Astrophysics, 661, p27 (05/2022) doi:10.1051/0004-6361/202141501
abstract + abstract -

Abell 3266 is one of the X-ray brightest galaxy clusters in the sky and is a well-known merging system. Using the ability of the eROSITA telescope onboard SRG (Spectrum Röntgen Gamma) to observe a wide field with a single pointing, we analysed a new observation of the cluster out to a radius of R200. The X-ray images highlight sub-structures present in the cluster, including the north-east-south-west merger seen in previous ASCA, Chandra, and XMM-Newton data, a merging group towards the north-west, and filamentary structures between the core and one or more groups towards the west. We compute spatially resolved spectroscopic maps of the thermodynamic properties of the cluster, including the metallicity. The merging subclusters are seen as low entropy material within the cluster. The filamentary structures could be the rims of a powerful outburst of an active galactic nucleus, or most likely material stripped from the western group(s) as they passed through the cluster core. Seen in two directions is a pressure jump at a radius of 1.1 Mpc, which is consistent with a shock with a Mach number of ~1.5-1.7. The eROSITA data confirm that the cluster is not a simple merging system, but it is made up of several subclusters which are merging or will shortly merge. We computed a hydrostatic mass from the eROSITA data, finding good agreement with a previous XMM-Newton result. With this pointing we detect several extended sources, where we find secure associations between z = 0.36-1.0 for seven of them, that is background galaxy groups and clusters, highlighting the power of eROSITA to find such systems.


(732)New constraint on the tensor-to-scalar ratio from the $Planck$ and BICEP/Keck Array data using the profile likelihood
  • Paolo Campeti,
  • Eiichiro Komatsu
(05/2022) e-Print:2205.05617
abstract + abstract -

We derive a new upper bound on the tensor-to-scalar ratio parameter $r$ using the frequentist profile likelihood method. We vary all the relevant cosmological parameters of the $\Lambda$CDM model, as well as the nuisance parameters. Unlike the Bayesian analysis using Markov Chain Monte Carlo (MCMC), our analysis is independent of the choice of priors. Using $Planck$ Public Release 4, BICEP/Keck Array 2018, $Planck$ CMB lensing, and BAO data, we find an upper limit of $r<0.037$ at 95% C.L., similar to the Bayesian MCMC result of $r<0.038$ for a flat prior on $r$ and a conditioned $Planck$ lowlEB covariance matrix.


(731)Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors
  • Philipp Eller,
  • Nahuel Iachellini Ferreiro,
  • Luca Pattavina,
  • Lolian Shtembari
(05/2022) e-Print:2205.03350
abstract + abstract -

Supernovae (SNe) are among the most energetic events in the universe still far from being fully understood. An early and prompt detection of neutrinos is a one-time opportunity for the realization of the first multi-messenger observation of these events. In this work, we present the prospects of detecting neutrinos produced before (pre-SN) and during a SN while running an advanced cryogenic detector. The recent advancements of the cryogenic detector technique and the discovery of coherent elastic neutrino-nucleus scattering offer a wealth of opportunities in neutrino detection. The combination of the excellent energy resolution of this experimental technique, with the high cross section of this detection channel and its equal sensitivity to all neutrino flavors enables the realization of highly sensitive cm-scale neutrino telescopes, as the newly proposed RES-NOVA experiment. We present a detailed study on the detection promptness of pre-SN and SN neutrino signals, with direct comparisons among different classes of test statistics. While the well-established Poisson test offers in general best performance under optimal conditions, the non-parametric Recursive Product of Spacing statistical test (RPS) is more robust and ideal for triggering astrophysical neutrino signals with no specific prior knowledge. Based on our statistical tests the RES-NOVA experiment is able to identify SN neutrino signals at a 15 kpc distance with 95% of success rate, and pre-SN signal as far as 480 pc with a pre-warn time of the order of 10 s. These results demonstrate the potential of RPS for the identification of neutrino signals and the physics reach of the RES-NOVA experiment.


(730)New physics from the polarized light of the cosmic microwave background
  • Eiichiro Komatsu
Nature Reviews Physics, 4, p18 (05/2022) doi:10.1038/s42254-022-00452-4
abstract + abstract -

The current cosmological model requires new physics beyond the standard model of elementary particles and fields, such as dark matter and dark energy. Their nature is unknown and so is that of the initial fluctuations in the early Universe that led to the creation of the cosmic structure we see today. Polarized light of the cosmic microwave background (CMB) may hold the answer to these fundamental questions. Here, I discuss two phenomena that could be uncovered in CMB observations. First, if the physics behind dark matter and dark energy violates parity symmetry, their coupling to photons should have rotated the plane of linear polarization as the CMB photons have been travelling for more than 13 billion years. This effect is known as `cosmic birefringence'. A tantalizing hint of such a signal has been found with a statistical significance of 3σ. Second, the period of accelerated expansion in the very early Universe, called `cosmic inflation', might have produced a stochastic background of primordial gravitational waves (as yet unobserved). These might have been generated by vacuum fluctuations in spacetime or by matter fields and could be measurable in the CMB polarization. The goal of observing these two phenomena will influence how data from future CMB experiments are collected, calibrated and analysed.


(729)Summary of Working Group 4: Mixing and mixing-related $CP$ violation in the $B$ system: $\Delta m$, $\Delta \Gamma$, $\phi_s$, $\phi_{1}/\beta$, $\phi_{2}/\alpha$, $\phi_{3}/\gamma$
  • Veronika Chobanova,
  • Matthew Wingate,
  • Yosuke Yusa,
  • Jeremy Dalseno,
  • Kristof De Bruyn
  • +10
  • Ulrik Egede,
  • Fabio Ferrari,
  • Thibaud Humair,
  • Anna Lupato,
  • Eleftheria Malami,
  • Wenbin Qian,
  • Ramón Ángel Ruiz Fernández,
  • Vladyslav Shtabovenko,
  • Justus Tobias Tsang,
  • Luiz Vale Silva
  • (less)
(05/2022) e-Print:2205.15662
abstract + abstract -

This summary reviews contributions to the CKM 2021 workshop in Working Group 4. In particular, theoretical and experimental progress in determining $B$ meson mixing properties are discussed.


(728)First measurement of massive virtual photon emission from N* baryon resonances
  • R. Abou Yassine,
  • J. Adamczewski-Musch,
  • O. Arnold,
  • E.T. Atomssa,
  • M. Becker
  • +116
  • C. Behnke,
  • J.C. Berger-Chen,
  • A. Blanco,
  • C. Blume,
  • M. Böhmer,
  • L. Chlad,
  • P. Chudoba,
  • I. Ciepal,
  • C. Deveaux,
  • D. Dittert,
  • J. Dreyer,
  • E. Epple,
  • L. Fabbietti,
  • P. Fonte,
  • C. Franco,
  • J. Friese,
  • I. Fröhlich,
  • J. Förtsch,
  • T. Galatyuk,
  • J.A. Garzon,
  • R. Gernhäuser,
  • R. Greifenhagen,
  • M. Grunwald,
  • M. Gumberidze,
  • S. Harabasz,
  • T. Heinz,
  • T. Hennino,
  • C. Höhne,
  • F. Hojeij,
  • R. Holzmann,
  • M. Idzik,
  • B. Kämpfer,
  • K-H. Kampert,
  • B. Kardan,
  • V. Kedych,
  • I. Koenig,
  • W. Koenig,
  • M. Kohls,
  • B.W. Kolb,
  • G. Korcyl,
  • G. Kornakov,
  • F. Kornas,
  • R. Kotte,
  • W. Krueger,
  • A. Kugler,
  • T. Kunz,
  • R. Lalik,
  • K. Lapidus,
  • S. Linev,
  • L. Lopes,
  • M. Lorenz,
  • T. Mahmoud,
  • L. Maier,
  • A. Malige,
  • J. Markert,
  • S. Maurus,
  • V. Metag,
  • J. Michel,
  • D.M. Mihaylov,
  • V. Mikhaylov,
  • A. Molenda,
  • C. Müntz,
  • R. Münzer,
  • L. Naumann,
  • K. Nowakowski,
  • J.-H. Otto,
  • Y. Parpottas,
  • M. Parschau,
  • C. Pauly,
  • V. Pechenov,
  • O. Pechenova,
  • J. Pietraszko,
  • T. Povar,
  • A. Prozorov,
  • W. Przygoda,
  • K. Pysz,
  • B. Ramstein,
  • N. Rathod,
  • P. Rodriguez-Ramos,
  • A. Rost,
  • P. Salabura,
  • T. Scheib,
  • N. Schild,
  • K. Schmidt-Sommerfeld,
  • H. Schuldes,
  • E. Schwab,
  • F. Scozzi,
  • F. Seck,
  • P. Sellheim,
  • J. Siebenson,
  • L. Silva,
  • U. Singh,
  • J. Smyrski,
  • S. Spataro,
  • S. Spies,
  • M.S. Stefaniak,
  • H. Ströbele,
  • J. Stroth,
  • P. Strzempek,
  • C. Sturm,
  • K. Sumara,
  • O. Svoboda,
  • M. Szala,
  • P. Tlusty,
  • M. Traxler,
  • H. Tsertos,
  • O. Vazquez-Doce,
  • V. Wagner,
  • A.A. Weber,
  • C. Wendisch,
  • M.G. Wiebusch,
  • J. Wirth,
  • H.P. Zbroszczyk,
  • E. Zherebtsova,
  • P. Zumbruch,
  • M. Zetenyi
  • (less)
(05/2022) e-Print:2205.15914
abstract + abstract -

First information on the timelike electromagnetic structure of baryons in the second resonance region has been obtained from measurements of invariant mass and angular distributions in the quasi-free reaction $\pi^- p \to nee$ at $\sqrt{s_{\pi^- p}}$ = 1.49 GeV with the High Acceptance Di-Electron Spectrometer (HADES) detector at GSI using the pion beam impinging on a CH$_2$ target. We find a total cross section $\sigma (\pi^- p \to nee) = 2.97 \pm 0.07^{data} \pm 0.21^{acc} \pm 0.31^{\rm{Z}_{\rm{eff}}} \mu$b. Combined with the Partial Wave Analysis of the concurrently measured two-pion channel, these data sets provide a crucial test of Vector Meson Dominance (VMD) inspired models. The commonly used "strict VMD" approach strongly overestimates the $e^+e^-$ yield. Instead, approaches based on a VMD amplitude vanishing at small $e^+e^-$ invariant masses supplemented coherently by a direct photon amplitude provide a better agreement. A good description of the data is also obtained using a calculation of electromagnetic timelike baryon transition form factors in a covariant spectator-quark model, demonstrating the dominance of meson cloud effects. The angular distributions of $e^+e^-$ pairs demonstrate the contributions of virtual photons with longitudinal polarization, in contrast to real photons. The virtual photon angular dependence supports the dominance of J=3/2, I=1/2 contributions observed in both the $\gamma^{\star} n$ and the $\pi \pi n$ channels.


(727)Quantum and Gradient Corrections to False Vacuum Decay on a de Sitter Background
  • Juan S. Cruz,
  • Stephan Brandt,
  • Maximilian Urban
(05/2022) e-Print:2205.10136
abstract + abstract -

We study the effects of a fixed de Sitter geometry background in scenarios of false vacuum decay. It is currently understood that bubble nucleation processes associated with first order phase transitions are particularly important in cosmology. The geometry of spacetime complicates the interpretation of the decay rate of a metastable vacuum. However, the effects of curvature can still be studied in the particular case where backreaction is neglected. We compute the imaginary part of the action in de Sitter space, including the one-loop and the gradient corrections. We use two independent methodologies and quantify the size of the corrections without any assumptions on the thickness of the wall of the scalar background configuration.


(726)The limits of the strong $CP$ problem
  • Wen-Yuan Ai,
  • Juan S. Cruz,
  • Björn Garbrecht,
  • Carlos Tamarit
PoS, DISCRETE2020-2021, p084 (05/2022) e-Print:2205.15093 doi:10.22323/1.405.0084
abstract + abstract -

While $CP$ violation has never been observed in the strong interactions, the QCD Lagrangian admits a $CP$-odd topological interaction proportional to the so called $\theta$ angle, which weighs the contributions to the partition function from different topological sectors. The observational bounds are usually interpreted as demanding a severe tuning of $\theta$ against the phases of the quark masses, which constitutes the strong $CP$ problem. Here we report on recent challenges to this view based on a careful treatment of boundary conditions in the path integral and of the limit of infinite spacetime volume, which leads to $\theta$ dropping out of fermion correlation functions and becoming unobservable, implying that $CP$ is preserved in QCD.


(725)Cosmological Bound on the QCD Axion Mass, Redux
  • Francesco D'Eramo,
  • Eleonora Di Valentino,
  • William Giarè,
  • Fazlollah Hajkarim,
  • Alessandro Melchiorri
  • +3
  • Olga Mena,
  • Fabrizio Renzi,
  • Seokhoon Yun
  • (less)
arXiv e-prints (05/2022) e-Print:2205.07849
abstract + abstract -

We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion $\Delta N_{\rm eff}<0.31$ and an axion mass bound $m_a < 0.53 $ eV (i.e., a bound on the axion decay constant $f_a > 1.07 \times 10^7$ GeV) both at $95\%$ CL. These BBN bounds are improved to $\Delta N_{\rm eff}<0.14$ and $m_a< 0.16$ eV ($f_a > 3.56 \times 10^7$ GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find $\Delta N_{\rm eff}<0.23$, $m_a< 0.28$ eV ($f_a > 2.02 \times 10^7$ GeV) and $\sum m_\nu < 0.16$ eV at $95\%$ CL. This corresponds approximately to a factor of $5$ improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for $m_a\sim 1$ eV.


(724)The origin of the [CII]-deficit in a simulated dwarf galaxies starburst
  • Thomas G. Bisbas,
  • Stefanie Walch,
  • Thorsten Naab,
  • Natalia Lahén,
  • Rodrigo Herrera-Camus
  • +4
  • Ulrich P. Steinwandel,
  • Constantina M. Fotopoulou,
  • Chia-Yu Hu,
  • Peter H. Johansson
  • (less)
arXiv e-prints (05/2022) e-Print:2205.08905
abstract + abstract -

We present [CII] synthetic observations of smoothed particle hydrodynamics (SPH) simulations of a dwarf galaxy merger. The merging process varies the star-formation rate by more than three orders of magnitude. Several star clusters are formed, the feedback of which disperses and unbinds the dense gas through expanding HII regions and supernova (SN) explosions. For galaxies with properties similar to the modelled ones, we find that the [CII] emission remains optically thin throughout the merging process. We identify the Warm Neutral Medium ($3<\log T_{\rm gas}4$ with $\chi_{\rm HI}>2\chi_{\rm H2}$) to be the primary source of [CII] emission ($\sim58\%$ contribution), although at stages when the HII regions are young and dense (during star cluster formation or SNe in the form of ionized bubbles) they can contribute $\gtrsim50\%$ to the total [CII] emission. We find that the [CII]/FIR ratio decreases due to thermal saturation of the [CII] emission caused by strong FUV radiation fields emitted by the massive star clusters, leading to a [CII]-deficit medium. We investigate the [CII]-SFR relation and find an approximately linear correlation which agrees well with observations, particularly those from the Dwarf Galaxy Survey. Our simulation reproduces the observed trends of [CII]/FIR versus $\Sigma_{\rm SFR}$ and $\Sigma_{\rm FIR}$, and it agrees well with the Kennicutt relation of SFR-FIR luminosity. We propose that local peaks of [CII] in resolved observations may provide evidence for ongoing massive cluster formation.


(723)Geometry-induced patterns through mechanochemical coupling
  • Laeschkir Würthner,
  • Andriy Goychuk,
  • Erwin Frey
arXiv e-prints (05/2022) e-Print:2205.02820
abstract + abstract -

Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic changes of cell shape. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the resulting rich dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves that do not occur in systems with a fixed membrane shape. Our work reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.


(722)Cosmological simulations with rare and frequent dark matter self-interactions
  • Moritz S. Fischer,
  • Marcus Brüggen,
  • Kai Schmidt-Hoberg,
  • Klaus Dolag,
  • Felix Kahlhoefer
  • +2
  • Antonio Ragagnin,
  • Andrew Robertson
  • (less)
arXiv e-prints (05/2022) e-Print:2205.02243
abstract + abstract -

Dark matter (DM) with self-interactions is a promising solution for the small-scale problems of the standard cosmological model. Here we perform the first cosmological simulation of frequent DM self-interactions, corresponding to small-angle DM scatterings. The focus of our analysis lies in finding and understanding differences to the traditionally assumed rare DM (large-angle) self scatterings. For this purpose, we compute the distribution of DM densities, the matter power spectrum, the two-point correlation function and the halo and subhalo mass functions. Furthermore, we investigate the density profiles of the DM haloes and their shapes. We find that overall large-angle and small-angle scatterings behave fairly similarly with a few exceptions. In particular, the number of satellites is considerably suppressed for frequent compared to rare self-interactions with the same cross-section. Overall we observe that while differences between the two cases may be difficult to establish using a single measure, the degeneracy may be broken through a combination of multiple ones. For instance, the combination of satellite counts with halo density or shape profiles could allow discriminating between rare and frequent self-interactions. As a by-product of our analysis, we provide - for the first time - upper limits on the cross-section for frequent self-interactions.


(721)Non-linearities in the Lyman-$\alpha$ forest and in its cross-correlation with dark matter halos
  • Jahmour J. Givans,
  • Andreu Font-Ribera,
  • Anže Slosar,
  • Louise Seeyave,
  • Christian Pedersen
  • +4
  • Keir K. Rogers,
  • Mathias Garny,
  • Diego Blas,
  • Vid Iršič
  • (less)
arXiv e-prints (05/2022) e-Print:2205.00962
abstract + abstract -

Three-dimensional correlations of the Lyman-$\alpha$ (Ly$\alpha$) forest and cross correlations between the Ly$\alpha$ forest and quasars have been measured on large scales, allowing a precise measurement of the baryon acoustic oscillation (BAO) feature at redshifts $z>2$. These 3D correlations are often modelled using linear perturbation theory, but full-shape analyses to extract cosmological information beyond BAO will require more realistic models capable of describing non-linearities present at smaller scales. We present a measurement of the Ly$\alpha$ forest flux power spectrum from large hydrodynamic simulations -- the Sherwood simulations -- and compare it to different models describing the small-scale deviations from linear theory. We confirm that the model presented in Arinyo-i-Prats et al. (2015) fits the measured 3D power up to $k=10\, h\rm{Mpc^{-1}}$ with an accuracy better than 5%, and show that the same model can also describe the 1D correlations with similar precision. We also present, for the first time, an equivalent study for the cross-power spectrum of halos with the Ly$\alpha$ forest, and we discuss different challenges we face when modelling the cross-power spectrum beyond linear scales. We make all our measured power spectra public in \url{https://github.com/andreufont/sherwood_p3d}. This study is a step towards joint analyses of 1D and 3D flux correlations, and towards using the quasar-Ly$\alpha$ cross-correlation beyond BAO analyses.


(720)Two-loop non-planar hexa-box integrals with one massive leg
  • Adam Kardos,
  • Costas G. Papadopoulos,
  • Alexander V. Smirnov,
  • Nikolaos Syrrakos,
  • Christopher Wever
Journal of High Energy Physics, 2022 (05/2022) doi:10.1007/JHEP05(2022)033
abstract + abstract -

Based on the Simplified Differential Equations approach, we present results for the two-loop non-planar hexa-box families of master integrals. We introduce a new approach to obtain the boundary terms and establish a one-dimensional integral representation of the master integrals in terms of Generalised Polylogarithms, when the alphabet contains non-factorisable square roots. The results are relevant to the study of NNLO QCD corrections for W, Z and Higgs-boson production in association with two hadronic jets.


(719)On the Standard Model Predictions for Rare K and B Decay Branching Ratios: 2022
  • Andrzej J. Buras
arXiv e-prints (05/2022) e-Print:2205.01118
abstract + abstract -

In this decade one expects a very significant progress in measuring the branching ratios for several rare $K$ and $B$ decays, in particular for the decays $K^+\to\pi^+\nu\bar\nu$, $K_L\to\pi^0\nu\bar\nu$, $B_s\to\mu^+\mu^+$ and $B_d\to\mu^+\mu^+$. On the theory side a very significant progress on calculating these branching ratios has been achieved in the last thirty years culminating recently in rather precise SM predictions for them. It is then unfortunate that some papers still cite the results for $K^+\to\pi^+\nu\bar\nu$ and $K_L\to\pi^0\nu\bar\nu$ presented by us in 2015. They are clearly out of date. Similar comments apply to predictions for $B_{s,d}\to\mu^+\mu^-$. In this note I want to stress again that, in view of the tensions between various determinations of $V_{cb}$ in tree-level decays, presently, the only trustable SM predictions for the branching ratios in question can be obtained by eliminating their dependence on the CKM parameters with the help of $|\varepsilon_K|$, $\Delta M_s$, $\Delta M_d$ and $S_{\psi K_S}$, evaluated in the SM. In this context I am astonished by statements made by some computer code practitioners that setting in this strategy these four $\Delta F=2$ observables to their experimental values is an assumption. The goal of this strategy is not to make an overall SM fit but to predict the SM branching ratios. In the SM there are no new physics (NP) contributions to $\Delta F=2$ transitions and no assumption on the absence of NP is needed. Moreover, presently NP is not required to describe simultaneously the very precise data on $|\varepsilon_K|$, $\Delta M_s$, $\Delta M_d$ and $S_{\psi K_S}$. This strategy for obtaining true SM predictions for rare decay branching ratios is moreover not polluted by hadronic uncertainies and observed anomalies in semi-leptonic decays used often in global analyses.


(718)Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature
  • Nora Brambilla,
  • Miguel Ángel Escobedo,
  • Ajaharul Islam,
  • Michael Strickland,
  • Anurag Tiwari
  • +2
  • Antonio Vairo,
  • Peter Vander Griend
  • (less)
arXiv e-prints (05/2022) e-Print:2205.10289
abstract + abstract -

Using the potential non-relativistic quantum chromodynamics (pNRQCD) effective field theory, we derive a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix that is accurate to next-to-leading order (NLO) in the ratio of the binding energy of the state to the temperature of the medium. The resulting NLO Lindblad equation can be used to more reliably describe heavy-quarkonium evolution in the quark-gluon plasma at low temperatures compared to the leading-order truncation. For phenomenological application, we numerically solve the resulting NLO Lindblad equation using the quantum trajectories algorithm. To achieve this, we map the solution of the three-dimensional Lindblad equation to the solution of an ensemble of one-dimensional Schrödinger evolutions with Monte-Carlo sampled quantum jumps. Averaging over the Monte-Carlo sampled quantum jumps, we obtain the solution to the NLO Lindblad equation without truncation in the angular momentum quantum number of the states considered. We also consider the evolution of the system using only the complex effective Hamiltonian without stochastic jumps and find that this provides a reliable approximation for the ground state survival probability at LO and NLO. Finally, we make comparisons with our prior leading-order pNRQCD results and experimental data available from the ATLAS, ALICE, and CMS collaborations.


(717)Gravothermal evolution of dark matter halos with differential elastic scattering
  • Daneng Yang,
  • Hai-Bo Yu
arXiv e-prints (05/2022) e-Print:2205.03392
abstract + abstract -

We study gravothermal evolution of dark matter halos in the presence of differential self-scattering that has strong velocity and angular dependencies. We design controlled N-body simulations to model Rutherford and Moller scatterings in the halo, and follow its evolution in both core-expansion and -collapse phases. The simulations show the commonly-used transfer cross section underestimates the effects of dark matter self-interactions, but the viscosity cross section provides a good approximation for modeling angular-dependent dark matter scattering. We investigate thermodynamic properties of the halo, and find that the three moments of the Boltzmann equation under the fluid approximation are satisfied. We further propose a constant effective cross section, which integrates over the halo's characteristic velocity dispersion with weighting kernels motivated by kinetic theory of heat conduction. The effective cross section provides an approximation to differential self-scattering for most of the halo evolution. However, it can significantly underestimate the growth rate of the central density at late stages of the collapse phase. This indicates that constant and velocity-dependent dark matter self-interactions are fundamentally different, as for the latter the cross section evolves with the halo dynamically, boosting the collapse. This feature may help test different self-interacting dark matter models.


(716)The role of physical and numerical viscosity in hydrodynamical instabilities
  • Tirso Marin-Gilabert,
  • Milena Valentini,
  • Ulrich P. Steinwandel,
  • Klaus Dolag
arXiv e-prints (05/2022) e-Print:2205.09135
abstract + abstract -

The evolution of the Kelvin-Helmholtz Instability (KHI) is widely used to assess the performance of numerical methods. We employ this instability to test both the smoothed particle hydrodynamics (SPH) and the meshless finite mass (MFM) implementation in OpenGadget3. We quantify the accuracy of SPH and MFM in reproducing the linear growth of the KHI with different numerical and physical set-ups. Among them, we consider: $i)$ numerical induced viscosity, and $ii)$ physically motivated, Braginskii viscosity, and compare their effect on the growth of the KHI. We find that the changes of the inferred numerical viscosity when varying nuisance parameters such as the set-up or the number of neighbours in our SPH code are comparable to the differences obtained when using different hydrodynamical solvers, i.e. MFM. SPH reproduces the expected reduction of the growth rate in the presence of physical viscosity and recovers well the threshold level of physical viscosity needed to fully suppress the instability. In the case of galaxy clusters with a virial temperature of $3\times10^7$ K, this level corresponds to a suppression factor of $\approx10^{-3}$ of the classical Braginskii value. The intrinsic, numerical viscosity of our SPH implementation in such an environment is inferred to be at least an order of magnitude smaller (i.e. $\approx10^ {-4}$), re-ensuring that modern SPH methods are suitable to study the effect of physical viscosity in galaxy clusters.


(715)Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors
  • Philipp Eller,
  • Nahuel Ferreiro Iachellini,
  • Luca Pattavina,
  • Lolian Shtembari
arXiv e-prints (05/2022) e-Print:2205.03350
abstract + abstract -

Supernovae (SNe) are among the most energetic events in the universe still far from being fully understood. An early and prompt detection of neutrinos is a one-time opportunity for the realization of the first multi-messenger observation of these events. In this work, we present the prospects of detecting neutrinos produced before (pre-SN) and during a SN while running an advanced cryogenic detector. The recent advancements of the cryogenic detector technique and the discovery of coherent elastic neutrino-nucleus scattering offer a wealth of opportunities in neutrino detection. The combination of the excellent energy resolution of this experimental technique, with the high cross section of this detection channel and its equal sensitivity to all neutrino flavors enables the realization of highly sensitive cm-scale neutrino telescopes, as the newly proposed RES-NOVA experiment. We present a detailed study on the detection promptness of pre-SN and SN neutrino signals, with direct comparisons among different classes of test statistics. While the well-established Poisson test offers in general best performance under optimal conditions, the non-parametric Recursive Product of Spacing statistical test (RPS) is more robust and ideal for triggering astrophysical neutrino signals with no specific prior knowledge. Based on our statistical tests the RES-NOVA experiment is able to identify SN neutrino signals at a 15 kpc distance with 95% of success rate, and pre-SN signal as far as 480 pc with a pre-warn time of the order of 10 s. These results demonstrate the potential of RPS for the identification of neutrino signals and the physics reach of the RES-NOVA experiment.


(714)B → D<SUB>1</SUB>(2420) and B → D<SUB>1</SUB><SUP>'</SUP>(2430) form factors from QCD light-cone sum rules
  • Nico Gubernari,
  • Alexander Khodjamirian,
  • Rusa Mandal,
  • Thomas Mannel
Journal of High Energy Physics, 2022 (05/2022) doi:10.1007/JHEP05(2022)029
abstract + abstract -

We perform the first calculation of form factors in the semileptonic decays B → D1(2420)ℓν and B → D1'(2430)ℓν using QCD light-cone sum rules (LCSRs) with B-meson distribution amplitudes. In this calculation the c-quark mass is finite. Analytical expressions for two-particle contributions up to twist four are obtained. To disentangle the D1 and D1' contributions in the LCSRs, we suggest a novel approach that introduces a combination of two interpolating currents for these charmed mesons. To fix all the parameters in the LCSRs, we use the two-point QCD sum rules for the decay constants of D1 and D1' mesons augmented by a single experimental input, that is the B → D1(2420)ℓν decay width. We provide numerical results for all B → D1 and B → D1' form factors. As a byproduct, we also obtain the D1- and D1'-meson decay constants and predict the lepton-flavour universality ratios R(D1) and R(D1').


(713)Next-to-leading power endpoint factorization and resummation for off-diagonal "gluon" thrust
  • M. Beneke,
  • M. Garny,
  • S. Jaskiewicz,
  • J. Strohm,
  • R. Szafron
  • +2
arXiv e-prints (05/2022) e-Print:2205.04479
abstract + abstract -

The lack of convergence of the convolution integrals appearing in next-to-leading-power (NLP) factorization theorems prevents the applications of existing methods to resum power-suppressed large logarithmic corrections in collider physics. We consider thrust distribution in the two-jet region for the flavour-nonsinglet off-diagonal contribution, where a gluon-initiated jet recoils against a quark-antiquark pair, which is power-suppressed. With the help of operatorial endpoint factorization conditions, we obtain a factorization formula, where the individual terms are free from endpoint divergences in convolutions and can be expressed in terms of renormalized hard, soft and collinear functions in four dimensions. This allows us to perform the first resummation of the endpoint-divergent SCET$_{\rm I}$ observables at the leading logarithmic accuracy using exclusively renormalization-group methods. The presented approach relies on universal properties of the soft and collinear limits and may serve as a paradigm for the systematic NLP resummation for other $1\to 2$ and $2\to 1$ collider physics processes.


(712)Euclid: Cosmological forecasts from the void size function
  • S. Contarini,
  • G. Verza,
  • A. Pisani,
  • N. Hamaus,
  • M. Sahlén
  • +120
  • C. Carbone,
  • S. Dusini,
  • F. Marulli,
  • L. Moscardini,
  • A. Renzi,
  • C. Sirignano,
  • L. Stanco,
  • M. Bonici,
  • G. Castignani,
  • H. M. Courtois,
  • S. Escoffier,
  • D. Guinet,
  • A. Kovacs,
  • G. Lavaux,
  • E. Massara,
  • S. Nadathur,
  • G. Pollina,
  • T. Ronconi,
  • F. Ruppin,
  • Z. Sakr,
  • A. Veropalumbo,
  • B. D. Wandelt,
  • A. Amara,
  • N. Auricchio,
  • M. Baldi,
  • D. Bonino,
  • E. Branchini,
  • M. Brescia,
  • J. Brinchmann,
  • S. Camera,
  • V. Capobianco,
  • J. Carretero,
  • M. Castellano,
  • S. Cavuoti,
  • R. Cledassou,
  • G. Congedo,
  • C. J. Conselice,
  • L. Conversi,
  • Y. Copin,
  • L. Corcione,
  • F. Courbin,
  • M. Cropper,
  • A. Da Silva,
  • H. Degaudenzi,
  • F. Dubath,
  • C. A. J. Duncan,
  • X. Dupac,
  • A. Ealet,
  • S. Farrens,
  • S. Ferriol,
  • P. Fosalba,
  • M. Frailis,
  • E. Franceschi,
  • B. Garilli,
  • W. Gillard,
  • B. Gillis,
  • C. Giocoli,
  • A. Grazian,
  • F. Grupp,
  • L. Guzzo,
  • S. Haugan,
  • W. Holmes,
  • F. Hormuth,
  • K. Jahnke,
  • M. Kümmel,
  • S. Kermiche,
  • A. Kiessling,
  • M. Kilbinger,
  • M. Kunz,
  • H. Kurki-Suonio,
  • R. Laureijs,
  • S. Ligori,
  • P. B. Lilje,
  • I. Lloro,
  • E. Maiorano,
  • O. Mansutti,
  • O. Marggraf,
  • K. Markovic,
  • R. Massey,
  • M. Melchior,
  • M. Meneghetti,
  • G. Meylan,
  • M. Moresco,
  • E. Munari,
  • S. M. Niemi,
  • C. Padilla,
  • S. Paltani,
  • F. Pasian,
  • K. Pedersen,
  • W. J. Percival,
  • V. Pettorino,
  • S. Pires,
  • G. Polenta,
  • M. Poncet,
  • L. Popa,
  • L. Pozzetti,
  • F. Raison,
  • J. Rhodes,
  • E. Rossetti,
  • R. Saglia,
  • B. Sartoris,
  • P. Schneider,
  • A. Secroun,
  • G. Seidel,
  • G. Sirri,
  • C. Surace,
  • P. Tallada-Crespí,
  • A. N. Taylor,
  • I. Tereno,
  • R. Toledo-Moreo,
  • F. Torradeflot,
  • E. A. Valentijn,
  • L. Valenziano,
  • Y. Wang,
  • J. Weller,
  • G. Zamorani,
  • J. Zoubian,
  • S. Andreon,
  • D. Maino,
  • S. Mei
  • (less)
arXiv e-prints (05/2022) e-Print:2205.11525
abstract + abstract -

The Euclid mission $-$ with its spectroscopic galaxy survey covering a sky area over $15\,000 \ \mathrm{deg}^2$ in the redshift range $0.9<z<1.8\ -$ will provide a sample of tens of thousands of cosmic voids. This paper explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identify voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We model the void size function considering a state-of-the art methodology: we rely on the volume conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We find an excellent agreement between model predictions and measured mock void number counts. We compute updated forecasts for the Euclid mission on DE from the void size function and provide reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analyse two different cosmological models for DE: the first described by a constant DE equation of state parameter, $w$, and the second by a dynamic equation of state with coefficients $w_0$ and $w_a$. We forecast $1\sigma$ errors on $w$ lower than the $10\%$, and we estimate an expected figure of merit (FoM) for the dynamical DE scenario $\mathrm{FoM}_{w_0,w_a} = 17$ when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes.


(711)New constraint on the tensor-to-scalar ratio from the $Planck$ and BICEP/Keck Array data using the profile likelihood
  • Paolo Campeti,
  • Eiichiro Komatsu
arXiv e-prints (05/2022) e-Print:2205.05617
abstract + abstract -

We derive a new upper bound on the tensor-to-scalar ratio parameter $r$ using the frequentist profile likelihood method. We vary all the relevant cosmological parameters of the $\Lambda$CDM model, as well as the nuisance parameters. Unlike the Bayesian analysis using Markov Chain Monte Carlo (MCMC), our analysis is independent of the choice of priors. Using $Planck$ Public Release 4, BICEP/Keck Array 2018, $Planck$ CMB lensing, and BAO data, we find an upper limit of $r<0.037$ at 95% C.L., similar to the Bayesian MCMC result of $r<0.038$ for a flat prior on $r$ and a conditioned $Planck$ lowlEB covariance matrix.


(710)The PEPSI-LBT Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy
  • Marshall C. Johnson,
  • Ji Wang,
  • Anusha Pai Asnodkar,
  • Aldo S. Bonomo,
  • B. Scott Gaudi
  • +17
  • Thomas Henning,
  • Ilya Ilyin,
  • Engin Keles,
  • Luca Malavolta,
  • Matthias Mallonn,
  • Karan Molaverdikhani,
  • Valerio Nascimbeni,
  • Jennifer Patience,
  • Katja Poppenhaeger,
  • Gaetano Scandariato,
  • Everett Schlawin,
  • Evgenya Shkolnik,
  • Daniela Sicilia,
  • Alessandro Sozzetti,
  • Klaus G. Strassmeier,
  • Christian Veillet,
  • Fei Yan
  • (less)
arXiv e-prints (05/2022) e-Print:2205.12162
abstract + abstract -

Recent observations have shown that the atmospheres of ultra hot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Fe I in emission at $15.1\sigma$; however, we are unable to reproduce published detections of Fe II, Cr I, or Si I. We attribute the non-detection of Si I to the lack of lines in our bandpass, but the non-detections of Fe II and Cr I are puzzling due to our much higher signal-to-noise ratio than previous works. Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set $4\sigma$ upper limits upon the volume mixing ratios for these constituents as low as $\sim1\times10^{-10}$ for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while FeH is lower than the expectations only from a super-Solar metallicity model. We thus rule out TiO, VO, and CaH as the source of the temperature inversion in KELT-20 b, while FeH is disfavored only if KELT-20 b possesses a high-metallicity atmosphere.


(709)The eROSITA view of the Abell 3391/95 field: The Northern Clump. The largest infalling structure in the longest known gas filament observed with eROSITA, XMM-Newton, and Chandra
  • Angie Veronica,
  • Yuanyuan Su,
  • Veronica Biffi,
  • Thomas H. Reiprich,
  • Florian Pacaud
  • +16
  • Paul E. J. Nulsen,
  • Ralph P. Kraft,
  • Jeremy S. Sanders,
  • Akos Bogdan,
  • Melih Kara,
  • Klaus Dolag,
  • Jürgen Kerp,
  • Bärbel S. Koribalski,
  • Thomas Erben,
  • Esra Bulbul,
  • Efrain Gatuzz,
  • Vittorio Ghirardini,
  • Andrew M. Hopkins,
  • Ang Liu,
  • Konstantinos Migkas,
  • Tessa Vernstrom
  • (less)
Astronomy and Astrophysics, 661, p24 (05/2022) doi:10.1051/0004-6361/202141415
abstract + abstract -

Context. Galaxy clusters grow through mergers and the accretion of substructures along large-scale filaments. Many of the missing baryons in the local Universe may reside in such filaments as the warm-hot intergalactic medium (WHIM).
Aims: SRG/eROSITA performance verification observations revealed that the binary cluster Abell 3391/3395 and the Northern Clump (the MCXC J0621.7-5242 galaxy cluster) are aligning along a cosmic filament in soft X-rays, similarly to what has been seen in simulations before. We aim to understand the dynamical state of the Northern Clump as it enters the atmosphere (3 × R200) of Abell 3391.
Methods: We analyzed joint eROSITA, XMM-Newton, and Chandra observations to probe the morphological, thermal, and chemical properties of the Northern Clump from its center out to a radius of 988 kpc (R200). We utilized the ASKAP/EMU radio data, the DECam optical image, and the Planck y-map to study the influence of the wide-angle tail (WAT) radio source on the Northern Clump's central intracluster medium. Using eROSITA data, we also analyzed the gas properties of the Northern Filament, the region between the virial radii of the Northern Clump and the A3391 cluster. From the Magneticum simulation, we identified an analog of the A3391/95 system along with an infalling group resembling the Northern Clump.
Results: The Northern Clump is a weak cool-core cluster centered on a WAT radio galaxy. The gas temperature over 0.2-0.5R500 is kBT500 = 1.99 ± 0.04 keV. We employed the mass-temperature (M - T) scaling relation and obtained a mass estimate of M500 = (7.68 ± 0.43) × 1013 M and R500 = (63 6 ± 12) kpc. Its X-ray atmosphere has a boxy shape and deviates from spherical symmetry. We identify a southern surface brightness edge, likely caused by subsonic motion relative to the filament gas in the southern direction. At ~R500, the southern atmosphere (infalling head) appears to be 42% hotter than its northern atmosphere. We detect a downstream tail pointing toward the north with a projected length of ~318 kpc, plausibly the result of ram pressure stripping. Through a two-temperature fit, we identify a cooler component in the Northern Filament with kBT = 0.68- 0.64+ 0.38 keV <!--inline-formula id="FI1"><alternatives><![CDATA[{k{B}}T = 0.68- 0.64+ 0.38{{keV}}]]>kBT=0.68−0.64+0.38keV<inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" id="img_eq1" mime-subtype="png" mimetype="image" xlink:href="aa41415-21-eq1.png"/></alternatives> and ne = 1.99-1.24+0.88 × 10-5cm-3, <!--inline-formula id="FI2"><alternatives><![CDATA[{n_e}1.99- 1.24+ 0.88 × {10- 5}{{c}}{{{m}}- 3}]]>ne1.99−1.24+0.88×10−5cm−3<inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" id="img_eq2" mime-subtype="png" mimetype="image" xlink:href="aa41415-21-eq2.png"/></alternatives> which are consistent within the expected ranges of WHIM properties. The analog group in the Magneticum simulation is experiencing changes in its gas properties and a shift between the position of the halo center and that of the bound gas, while approaching the main cluster pair.
Conclusions: The Northern Clump is a dynamically active system and far from being relaxed. Its atmosphere is affected by an interaction with the WAT and by gas sloshing or its infall toward Abell 3391 along the filament, consistent with the analog group-size halo in the Magneticum simulation.


(708)Towards an accurate model of small-scale redshift-space distortions in modified gravity
  • Cheng-Zong Ruan,
  • Carolina Cuesta-Lazaro,
  • Alexander Eggemeier,
  • César Hernández-Aguayo,
  • Carlton M. Baugh
  • +1
Monthly Notices of the Royal Astronomical Society (05/2022) doi:10.1093/mnras/stac1345
abstract + abstract -

The coming generation of galaxy surveys will provide measurements of galaxy clustering with unprecedented accuracy and data size, which will allow us to test cosmological models at much higher precision than achievable previously. This means that we must have more accurate theoretical predictions to compare with future observational data. As a first step towards more accurate modelling of the redshift space distortions (RSD) of small-scale galaxy clustering in modified gravity (MG) cosmologies, we investigate the validity of the so-called Skew-T (ST) probability distribution function (PDF) of halo pairwise peculiar velocities in these models. We show that, combined with the streaming model of RSD, the ST PDF substantially improves the small-scale predictions by incorporating skewness and kurtosis, for both ΛCDM and two leading MG models: f(R) gravity and the DGP braneworld model. The ST model reproduces the velocity PDF and redshift-space halo clustering measured from MG N-body simulations very well down to ~5 h-1Mpc. In particular, we investigate the enhancements of halo pairwise velocity moments with respect to ΛCDM for a larger range of MG variants than previous works, and present simple explanations to the behaviours observed. By performing a simple Fisher analysis, we find a significnat increase in constraining power to detect modifications of General Relativity by introducing small-scale information in the RSD analyses.


(707)First eROSITA study of nearby M dwarfs and the rotation-activity relation in combination with TESS
  • E. Magaudda,
  • B. Stelzer,
  • St. Raetz,
  • A. Klutsch,
  • M. Salvato
  • +1
Astronomy and Astrophysics, 661, p23 (05/2022) doi:10.1051/0004-6361/202141617
abstract + abstract -

We present the first results with the ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Russian Spektrum-Roentgen-Gamma mission, and we combine the new X-ray data with observations with the Transiting Exoplanet Survey Satellite (TESS). We used the SUPERBLINK proper motion catalog of nearby M dwarfs as input sample to search for eROSITA and TESS data. We extracted Gaia DR2 data for the full M dwarf catalog, which comprises ~9000 stars, and we calculated the stellar parameters from empirical relations with optical/IR colors. Then we cross-matched this catalog with the eROSITA Final Equatorial Depth Survey (eFEDS) and the first eROSITA all-sky survey (eRASS1). After a meticulous source identification in which we associated the closest Gaia source with the eROSITA X-ray detections, our sample of M dwarfs is defined by 687 stars with SpT = K5..M7 (673 from eRASS1 and 14 from eFEDS). While for eRASSl we used the data from the source catalog provided by the eROSITA_DE consortium, for the much smaller eFEDS sample, we performed the data extraction, and we analyzed the X-ray spectra and light curves. This unprecedented data base for X-ray emitting M dwarfs allowed us to place a quantitative constraint on the mass dependence of the X-ray luminosity, and to determine the change in the activity level with respect to pre-main-sequence stars. TESS observations are available for 489 of 687 X-ray detected M dwarfs. By applying standard period search methods, we were able to determine the rotation period for 180 X-ray detected M dwarfs. This is about one-forth of the X-ray sample. With the joint eROSITA and TESS sample, and combining it with our compilation of historical X-ray and rotation data for M dwarfs, we examined the mass dependence of the saturated regime of the rotation-activity relation. A first comparison of eROSITA hardness ratios and spectra shows that 65% of the X-ray detected M dwarfs have coronal temperatures of ~0.5 keV. We performed a statistical investigation of the long-term X-ray variability of M dwarfs by comparing the eROSITA measurements to those obtained ~30 yr earlier during the ROSAT all-sky survey (RASS). Evidence for X-ray flares is found in various parts of our analysis: directly from an inspection of the eFEDS light curves, in the relation between RASS and eRASSl X-ray luminosities, and in a subset of stars that displays hotter X-ray emission than the bulk of the sample according to the hardness ratios. Finally, we point out the need to obtain X-ray spectroscopy for more M dwarfs to study the coronal temperature-luminosity relation, which is not well constrained by our eFEDS results.

Full Tables 2, 3 and 5 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A29


(706)A large population study of protoplanetary disks. Explaining the millimeter size-luminosity relation with or without substructure
  • Apostolos Zormpas,
  • Tilman Birnstiel,
  • Giovanni P. Rosotti,
  • Sean M. Andrews
Astronomy and Astrophysics, 661, p28 (05/2022) doi:10.1051/0004-6361/202142046
abstract + abstract -

Recent subarcsecond resolution surveys of the dust continuum emission from nearby protoplanetary disks show a strong correlation between the sizes and luminosities of the disks. We aim to explain the origin of the (sub-)millimeter size-luminosity relation (SLR) between the 68% effective radius (reff) of disks with their continuum luminosity (Lmm), with models of gas and dust evolution in a simple viscous accretion disk and radiative transfer calculations. We use a large grid of models (105 simulations) with and without planetary gaps, and vary the initial conditions of the key parameters. We calculate the disk continuum emission and the effective radius for all models as a function of time. By selecting those simulations that continuously follow the SLR, we can derive constraints on the input parameters of the models. We confirm previous results that models of smooth disks in the radial drift regime are compatible with the observed SLR (Lmm ∝ reff2), but only smooth disks cannot be the reality. We show that the SLR is more widely populated if planets are present. However, they tend to follow a different relation than smooth disks, potentially implying that a mixture of smooth and substructured disks are present in the observed sample. We derive a SLR (Lmm ∝ reff5/4) for disks with strong substructure. To be compatible with the SLR, models need to have an initially high disk mass (≥2.5 × 10−2 M*) and low turbulence-parameter a values (≤10−3). Furthermore, we find that the grain composition and porosity drastically affects the evolution of disks in the size-luminosity diagram where relatively compact grains that include amorphous carbon are favored. Moreover, a uniformly optically thick disk with high albedo (0.9) that follows the SLR cannot be formed from an evolutionary procedure.


(705)Disk Evolution Study through Imaging of Nearby Young Stars (DESTINYS): A Panchromatic View of DO Tau's Complex Kilo-astronomical-unit Environment
  • Jane Huang,
  • Christian Ginski,
  • Myriam Benisty,
  • Bin Ren,
  • Alexander J. Bohn
  • +18
  • Élodie Choquet,
  • Karin I. Öberg,
  • Álvaro Ribas,
  • Jaehan Bae,
  • Edwin A. Bergin,
  • Til Birnstiel,
  • Yann Boehler,
  • Stefano Facchini,
  • Daniel Harsono,
  • Michiel Hogerheijde,
  • Feng Long,
  • Carlo F. Manara,
  • François Ménard,
  • Paola Pinilla,
  • Christophe Pinte,
  • Christian Rab,
  • Jonathan P. Williams,
  • Alice Zurlo
  • (less)
The Astrophysical Journal, 930, p28 (05/2022) doi:10.3847/1538-4357/ac63ba
abstract + abstract -

While protoplanetary disks are often treated as isolated systems in planet formation models, observations increasingly suggest that vigorous interactions between Class II disks and their environments are not rare. DO Tau is a T Tauri star that has previously been hypothesized to have undergone a close encounter with the HV Tau system. As part of the DESTINYS ESO Large Programme, we present new Very Large Telescope (VLT)/SPHERE polarimetric observations of DO Tau and combine them with archival Hubble Space Telescope (HST) scattered-light images and Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO isotopologues and CS to map a network of complex structures. The SPHERE and ALMA observations show that the circumstellar disk is connected to arms extending out to several hundred astronomical units. HST and ALMA also reveal stream-like structures northeast of DO Tau, some of which are at least several thousand astronomical units long. These streams appear not to be gravitationally bound to DO Tau, and comparisons with previous Herschel far-IR observations suggest that the streams are part of a bridge-like structure connecting DO Tau and HV Tau. We also detect a fainter redshifted counterpart to a previously known blueshifted CO outflow. While some of DO Tau's complex structures could be attributed to a recent disk-disk encounter, they might be explained alternatively by interactions with remnant material from the star formation process. These panchromatic observations of DO Tau highlight the need to contextualize the evolution of Class II disks by examining processes occurring over a wide range of size scales.


(704)The eROSITA Final Equatorial-Depth Survey (eFEDS). Identification and characterization of the counterparts to point-like sources
  • M. Salvato,
  • J. Wolf,
  • T. Dwelly,
  • A. Georgakakis,
  • M. Brusa
  • +38
  • A. Merloni,
  • T. Liu,
  • Y. Toba,
  • K. Nandra,
  • G. Lamer,
  • J. Buchner,
  • C. Schneider,
  • S. Freund,
  • A. Rau,
  • A. Schwope,
  • A. Nishizawa,
  • M. Klein,
  • R. Arcodia,
  • J. Comparat,
  • B. Musiimenta,
  • T. Nagao,
  • H. Brunner,
  • A. Malyali,
  • A. Finoguenov,
  • S. Anderson,
  • Y. Shen,
  • H. Ibarra-Medel,
  • J. Trump,
  • W. N. Brandt,
  • C. M. Urry,
  • C. Rivera,
  • M. Krumpe,
  • T. Urrutia,
  • T. Miyaji,
  • K. Ichikawa,
  • D. P. Schneider,
  • A. Fresco,
  • T. Boller,
  • J. Haase,
  • J. Brownstein,
  • R. R. Lane,
  • D. Bizyaev,
  • C. Nitschelm
  • (less)
Astronomy and Astrophysics, 661, p32 (05/2022) doi:10.1051/0004-6361/202141631
abstract + abstract -

Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky.
Aims: This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift.
Methods: To identifyy the counterparts, we combined the results from two independent methods (NWAY and ASTROMATCH), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts.
Results: Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available.
Conclusions: This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.

The data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A3


(703)The eROSITA Final Equatorial-Depth Survey (eFEDS). Optical confirmation, redshifts, and properties of the cluster and group catalog
  • M. Klein,
  • M. Oguri,
  • J. J. Mohr,
  • S. Grandis,
  • V. Ghirardini
  • +17
  • T. Liu,
  • A. Liu,
  • E. Bulbul,
  • J. Wolf,
  • J. Comparat,
  • M. E. Ramos-Ceja,
  • J. Buchner,
  • I. Chiu,
  • N. Clerc,
  • A. Merloni,
  • H. Miyatake,
  • S. Miyazaki,
  • N. Okabe,
  • N. Ota,
  • F. Pacaud,
  • M. Salvato,
  • S. P. Driver
  • (less)
Astronomy and Astrophysics, 661, p26 (05/2022) doi:10.1051/0004-6361/202141123
abstract + abstract -

Context. In 2019, the eROSITA telescope on board the Russian-German satellite Spectrum-Roentgen-Gamma (SRG) began to perform a deep all-sky X-ray survey with the aim of identifying ~100 000 clusters and groups over the course of four years. As part of its performance verification phase, a ~140 deg2 survey, called eROSITA Final Equatorial-Depth Survey (eFEDS), was performed. With a depth typical of the all-sky survey after four years, it allows tests of tools and methods as well as improved predictions for the all-sky survey.
Aims: As part of this effort, a catalog of 542 X-ray selected galaxy group and cluster candidates was compiled. In this paper we present the optical follow-up, with the aim of providing redshifts and cluster confirmation for the full sample. Furthermore, we aim to provide additional information on the dynamical state, richness, and optical center of the clusters. Finally, we aim to evaluate the impact of optical cluster confirmation on the purity and completeness of the X-ray selected sample.
Methods: We used optical imaging data from the Hyper Suprime-Cam Subaru Strategic Program and from the Legacy Survey to identify optical counterparts to the X-ray detected cluster candidates. We make use of the multi-component matched filter cluster confirmation tool (MCMF), as well as of the optical cluster finder CAMIRA to derive cluster redshifts and richnesses. MCMF provided the probabilities with which an optical structure would be a chance superposition with the X-ray candidate. These probabilities were used to identify the best optical counterpart as well as to confirm an X-ray candidate as a cluster. The impact of this confirmation process on catalog purity and completeness was estimated using optical to X-ray scaling relations as well as simulations. The resulting catalog was furthermore matched with public group and cluster catalogs. Optical estimators of the cluster dynamical state were constructed based on density maps of the red-sequence galaxies at the cluster redshift.
Results: By providing redshift estimates for all 542 candidates, we construct an optically confirmed sample of 477 clusters and groups with a residual contamination of 6%. Of these, 470 (98.5%) are confirmed using MCMF, and 7 systems are added through cross-matching with spectroscopic group catalogs. Using observable-to-observable scaling and the applied confirmation threshold, we predict that 8 ± 2 real systems have been excluded with the MCMF cut required to build this low-contamination sample. This number agrees well with the 7 systems found through cross-matching that were not confirmed with MCMF. The predicted redshift and mass distribution of this catalog agree well with simulations. Thus, we expect that these 477 systems include >99% of all true clusters in the candidate list. Using an MCMF-independent method, we confirm that the catalog contamination of the confirmed subsample is 6 ± 3%. Application of the same method to the full candidate list yields 17 ± 3%, consistent with estimates coming from the fraction of confirmed systems of ~17% and with expectations from simulations of ~20%. We also present a sample of merging cluster candidates based on the derived estimators of the cluster dynamical state.

The catalog is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A4


(702)Fast and precise model calculation for KATRIN using a neural network
  • Christian Karl,
  • Philipp Eller,
  • Susanne Mertens
European Physical Journal C, 82 (05/2022) doi:10.1140/epjc/s10052-022-10384-z
abstract + abstract -

We present a fast and precise method to approximate the physics model of the Karlsruhe Tritium Neutrino (KATRIN) experiment using a neural network. KATRIN is designed to measure the effective electron anti-neutrino mass mν using the kinematics of β -decay with a sensitivity of 200 meV at 90% confidence level. To achieve this goal, a highly accurate model prediction with relative errors below the 10-4-level is required. Using the regular numerical model for the analysis of the final KATRIN dataset is computationally extremely costly or requires approximations to decrease the computation time. Our solution to reduce the computational requirements is to train a neural network to learn the predicted β -spectrum and its dependence on all relevant input parameters. This results in a speed-up of the calculation by about three orders of magnitude, while meeting the stringent accuracy requirements of KATRIN.


(701)Detection of CO emission lines in the dayside atmospheres of WASP-33b and WASP-189b with GIANO
  • F. Yan,
  • E. Pallé,
  • A. Reiners,
  • N. Casasayas-Barris,
  • D. Cont
  • +6
  • M. Stangret,
  • L. Nortmann,
  • P. Mollière,
  • Th. Henning,
  • G. Chen,
  • K. Molaverdikhani
  • (less)
Astronomy and Astrophysics, 661, p7 (05/2022) doi:10.1051/0004-6361/202243503
abstract + abstract -

Ultra-hot Jupiters (UHJs) are expected to possess temperature inversion layers in their dayside atmospheres. Recent thermal emission observations have discovered several atomic and molecular species along with temperature inversions in UHJs. We observed the thermal emission spectra of two UHJs (WASP-33b and WASP-189b) with the GIANO-B high-resolution near-infrared spectrograph. Using the cross-correlation technique, we detected carbon monoxide (CO) in the dayside atmospheres of both planets. The detected CO lines are in emission, which agrees with previous discoveries of iron emission lines and temperature inversions in the two planets. This is the first detection of CO lines in emission with high-resolution spectroscopy. Further retrieval work combining the CO lines with other spectral features will enable a comprehensive understanding of the atmospheric properties such as temperature structures and C/O ratios. The detected CO and iron emission lines of WASP-189b have redshifted radial velocities of several km s−1, which likely originate from a dayside to nightside wind in its atmosphere. Such a redshifted velocity has not been detected for the emission lines of WASP-33b, suggesting that the atmospheric circulation patterns of the two UHJs may be different.


(700)The eROSITA view of the Abell 3391/95 field: Case study from the Magneticum cosmological simulation
  • Veronica Biffi,
  • Klaus Dolag,
  • Thomas H. Reiprich,
  • Angie Veronica,
  • Miriam E. Ramos-Ceja
  • +3
  • Esra Bulbul,
  • Naomi Ota,
  • Vittorio Ghirardini
  • (less)
Astronomy and Astrophysics, 661, p20 (05/2022) doi:10.1051/0004-6361/202141107
abstract + abstract -

Context. Clusters of galaxies reside at the nodes of the cosmic web, interconnected by filamentary structures that contain tenuous diffuse gas, especially in the warm-hot phase. Galaxy clusters grow by mergers of smaller objects and gas that are mainly accreted through these large-scale filaments. For the first time, the large-scale cosmic structure and a long gas-emission filament have been captured by eROSITA on board the Spectrum-Roentgen-Gamma mission in a direct X-ray observation of the A3391/95 field.
Aims: We investigate the assembly history of an A3391/95-like system of clusters and the thermo-chemical properties of the diffuse gas in it by connecting simulation predictions to the eROSITA observations with the aim to constrain the origin and nature of the gas in the pair-interconnecting bridge.
Methods: We analysed the properties of a system resembling A3391/95, extracted from the (352 h−1 cMpc)3 volume of the Magneticum Pathfinder cosmological simulations at z = 0.07. We tracked the main progenitors of the pair clusters and of surrounding groups back in time to study the assembly history of the system and its evolution.
Results: Similarly to the observed A3391/95 system, the simulated cluster pair is embedded in a complex network of gas filaments, with structures aligned over more than 20 projected Mpc, and the whole region collapses towards the central overdense node. The spheres of influence (3 × R200) of the two main clusters already overlap at z = 0.07, but their virial boundaries are still physically separated. The diffuse gas located in the interconnecting bridge closely reflects the warm-hot intergalactic medium, with a typical temperature of ~1 keV and an overdensity δ ~ 100 with respect to the mean baryon density of the Universe, and a lower enrichment level compared to the intra-cluster medium in clusters. We find that most of the bridge gas collapsed from directions roughly orthogonal to the intra-cluster gas accretion directions, and its origin is mostly unrelated to the two cluster progenitors. We find clear signatures in the surrounding groups of infall motion towards the pair, such as significant radial velocities and a slowdown of gas compared to dark matter. These findings further support the hypothesis that the Northern Clump (MCXC J0621.7-5242) cluster infalls along a cosmic gas filament towards Abell 3391 and might be merging with it.
Conclusions: We conclude that in this configuration, the pair clusters of the A3391/95-like system are in a pre-merger phase and have not yet interacted. The diffuse gas in the interconnecting bridge is mostly warm filament gas and not tidally stripped cluster gas.


(699)Improved Constraints on Cosmic Birefringence from the WMAP and Planck Cosmic Microwave Background Polarization Data
  • Johannes R. Eskilt,
  • Eiichiro Komatsu
arXiv e-prints (05/2022) e-Print:2205.13962
abstract + abstract -

The observed pattern of linear polarization of the cosmic microwave background (CMB) photons is a sensitive probe of physics violating parity symmetry under inversion of spatial coordinates. A new parity-violating interaction might have rotated the plane of linear polarization by an angle $\beta$ as the CMB photons have been traveling for more than 13 billion years. This effect is known as ''cosmic birefringence.'' In this paper, we present new measurements of cosmic birefringence from a joint analysis of polarization data from two space missions, Planck and WMAP. This dataset covers a wide range of frequencies from 23 to 353 GHz. We measure $\beta = 0.342^{\circ\,+0.094^\circ}_{\phantom{\circ\,}-0.091^\circ}$ (68% C.L.) for nearly full-sky data, which excludes $\beta=0$ at 99.987% C.L. This corresponds to the statistical significance of $3.6\sigma$. There is no evidence for frequency dependence of $\beta$. We find a similar result, albeit with a larger uncertainty, when removing the Galactic plane from the analysis.


(698)Next-to-leading power endpoint factorization and resummation for off-diagonal "gluon" thrust
  • M. Beneke,
  • M. Garny,
  • S. Jaskiewicz,
  • J. Strohm,
  • R. Szafron
  • +2
(05/2022) e-Print:2205.04479
abstract + abstract -

The lack of convergence of the convolution integrals appearing in next-to-leading-power (NLP) factorization theorems prevents the applications of existing methods to resum power-suppressed large logarithmic corrections in collider physics. We consider thrust distribution in the two-jet region for the flavour-nonsinglet off-diagonal contribution, where a gluon-initiated jet recoils against a quark-antiquark pair, which is power-suppressed. With the help of operatorial endpoint factorization conditions, we obtain a factorization formula, where the individual terms are free from endpoint divergences in convolutions and can be expressed in terms of renormalized hard, soft and collinear functions in four dimensions. This allows us to perform the first resummation of the endpoint-divergent SCET$_{\rm I}$ observables at the leading logarithmic accuracy using exclusively renormalization-group methods. The presented approach relies on universal properties of the soft and collinear limits and may serve as a paradigm for the systematic NLP resummation for other $1\to 2$ and $2\to 1$ collider physics processes.


(697)The effect of quasar redshift errors on Lyman-$\alpha$ forest correlation functions
  • Samantha Youles,
  • Julian E. Bautista,
  • Andreu Font-Ribera,
  • David Bacon,
  • James Rich
  • +28
  • David Brooks,
  • Tamara M. Davis,
  • Kyle Dawson,
  • Govinda Dhungana,
  • Peter Doel,
  • Kevin Fanning,
  • Enrique Gaztañaga,
  • Satya Gontcho A. Gontcho,
  • Alma X. Gonzalez-Morales,
  • Julien Guy,
  • Klaus Honscheid,
  • Vid Iršič,
  • Robert Kehoe,
  • David Kirkby,
  • Theodore Kisner,
  • Martin Landriau,
  • Laurent Le Guillou,
  • Michael E. Levi,
  • Axel de la Macorra,
  • Paul Martini,
  • Andrea Muñoz-Gutiérrez,
  • Nathalie Palanque-Delabrouille,
  • Ignasi Pérez-Ràfols,
  • Claire Poppett,
  • César Ramírez-Pérez,
  • Michael Schubnell,
  • Gregory Tarlé,
  • Michael Walther
  • (less)
(05/2022) e-Print:2205.06648
abstract + abstract -

Using synthetic Lyman-$\alpha$ forests from the Dark Energy Spectroscopic Instrument (DESI) survey, we present a study of the impact of errors in the estimation of quasar redshift on the Lyman-$\alpha$ correlation functions. Estimates of quasar redshift have large uncertainties of a few hundred $\text{km s}^{-1}\,$ due to the broadness of the emission lines and the intrinsic shifts from other emission lines. We inject Gaussian random redshift errors into the mock quasar catalogues, and measure the auto-correlation and the Lyman-$\alpha$-quasar cross-correlation functions. We find a smearing of the BAO feature in the radial direction, but changes in the peak position are negligible. However, we see a significant unphysical correlation for small separations transverse to the line of sight which increases with the amplitude of the redshift errors. We interpret this contamination as a result of the broadening of emission lines in the measured mean continuum, caused by quasar redshift errors, combined with the unrealistically strong clustering of the simulated quasars on small scales.


(696)Oscillations of atomic energy levels induced by QCD axion dark matter
  • Hyungjin Kim,
  • Gilad Perez
arXiv e-prints (05/2022) e-Print:2205.12988
abstract + abstract -

Axion-gluon interaction induces quadratic couplings between the axion and the matter fields. We find that, if the axion is an ultralight dark matter field, it induces small oscillations of the mass of the hadrons as well as other nuclear quantities. As a result, atomic energy levels oscillate. We use currently available atomic spectroscopy data to constrain such axion-gluon coupling. We also project the sensitivities of future experiments, such as ones using molecular and nuclear clock transitions. We show that current and near-future experiments constrain a finely-tuned parameter space of axion models. These can compete or dominate the already-existing constraints from oscillating neutron electric dipole moment and supernova bound, in addition to those expected from near future magnetometer-based experiments.


(695)Dispersive bounds for local form factors in $\Lambda_b \to \Lambda$ transitions
  • Thomas Blake,
  • Stefan Meinel,
  • Muslem Rahimi,
  • Danny van Dyk
arXiv e-prints (05/2022) e-Print:2205.06041
abstract + abstract -

We investigate the ten independent local form-factors relevant to the $b$-baryon decay $\Lambda_b \to \Lambda \ell^+\ell^-$, combining information of lattice QCD and dispersive bounds. We propose a novel parametrization of the form factors in terms of orthonormal polynomials that diagonalizes the form factor contributions to the dispersive bounds. This is a generalization of the unitarity bounds developed for meson-to-meson form-factors. In contrast to ad-hoc parametrizations of these form factors, our parametrization provides a degree of control of the form-factor uncertainties at large hadronic recoil. This is of phenomenological interest for theoretical predictions of, e.g., $\Lambda_b\to \Lambda \gamma$ and $\Lambda_b\to\Lambda \ell^+\ell^-$ decay processes.


(694)The eROSITA Final Equatorial-Depth Survey (eFEDS). Galaxy clusters and groups in disguise
  • E. Bulbul,
  • A. Liu,
  • T. Pasini,
  • J. Comparat,
  • D. N. Hoang
  • +19
  • M. Klein,
  • V. Ghirardini,
  • M. Salvato,
  • A. Merloni,
  • R. Seppi,
  • J. Wolf,
  • S. F. Anderson,
  • Y. E. Bahar,
  • M. Brusa,
  • M. Brüggen,
  • J. Buchner,
  • T. Dwelly,
  • H. Ibarra-Medel,
  • J. Ider Chitham,
  • T. Liu,
  • K. Nandra,
  • M. E. Ramos-Ceja,
  • J. S. Sanders,
  • Y. Shen
  • (less)
Astronomy and Astrophysics, 661, p24 (05/2022) doi:10.1051/0004-6361/202142460
abstract + abstract -


Aims: The eROSITA Final Equatorial-Depth Survey (eFEDS), executed during the performance verification phase of the Spectrum-Roentgen-Gamma (SRG)/eROSITA telescope, was completed in November 2019. One of the science goals of this survey is to demonstrate the ability of eROSITA to detect samples of clusters and groups at the final depth of the eROSITA all-sky survey.
Methods: Because of the sizeable (≈26″ HEW FOV average) point-spread function of eROSITA, high-redshift clusters of galaxies or compact nearby groups hosting bright active galactic nuclei (AGN) can be misclassified as point sources by the source detection algorithms. A total of 346 galaxy clusters and groups in the redshift range of 0.1 < z < 1.3 were identified based on their red sequenc in the eFEDS point source catalog.
Results: We examine the multiwavelength properties of these clusters and groups to understand the potential biases in our selection process and the completeness of the extent-selected sample. We find that the majority of the clusters and groups in the point source sample are indeed underluminous and compact compared to the extent-selected sample. Their faint X-ray emission, well below the flux limit of the extent-selected eFEDS clusters, and their compact X-ray emission are likely to be the main reason for this misclassification. In the sample, we confirm that 10% of the sources host AGN in their brightest cluster galaxies (BCGs) through optical spectroscopy and visual inspection. By studying their X-ray, optical, infrared, and radio properties, we establish a method for identifying clusters and groups that host AGN in their BCGs. We successfully test this method on the current point source catalog through the Sloan Digital Sky Survey optical spectroscopy and find eight low-mass clusters and groups with active radio-loud AGN that are particularly bright in the infrared. They include eFEDS J091437.8+024558, eFEDS J083520.1+012516, and eFEDS J092227.1+043339 at redshifts 0.3−0.4.
Conclusions: This study helps us to characterize and understand our selection process and assess the completeness of the eROSITA extent-selected samples. The method we developed will be used to identify high-redshift clusters, AGN-dominated groups, and low-mass clusters that are misclassified in the future eROSITA all-sky survey point source catalogs.

Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A10


(693)Probing red supergiant dynamics through photo-center displacements measured by Gaia
  • A. Chiavassa,
  • R. Kudritzki,
  • B. Davies,
  • B. Freytag,
  • S. E. de Mink
Astronomy and Astrophysics, 661, p6 (05/2022) doi:10.1051/0004-6361/202243568
abstract + abstract -

Context. Red supergiant (RSGs) are cool massive stars in a late phase of their evolution when the stellar envelope becomes fully convective. They are the brightest stars in the universe at infrared light and can be detected in galaxies far beyond the Local Group, allowing for accurate determination of chemical composition of galaxies. The study of their physical properties is extremely important for various phenomena including the final fate of massive stars as type II supernovae and gravitational wave progenitors.
Aims: We explore the well-studied nearby young stellar cluster χ Per, which contains a relatively large population of RSG stars. Using Gaia EDR3 data, we find the distance of the cluster (d = 2.260 ± 0.020 kpc) from blue main sequence stars and compare with RSG parallax measurements analysing the parallax uncertainties of both groups. We then investigate the variability of the convection-related surface structure as a source for parallax measurement uncertainty.
Methods: We use state-of-the-art three-dimensional radiative hydrodynamics simulations of convection with CO5BOLD and the post-processing radiative transfer code OPTIM3D to compute intensity maps in the Gaia G photometric system. We calculate the variabiltiy, as a function of time, of the intensity-weighted mean (or the photo-center) from the synthetic maps. We then select the RSG stars in the cluster and compare their uncertainty on parallaxes to the predictions of photocentre displacements.
Results: The synthetic maps of RSG show extremely irregular and temporal variable surfaces due to convection-related dynamics. Consequentially, the position of the photo-center varies during Gaia measurements between 0.033 and 0.130 AU (≈1 to ≈5% of the corresponding simulation stellar radius). We argue that the variability of the convection-related surface structures accounts for a substantial part of the Gaia EDR3 parallax error of the RSG sample of χ Per.
Conclusions: We suggest that the variation of the uncertainty on Gaia parallax could be exploited quantitatively using appropriate RHD simulations to extract, in a unique way, important information about the stellar dynamics and parameters of RSG stars.

Movies are available at https://www.aanda.org


(692)The eROSITA Final Equatorial-Depth Survey (eFEDS). The first archetypal quasar in the feedback phase discovered by eROSITA
  • M. Brusa,
  • T. Urrutia,
  • Y. Toba,
  • J. Buchner,
  • J. -Y. Li
  • +16
  • T. Liu,
  • M. Perna,
  • M. Salvato,
  • A. Merloni,
  • B. Musiimenta,
  • K. Nandra,
  • J. Wolf,
  • R. Arcodia,
  • T. Dwelly,
  • A. Georgakakis,
  • A. Goulding,
  • Y. Matsuoka,
  • T. Nagao,
  • M. Schramm,
  • J. D. Silverman,
  • Y. Terashima
  • (less)
Astronomy and Astrophysics, 661, p11 (05/2022) doi:10.1051/0004-6361/202141092
abstract + abstract -

Theoretical models of the co-evolution of galaxies and active galactic nuclei (AGNs) ascribe an important role in the feedback process to a short, luminous, obscured, and dust-enshrouded phase during which the accretion rate of the supermassive black hole is expected to be at its maximum and the associated AGN-driven winds are also predicted to be maximally developed. To test this scenario, we have isolated a textbook candidate from the eROSITA Final Equatorial-Depth Survey (eFEDS) obtained within the performance and verification program of the eROSITA telescope on board the Spectrum Röntgen Gamma mission. From an initial catalogue of 246 hard X-ray selected sources that are matched with the photometric and spectroscopic information available within the eROSITA and Hyper Suprime-Cam consortia, three candidates quasars in the feedback phase have been isolated applying a diagnostic proposed previously. Only one source (eFEDS J091157.4+014327) has a spectrum already available (from SDSS-DR16, z = 0.603) and it unambiguously shows abroad component (full width at half maximum ~1650 kms−1) in the [OIII]5007 line. The associated observed L[OIII] is ~2.6 × 1042 erg s−1, one to two orders of magnitude higher than that observed in local Seyfert galaxies and comparable to those observed in a sample of z ~ 0.5 type 1 quasars. From the multi-wavelength data available, we derive an Eddington ratio (Lbol/LEdd) of ~0.25 and a bolometric correction in the hard X-ray band of kbol ~ 10, which is lower than the corrections observed for objects at similar bolometric luminosity. These properties, along with the outflow, the high X-ray luminosity, the moderate X-ray obscuration (LX∽1044.8 erg s−1, NH∽2.7 × 1022 cm−2), and the red optical colour, all match the prediction of quasars in the feedback phase from merger-driven models. Forecasting to the full eROSITA all-sky survey with its spectroscopic follow-up, we predict that by the end of 2024, we will have a sample of few hundred such objects at z= 0.5-2.


(691)Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument
  • B. Abareshi,
  • J. Aguilar,
  • S. Ahlen,
  • Shadab Alam,
  • David M. Alexander
  • +263
  • R. Alfarsy,
  • L. Allen,
  • C. Allende Prieto,
  • O. Alves,
  • J. Ameel,
  • E. Armengaud,
  • J. Asorey,
  • Alejandro Aviles,
  • S. Bailey,
  • A. Balaguera-Antolínez,
  • O. Ballester,
  • C. Baltay,
  • A. Bault,
  • S.F. Beltran,
  • B. Benavides,
  • S. BenZvi,
  • A. Berti,
  • R. Besuner,
  • Florian Beutler,
  • D. Bianchi,
  • C. Blake,
  • P. Blanc,
  • R. Blum,
  • A. Bolton,
  • S. Bose,
  • D. Bramall,
  • S. Brieden,
  • A. Brodzeller,
  • D. Brooks,
  • C. Brownewell,
  • E. Buckley-Geer,
  • R.N. Cahn,
  • Z. Cai,
  • R. Canning,
  • A. Carnero Rosell,
  • P. Carton,
  • R. Casas,
  • F.J. Castander,
  • J.L. Cervantes-Cota,
  • S. Chabanier,
  • E. Chaussidon,
  • C. Chuang,
  • C. Circosta,
  • S. Cole,
  • A.P. Cooper,
  • L. da Costa,
  • M.-C. Cousinou,
  • A. Cuceu,
  • T.M. Davis,
  • K. Dawson,
  • R. de la Cruz-Noriega,
  • A. de la Macorra,
  • A. de Mattia,
  • J. Della Costa,
  • P. Demmer,
  • M. Derwent,
  • A. Dey,
  • B. Dey,
  • G. Dhungana,
  • Z. Ding,
  • C. Dobson,
  • P. Doel,
  • J. Donald-McCann,
  • J. Donaldson,
  • K. Douglass,
  • Y. Duan,
  • P. Dunlop,
  • J. Edelstein,
  • S. Eftekharzadeh,
  • D.J. Eisenstein,
  • M. Enriquez-Vargas,
  • S. Escoffier,
  • M. Evatt,
  • P. Fagrelius,
  • X. Fan,
  • K. Fanning,
  • V.A. Fawcett,
  • S. Ferraro,
  • J. Ereza,
  • B. Flaugher,
  • A. Font-Ribera,
  • J.E. Forero-Romero,
  • C.S. Frenk,
  • S. Fromenteau,
  • B.T. Gänsicke,
  • C. Garcia-Quintero,
  • L. Garrison,
  • E. Gaztañaga,
  • F. Gerardi,
  • H. Gil-Marín,
  • S. Gontcho A. Gontcho,
  • Alma X. Gonzalez-Morales,
  • G. Gonzalez-de-Rivera,
  • V. Gonzalez-Perez,
  • C. Gordon,
  • O. Graur,
  • D. Green,
  • C. Grove,
  • D. Gruen,
  • G. Gutierrez,
  • J. Guy,
  • C. Hahn,
  • S. Harris,
  • D. Herrera,
  • Hiram K. Herrera-Alcantar,
  • K. Honscheid,
  • C. Howlett,
  • D. Huterer,
  • V. Iršič,
  • M. Ishak,
  • P. Jelinsky,
  • L. Jiang,
  • J. Jimenez,
  • Y.P. Jing,
  • R. Joyce,
  • E. Jullo,
  • S. Juneau,
  • N.G. Karaçaylı,
  • M. Karamanis,
  • A. Karcher,
  • T. Karim,
  • R. Kehoe,
  • S. Kent,
  • D. Kirkby,
  • T. Kisner,
  • F. Kitaura,
  • S.E. Koposov,
  • A. Kovács,
  • A. Kremin,
  • Alex Krolewski,
  • B. L'Huillier,
  • O. Lahav,
  • A. Lambert,
  • C. Lamman,
  • Ting-Wen Lan,
  • M. Landriau,
  • S. Lane,
  • D. Lang,
  • J.U. Lange,
  • J. Lasker,
  • L. Le Guillou,
  • A. Leauthaud,
  • A. Le Van Suu,
  • Michael E. Levi,
  • T.S. Li,
  • C. Magneville,
  • M. Manera,
  • Christopher J. Manser,
  • B. Marshall,
  • Paul Martini,
  • W. McCollam,
  • P. McDonald,
  • Aaron M. Meisner,
  • J. Mena-Fernández,
  • J. Meneses-Rizo,
  • M. Mezcua,
  • T. Miller,
  • R. Miquel,
  • P. Montero-Camacho,
  • J. Moon,
  • J. Moustakas,
  • E. Mueller,
  • Andrea Muñoz-Gutiérrez,
  • Adam D. Myers,
  • S. Nadathur,
  • J. Najita,
  • L. Napolitano,
  • E. Neilsen,
  • Jeffrey A. Newman,
  • J.D. Nie,
  • Y. Ning,
  • G. Niz,
  • P. Norberg,
  • Hernán E. Noriega,
  • T. O'Brien,
  • A. Obuljen,
  • N. Palanque-Delabrouille,
  • A. Palmese,
  • P. Zhiwei,
  • D. Pappalardo,
  • X. Peng,
  • W.J. Percival,
  • S. Perruchot,
  • R. Pogge,
  • C. Poppett,
  • A. Porredon,
  • F. Prada,
  • J. Prochaska,
  • R. Pucha,
  • A. Pérez-Fernández,
  • I. Pérez-Ràfols,
  • D. Rabinowitz,
  • A. Raichoor,
  • S. Ramirez-Solano,
  • César Ramírez-Pérez,
  • C. Ravoux,
  • K. Reil,
  • M. Rezaie,
  • A. Rocher,
  • C. Rockosi,
  • N.A. Roe,
  • A. Roodman,
  • A.J. Ross,
  • G. Rossi,
  • R. Ruggeri,
  • V. Ruhlmann-Kleider,
  • C.G. Sabiu,
  • S. Safonova,
  • K. Said,
  • A. Saintonge,
  • Javier Salas Catonga,
  • L. Samushia,
  • E. Sanchez,
  • C. Saulder,
  • E. Schaan,
  • E. Schlafly,
  • D. Schlegel,
  • J. Schmoll,
  • D. Scholte,
  • M. Schubnell,
  • A. Secroun,
  • H. Seo,
  • S. Serrano,
  • Ray M. Sharples,
  • Michael J. Sholl,
  • Joseph Harry Silber,
  • D.R. Silva,
  • M. Sirk,
  • M. Siudek,
  • A. Smith,
  • D. Sprayberry,
  • R. Staten,
  • B. Stupak,
  • T. Tan,
  • Gregory Tarlé,
  • Suk Sien Tie,
  • R. Tojeiro,
  • L.A. Ureña-López,
  • F. Valdes,
  • O. Valenzuela,
  • M. Valluri,
  • M. Vargas-Magaña,
  • L. Verde,
  • M. Walther,
  • B. Wang,
  • M.S. Wang,
  • B.A. Weaver,
  • C. Weaverdyck,
  • R. Wechsler,
  • Michael J. Wilson,
  • J. Yang,
  • Y. Yu,
  • S. Yuan,
  • Christophe Yèche,
  • H. Zhang,
  • K. Zhang,
  • Cheng Zhao,
  • Rongpu Zhou,
  • Zhimin Zhou,
  • H. Zou,
  • J. Zou,
  • S. Zou,
  • Y. Zu
  • (less)
(05/2022) e-Print:2205.10939
abstract + abstract -

The Dark Energy Spectroscopic Instrument (DESI) has embarked on an ambitious five-year survey to explore the nature of dark energy with spectroscopy of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the Baryon Acoustic Oscillation method to measure distances from the nearby universe to z > 3.5, as well as measure the growth of structure and probe potential modifications to general relativity. In this paper we describe the significant instrumentation we developed for the DESI survey. The new instrumentation includes a wide-field, 3.2-deg diameter prime-focus corrector that focuses the light onto 5020 robotic fiber positioners on the 0.812 m diameter, aspheric focal surface. The positioners and their fibers are divided among ten wedge-shaped petals. Each petal is connected to one of ten spectrographs via a contiguous, high-efficiency, nearly 50 m fiber cable bundle. The ten spectrographs each use a pair of dichroics to split the light into three channels that together record the light from 360 - 980 nm with a resolution of 2000 to 5000. We describe the science requirements, technical requirements on the instrumentation, and management of the project. DESI was installed at the 4-m Mayall telescope at Kitt Peak, and we also describe the facility upgrades to prepare for DESI and the installation and functional verification process. DESI has achieved all of its performance goals, and the DESI survey began in May 2021. Some performance highlights include RMS positioner accuracy better than 0.1", SNR per √(Å) > 0.5 for a z > 2 quasar with flux 0.28e-17 erg/s/cm^2/A at 380 nm in 4000s, and median SNR = 7 of the [OII] doublet at 8e-17 erg/s/cm^2 in a 1000s exposure for emission line galaxies at z = 1.4 - 1.6. We conclude with highlights from the on-sky validation and commissioning of the instrument, key successes, and lessons learned. (abridged)


(690)Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback
  • Samuel Ruthven Ward,
  • Chris Harrison,
  • Tiago Costa,
  • Vincenzo Mainieri
abstract + abstract -

Negative feedback from active galactic nuclei (AGN) is the leading mechanism for the quenching of massive galaxies in the vast majority of modern galaxy evolution models. However, direct observational evidence that AGN feedback causes quenching on a population scale is lacking. Studies have shown that luminous AGN are preferentially located in gas-rich and star-forming galaxies, an observation that has sometimes been suggested to be in tension with a negative AGN feedback picture. We investigate three of the current cosmological simulations (IllustrisTNG, EAGLE and SIMBA) along with post-processed models for molecular hydrogen gas masses and perform similar tests to those used by observers. We find that the simulations predict: (i) no strong negative trends between AGN luminosity and molecular gas fraction or sSFR; (ii) both high-luminosity ($L_{bol}>10^{44}$ erg/s) and high-Eddington ratio (>1%) AGN are preferentially located in galaxies with high molecular gas fractions and sSFR; and (iii) that the gas-depleted and quenched fractions of AGN host galaxies are lower than a control sample of non-active galaxies. These three findings are in qualitative agreement with observational samples at $z=0$ and $z=2$ and show that such results are not in tension with the presence of strong AGN feedback, which all simulations we employ require to produce realistic massive galaxies. However, we also find quantifiable differences between predictions from the simulations, which could allow us to observationally test the different subgrid feedback models.


(689)The importance of X-ray frequency in driving photoevaporative winds
  • Andrew D. Sellek,
  • Cathie J. Clarke,
  • Barbara Ercolano
abstract + abstract -

Photoevaporative winds are a promising mechanism for dispersing protoplanetary discs, but so far theoretical models have been unable to agree on the relative roles that the X-ray, Extreme Ultraviolet or Far Ultraviolet play in driving the winds. This has been attributed to a variety of methodological differences between studies, including their approach to radiative transfer and thermal balance, the choice of irradiating spectrum employed, and the processes available to cool the gas. We use the \textsc{mocassin} radiative transfer code to simulate wind heating for a variety of spectra on a static density grid taken from simulations of an EUV-driven wind. We explore the impact of choosing a single representative X-ray frequency on their ability to drive a wind by measuring the maximum heated column as a function of photon energy. We demonstrate that for reasonable luminosities and spectra, the most effective energies are at a few $100~\mathrm{eV}$, firmly in the softer regions of the X-ray spectrum, while X-rays with energies $\sim1000~\mathrm{eV}$ interact too weakly with disc gas to provide sufficient heating to drive a wind. We develop a simple model to explain these findings. We argue that further increases in the cooling above our models - for example due to molecular rovibrational lines - may further restrict the heating to the softer energies but are unlikely to prevent X-ray heated winds from launching entirely; increasing the X-ray luminosity has the opposite effect. The various results of photoevaporative wind models should therefore be understood in terms of the choice of irradiating spectrum.


(688)Signatures of the Many Supermassive Black Hole Mergers in a Cosmologically Forming Massive Early-type Galaxy
  • Matias Mannerkoski,
  • Peter H. Johansson,
  • Antti Rantala,
  • Thorsten Naab,
  • Shihong Liao
  • +1
The Astrophysical Journal, 929, p9 (04/2022) doi:10.3847/1538-4357/ac5f0b
abstract + abstract -

We model here the merger histories of the supermassive black hole (SMBH) population in the late stages of a cosmological simulation of a ~ 2 × 1013 M galaxy group. The gravitational dynamics around the several tens of SMBHs (M > 7.5 × 107 M ) hosted by the galaxies in the group is computed at high accuracy using regularized integration with the KETJU code. The 11 SMBHs that form binaries and a hierarchical triplet eventually merge after hardening through dynamical friction, stellar scattering, and gravitational wave (GW) emission. The binaries form at eccentricities of e ~ 0.3-0.9, with one system evolving to a very high eccentricity of e = 0.998, and merge on timescales of a few tens to several hundred megayears. During the simulation, the merger-induced GW recoil kicks eject one SMBH remnant from the central host galaxy. This temporarily drives the galaxy off the M relation; however, the galaxy returns to the relation due to subsequent galaxy mergers, which bring in new SMBHs. This showcases a possible mechanism contributing to the observed scatter of the M relation. Finally, we show that pulsar timing arrays and LISA would be able to detect parts of the GW signals from the SMBH mergers that occur during the ~4 Gyr time span simulated with KETJU.


(687)A highly drift-stable atomic magnetometer for fundamental physics experiments
  • M. Rosner,
  • D. Beck,
  • P. Fierlinger,
  • H. Filter,
  • C. Klau
  • +5
  • F. Kuchler,
  • P. Rößner,
  • M. Sturm,
  • D. Wurm,
  • Z. Sun
  • (less)
Applied Physics Letters, 120, p5 (04/2022) doi:10.1063/5.0083854
abstract + abstract -

We report the design and performance of a nonmagnetic drift stable optically pumped cesium magnetometer with a measured sensitivity of 35 fT at 200 s integration time and stability below 50 fT between 70 and 600 s. The sensor is based on the nonlinear magneto-optical rotation effect: in a Bell-Bloom configuration, a higher order polarization moment (alignment) of Cs atoms is created with a pump laser beam in an anti-relaxation coated Pyrex cell under vacuum, filled with Cs vapor at room temperature. The polarization plane of light passing through the cell is modulated due the precession of the atoms in an external magnetic field of 2.1 μT, used to optically determine the Larmor precession frequency. Operation is based on a sequence of optical pumping and observation of freely precessing spins at a repetition rate of 8 Hz. This free precession decay readout scheme separates optical pumping and probing and, thus, ensures a systematically highly clean measurement. Due to the residual offset of the sensor of <15 pT together with negligible crosstalk of adjacent sensors, this device is uniquely suitable for a variety of experiments in low-energy particle physics with extreme precision, here as a highly stable and systematically clean reference probe in search for time-reversal symmetry violating electric dipole moments.


(686)From B-meson anomalies to Kaon physics with scalar leptoquarks
  • David Marzocca,
  • Sokratis Trifinopoulos,
  • Elena Venturini
European Physical Journal C, 82 (04/2022) doi:10.1140/epjc/s10052-022-10271-7
abstract + abstract -

In this work we study possible connections between B-meson anomalies and Kaon physics observables in the context of combined solutions with the singlet and triplet scalar leptoquarks S1 and S3. By assuming a flavor structure for the leptoquark couplings dictated by a minimally broken U (2) 5 flavor symmetry we can make a sharp connection between these two classes of observables. We find that the bound on B (K+→π+ν ν ) from NA62 puts already some tension in the model, while the present limits on B (KL→μ+μ-) and μ →e conversion in nuclei can be saturated. Relaxing instead the flavor assumption we study what values for B (K+→π+ν ν ) , as well as for B (KL→π0ν ν ) and B (KL ,S→μ+μ-) , are viable compatibly with all other phenomenological constraints.


(685)The bright extragalactic ALMA redshift survey (BEARS) I: redshifts of bright gravitationally lensed galaxies from the Herschel ATLAS
  • S. A. Urquhart,
  • G. J. Bendo,
  • S. Serjeant,
  • T. Bakx,
  • M. Hagimoto
  • +51
  • P. Cox,
  • R. Neri,
  • M. Lehnert,
  • C. Sedgwick,
  • C. Weiner,
  • H. Dannerbauer,
  • A. Amvrosiadis,
  • P. Andreani,
  • A. J. Baker,
  • A. Beelen,
  • S. Berta,
  • E. Borsato,
  • V. Buat,
  • K. M. Butler,
  • A. Cooray,
  • G. De Zotti,
  • L. Dunne,
  • S. Dye,
  • S. Eales,
  • A. Enia,
  • L. Fan,
  • R. Gavazzi,
  • J. González-Nuevo,
  • A. I. Harris,
  • C. N. Herrera,
  • D. Hughes,
  • D. Ismail,
  • R. Ivison,
  • S. Jin,
  • B. Jones,
  • K. Kohno,
  • M. Krips,
  • G. Lagache,
  • L. Marchetti,
  • M. Massardi,
  • H. Messias,
  • M. Negrello,
  • A. Omont,
  • I. Perez-Fournon,
  • D. A. Riechers,
  • D. Scott,
  • M. W. L. Smith,
  • F. Stanley,
  • Y. Tamura,
  • P. Temi,
  • C. Vlahakis,
  • A. Weiß,
  • P. van der Werf,
  • A. Verma,
  • C. Yang,
  • A. J. Young
  • (less)
Monthly Notices of the Royal Astronomical Society, 511, p17 (04/2022) doi:10.1093/mnras/stac150
abstract + abstract -

We present spectroscopic measurements for 71 galaxies associated with 62 of the brightest high-redshift submillimetre sources from the Southern fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), while targeting 85 sources which resolved into 142. We have obtained robust redshift measurements for all sources using the 12-m Array and an efficient tuning of ALMA to optimize its use as a redshift hunter, with 73 per cent of the sources having a robust redshift identification. Nine of these redshift identifications also rely on observations from the Atacama Compact Array. The spectroscopic redshifts span a range 1.41 < z < 4.53 with a mean value of 2.75, and the CO emission line full-width at half-maxima range between $\rm 110\, km\, s^{-1} \lt FWHM \lt 1290\, km\, s^{-1}$ with a mean value of ~500 km s-1, in line with other high-z samples. The derived CO(1-0) luminosity is significantly elevated relative to line-width to CO(1-0) luminosity scaling relation, which is suggestive of lensing magnification across our sources. In fact, the distribution of magnification factors inferred from the CO equivalent widths is consistent with expectations from galaxy-galaxy lensing models, though there is a hint of an excess at large magnifications that may be attributable to the additional lensing optical depth from galaxy groups or clusters.


(684)Effects of boosting on extragalactic components: Methods and statistical studies
  • William Coulton,
  • Sydney Feldman,
  • Karime Maamari,
  • Elena Pierpaoli,
  • Siavash Yasini
  • +1
Monthly Notices of the Royal Astronomical Society (04/2022) doi:10.1093/mnras/stac1017
abstract + abstract -

In this work we examine the impact of our motion with respect to the CMB rest frame on statistics of CMB maps by examining the one-, two-, three- and four- point statistics of simulated maps of the CMB and Sunyaev-Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by $\sim 30{\rm{ per\ cent}}$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $O(1){\rm{ per\ cent}}$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky - in practice this anisotropy comes from masking and inhomegenous noise. This effect is unobservable and already removed by existing analysis methods.


(683)The importance of X-ray frequency in driving photoevaporative winds
  • Andrew D. Sellek,
  • Cathie J. Clarke,
  • Barbara Ercolano
Monthly Notices of the Royal Astronomical Society (04/2022) doi:10.1093/mnras/stac1148
abstract + abstract -

Photoevaporative winds are a promising mechanism for dispersing protoplanetary discs, but so far theoretical models have been unable to agree on the relative roles that the X-ray, Extreme Ultraviolet or Far Ultraviolet play in driving the winds. This has been attributed to a variety of methodological differences between studies, including their approach to radiative transfer and thermal balance, the choice of irradiating spectrum employed, and the processes available to cool the gas. We use the MOCASSIN radiative transfer code to simulate wind heating for a variety of spectra on a static density grid taken from simulations of an EUV-driven wind. We explore the impact of choosing a single representative X-ray frequency on their ability to drive a wind by measuring the maximum heated column as a function of photon energy. We demonstrate that for reasonable luminosities and spectra, the most effective energies are at a few 100 eV, firmly in the softer regions of the X-ray spectrum, while X-rays with energies ~1000 eV interact too weakly with disc gas to provide sufficient heating to drive a wind. We develop a simple model to explain these findings. We argue that further increases in the cooling above our models - for example due to molecular rovibrational lines - may further restrict the heating to the softer energies but are unlikely to prevent X-ray heated winds from launching entirely; increasing the X-ray luminosity has the opposite effect. The various results of photoevaporative wind models should therefore be understood in terms of the choice of irradiating spectrum.


(682)Surface Brightness Profile of Lyman-α Halos out to 320 kpc in HETDEX
  • Maja Lujan Niemeyer,
  • Eiichiro Komatsu,
  • Chris Byrohl,
  • Dustin Davis,
  • Maximilian Fabricius
  • +16
  • Karl Gebhardt,
  • Gary J. Hill,
  • Lutz Wisotzki,
  • William P. Bowman,
  • Robin Ciardullo,
  • Daniel J. Farrow,
  • Steven L. Finkelstein,
  • Eric Gawiser,
  • Caryl Gronwall,
  • Donghui Jeong,
  • Martin Landriau,
  • Chenxu Liu,
  • Erin Mentuch Cooper,
  • Masami Ouchi,
  • Donald P. Schneider,
  • Gregory R. Zeimann
  • (less)
The Astrophysical Journal, 929, p11 (04/2022) doi:10.3847/1538-4357/ac5cb8
abstract + abstract -

We present the median-stacked Lyman-α (Lyα) surface brightness profiles of 968 spectroscopically selected Lyα emitting galaxies (LAEs) at redshifts 1.9 < z < 3.5 in the early data of the Hobby-Eberly Telescope Dark Energy Experiment. The selected LAEs are high-confidence Lyα detections with high signal-to-noise ratios observed with good seeing conditions (point-spread function FWHM <1.″4), excluding active galactic nuclei. The Lyα luminosities of the LAEs are 1042.4-1043 erg s-1. We detect faint emission in the median-stacked radial profiles at the level of <?CDATA $(3.6\pm 1.3)\times {10}^{-20}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{cm}}^{-2}\,{\mathrm{arcsec}}^{-2}$?> from the surrounding Lyα halos out to r ≃ 160 kpc (physical). The shape of the median-stacked radial profile is consistent at r < 80 kpc with that of much fainter LAEs at 3 < z < 4 observed with the Multi Unit Spectroscopic Explorer (MUSE), indicating that the median-stacked Lyα profiles have similar shapes at redshifts 2 < z < 4 and across a factor of 10 in Lyα luminosity. While we agree with the results from the MUSE sample at r < 80 kpc, we extend the profile over a factor of two in radius. At r > 80 kpc, our profile is flatter than the MUSE model. The measured profile agrees at most radii with that of galaxies in the Byrohl et al. cosmological radiative transfer simulation at z = 3. This suggests that the surface brightness of a Lyα halo at r ≲ 100 kpc is dominated by resonant scattering of Lyα photons from star-forming regions in the central galaxy, whereas at r > 100 kpc, it is dominated by photons from galaxies in surrounding dark matter halos.


(681)Dust evolution in cosmological simulations
  • Massimiliano Parente,
  • Cinthia Ragone-Figueroa,
  • Gian Luigi Granato,
  • Stefano Borgani,
  • Giuseppe Murante
  • +3
  • Milena Valentini,
  • Alessandro Bressan,
  • Andrea Lapi
  • (less)
(04/2022) e-Print:2204.11884
abstract + abstract -

We study the evolution of dust in a cosmological volume using a hydrodynamical simulation in which the dust production is coupled with the MUPPI (MUlti Phase Particle Integrator) sub-resolution model of star formation and feedback. As for the latter, we keep as reference the model setup calibrated previously to match the general properties of Milky Way like galaxies in zoom-in simulations. However, we suggest that an increase of the star formation efficiency with the local dust to gas ratio would better reproduce the observed evolution of the cosmic star formation density. Moreover, the paucity of quenched galaxies at low redshift demands a stronger role of AGN feedback. We tune the parameters ruling direct dust production from evolved stars and accretion in the inter stellar medium to get scaling relations involving dust, stellar mass and metallicity in good agreement with observations. In low mass galaxies the accretion process is inefficient. As a consequence, they remain poorer in silicate and small grains than higher mass ones. We reproduce reasonably well the few available data on the radial distribution of dust outside the galactic region, supporting the assumption that the dust and gas dynamics are well coupled at galactic scales.


(680)Glueball molecules
  • Alexey A. Petrov
(04/2022) e-Print:2204.11269
abstract + abstract -

Experimental searches for pure glueball states have proven challenging and so far yielded no results. This is believed to occur because glueballs mix with the ordinary $q\bar q$ states with the same quantum numbers. We will discuss an alternative mechanism, the formation of the glueball-meson molecular states. We will argue that the wave functions of already observed excited meson states may contain a significant part due to such molecular states. We discuss the phenomenology of glueball molecules and comment on a possible charmless component of the $XYZ$ states.


(679)Multi-Component Imaging of the Fermi Gamma-ray Sky in the Spatio-spectral Domain
  • Lukas I. Platz,
  • Jakob Knollmüller,
  • Philipp Arras,
  • Philipp Frank,
  • Martin Reinecke
  • +2
  • Dominik Jüstel,
  • Torsten A. Enßlin
  • (less)
(04/2022) e-Print:2204.09360
abstract + abstract -

We perform two distinct spatio-spectral reconstructions of the gamma-ray sky in the range of 0.56-316 GeV based on Fermi Large Area Telescope (LAT) data. Both describe the sky brightness to be composed of a diffuse-emission and a point-source component. The first model requires minimal assumptions and provides a template-free reconstruction as a reference. It makes use of spatial and spectral correlations to distinguish between the different components. The second model is physics-informed and further differentiates between diffuse emission of hadronic and leptonic origin. For this, we assume parametric, but spatially varying energy spectra to distinguish between the processes and use thermal Galactic dust observations to indicate the preferred sites of hadronic interactions. To account for instrumental effects we model the point-spread, the energy dispersion, and the exposure of the telescope throughout the observation. The reconstruction problem is formulated as a Bayesian inference task, that is solved by variational inference. We show decompositions of the Gamma-ray flux into diffuse and point-like emissions, and of the diffuse emissions into multiple physically motivated components. The diffuse decomposition provides an unprecedented view of the Galactic leptonic diffuse emission. It shows the Fermi bubbles and their spectral variations in high fidelity and other areas exhibiting strong cosmic ray electron contents, such as a thick disk in the inner Galaxy and outflow regions. Furthermore, we report a hard spectrum gamma ray arc in the northern outer bubble co-spatial with the reported X-ray arc by the eROSITA collaboration. All our spatio-spectral sky reconstructions and their uncertainty quantification are publicly available.


(678)DeepZipper II: Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning
  • R. Morgan,
  • B. Nord,
  • K. Bechtol,
  • A. Möller,
  • W.G. Hartley
  • +62
  • S. Birrer,
  • S.J. González,
  • M. Martinez,
  • R.A. Gruendl,
  • E.J. Buckley-Geer,
  • A.J. Shajib,
  • A. Carnero Rosell,
  • C. Lidman,
  • T. Collett,
  • T.M.C. Abbott,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • M. Carrasco Kind,
  • J. Carretero,
  • F.J. Castander,
  • C. Conselice,
  • L.N. da Costa,
  • M. Costanzi,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • M. Lima,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • M.E.S. Pereira,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • A. Roodman,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • M.E.C. Swanson,
  • G. Tarle,
  • D. Thomas,
  • T.N. Varga
  • (less)
(04/2022) e-Print:2204.05924
abstract + abstract -

Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain and 5-10 LSNe in total while next-generation experiments are expected to contain several hundreds to a few thousands of these systems. We search for these systems in observed Dark Energy Survey (DES) 5-year SN fields -- 10 3-sq. deg. regions of sky imaged in the $griz$ bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains a LSN recall of 61.13% and a false positive rate of 0.02% on the DES SN field data. DeepZipper selected 2,245 candidates from a magnitude-limited ($m_i$ $<$ 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.


(677)New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood
  • Laura Herold,
  • Elisa G. M. Ferreira,
  • Eiichiro Komatsu
The Astrophysical Journal, 929, p6 (04/2022) doi:10.3847/2041-8213/ac63a3
abstract + abstract -

A dark energy-like component in the early universe, known as early dark energy (EDE), is a proposed solution to the Hubble tension. Currently, there is no consensus in the literature as to whether EDE can simultaneously solve the Hubble tension and provide an adequate fit to the data from the cosmic microwave background (CMB) and large-scale structure of the universe. In this work, we deconstruct the current constraints from the Planck CMB and the full-shape clustering data of the Baryon Oscillation Spectroscopic Survey to understand the origin of different conclusions in the literature. We use two different analyses, a grid sampling and a profile likelihood, to investigate whether the current constraints suffer from volume effects upon marginalization and are biased toward some values of the EDE fraction, f EDE. We find that the f EDE allowed by the data strongly depends on the particular choice of the other parameters of the model, and that several choices of these parameters prefer larger values of f EDE than in the Markov Chain Monte Carlo analysis. This suggests that volume effects are the reason behind the disagreement in the literature. Motivated by this, we use a profile likelihood to analyze the EDE model and compute a confidence interval for f EDE, finding f EDE = 0.072 ± 0.036 (68% C.L.). Our approach gives a confidence interval that is not subject to volume effects and provides a powerful tool to understand whether EDE is a possible solution to the Hubble tension.


(676)Moment expansion of polarized dust SED: A new path towards capturing the CMB B-modes with LiteBIRD
  • L. Vacher,
  • J. Aumont,
  • L. Montier,
  • S. Azzoni,
  • F. Boulanger
  • +1
Astronomy and Astrophysics, 660, p21 (04/2022) doi:10.1051/0004-6361/202142664
abstract + abstract -

Accurate characterization of the polarized dust emission from our Galaxy will be decisive in the quest for the cosmic microwave background (CMB) primordial B-modes. An incomplete modeling of its potentially complex spectral properties could lead to biases in the CMB polarization analyses and to a spurious measurement of the tensor-to-scalar ratio r. It is particularly crucial for future surveys like the LiteBIRD satellite, the goal of which is to constrain the faint primordial signal leftover by inflation with an accuracy on the tensor-to-scalar ratio r of the order of 10−3. Variations of the dust properties along and between lines of sight lead to unavoidable distortions of the spectral energy distribution (SED) that cannot be easily anticipated by standard component-separation methods. This issue can be tackled using a moment expansion of the dust SED, an innovative parametrization method imposing minimal assumptions on the sky complexity. In the present paper, we apply this formalism to the B-mode cross-angular power spectra computed from simulated LiteBIRD polarization data at frequencies between 100 and 402 GHz that contain CMB, dust, and instrumental noise. The spatial variation of the dust spectral parameters (spectral index β and temperature T) in our simulations lead to significant biases on r (∼21 σr) if not properly taken into account. Performing the moment expansion in β, as in previous studies, reduces the bias but does not lead to sufficiently reliable estimates of r. We introduce, for the first time, the expansion of the cross-angular power spectra SED in both β and T, showing that, at the sensitivity of LiteBIRD, the SED complexity due to temperature variations needs to be taken into account in order to prevent analysis biases on r. Thanks to this expansion, and despite the existing correlations between some of the dust moments and the CMB signal responsible for a rise in the error on r, we can measure an unbiased value of the tensor-to-scalar ratio with a dispersion as low as σr = 8.8 × 10−4.


(675)Planar three-loop master integrals for 2 → 2 processes with one external massive particle
  • Dhimiter D. Canko,
  • Nikolaos Syrrakos
Journal of High Energy Physics, 2022 (04/2022) doi:10.1007/JHEP04(2022)134
abstract + abstract -

We present analytic results for the two tennis-court integral families relevant to 2 → 2 scattering processes involving one massive external particle and massless propagators in terms of Goncharov polylogarithms of up to transcendental weight six. We also present analytic results for physical kinematics for the ladder-box family and the two tennis-court families in terms of real-valued polylogarithmic functions, making our solutions well-suited for phenomenological applications.


(674)Stable nickel production in type Ia supernovae: A smoking gun for the progenitor mass?
  • S. Blondin,
  • E. Bravo,
  • F. X. Timmes,
  • L. Dessart,
  • D. J. Hillier
Astronomy and Astrophysics, 660, p19 (04/2022) doi:10.1051/0004-6361/202142323
abstract + abstract -

Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit (MCh ≈ 1.4 M) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between MCh and sub-MCh events. In particular, it is thought that the higher-density ejecta of MCh WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni II] lines in late-time spectra (≳150 d past explosion).
Aims: We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from MCh and sub-MCh progenitors. We explore the potential for lines of [Ni II] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass.
Methods: We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D MCh delayed-detonation and sub-MCh detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58Ni) and investigated the formation of [Ni II] lines using non-local thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code.
Results: We confirm that stable Ni production is generally more efficient in MCh explosions at solar metallicity (typically 0.02-0.08 M for the 58Ni isotope), but we note that the 58Ni yield in sub-MCh events systematically exceeds 0.01 M for WDs that are more massive than one solar mass. We find that the radiative proton-capture reaction 57Co(p, γ)58Ni is the dominant production mode for 58Ni in both MCh and sub-MCh models, while the α-capture reaction on 54Fe has a negligible impact on the final 58Ni yield. More importantly, we demonstrate that the lack of [Ni II] lines in late-time spectra of sub-MCh events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni II] lines predicted in our 1D MCh models are completely suppressed when 56Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements.
Conclusions: [Ni II] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among MCh and sub-MCh progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni II] lines would most likely result from a Chandrasekhar-mass progenitor.


(673)Accurate Relativistic Chiral Nucleon-Nucleon Interaction up to Next-to-Next-to-Leading Order
  • Jun-Xu Lu,
  • Chun-Xuan Wang,
  • Yang Xiao,
  • Li-Sheng Geng,
  • Jie Meng
  • +1
Physical Review Letters, 128 (04/2022) doi:10.1103/PhysRevLett.128.142002
abstract + abstract -

We construct a relativistic chiral nucleon-nucleon interaction up to the next-to-next-to-leading order in covariant baryon chiral perturbation theory. We show that a good description of the n p phase shifts up to Tlab=200 MeV and even higher can be achieved with a χ∼ 2/d .o .f . less than 1. Both the next-to-leading-order results and the next-to-next-to-leading-order results describe the phase shifts equally well up to Tlab=200 MeV , but for higher energies, the latter behaves better, showing satisfactory convergence. The relativistic chiral potential provides the most essential inputs for relativistic ab initio studies of nuclear structure and reactions, which has been in need for almost two decades.


(672)Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks
  • Oliver Just,
  • Sajad Abbar,
  • Meng-Ru Wu,
  • Irene Tamborra,
  • Hans-Thomas Janka
  • +1
Physical Review D, 105 (04/2022) doi:10.1103/PhysRevD.105.083024
abstract + abstract -

The outflows from neutrino-cooled black hole accretion disks formed in neutron-star mergers or cores of collapsing stars are expected to be neutron-rich enough to explain a large fraction of elements created by the rapid neutron-capture process, but their precise chemical composition remains elusive. Here, we investigate the role of fast neutrino flavor conversion, motivated by the findings of our post-processing analysis that shows evidence of electron-neutrino lepton-number crossings deep inside the disk, hence suggesting possibly nontrivial effects due to neutrino flavor mixing. We implement a parametric, dynamically self-consistent treatment of fast conversion in time-dependent simulations and examine the impact on the disk and its outflows. By activating the otherwise inefficient, emission of heavy-lepton neutrinos, fast conversions enhance the disk cooling rates and reduce the absorption rates of electron-type neutrinos, causing a reduction of the electron fraction in the disk by 0.03-0.06 and in the ejected material by 0.01-0.03. The rapid neutron-capture process yields are enhanced by typically no more than a factor of two, rendering the overall impact of fast conversions modest. The kilonova is prolonged as a net result of increased lanthanide opacities and enhanced radioactive heating rates. We observe only mild sensitivity to the disk mass, the condition for the onset of flavor conversion, and to the considered cases of flavor mixing. Remarkably, parametric models of flavor mixing that conserve the lepton numbers per family result in an overall smaller impact than models invoking three-flavor equipartition, often assumed in previous works.


(671)Effective Field Theory of Stückelberg Vector Bosons
  • Graham D. Kribs,
  • Gabriel Lee,
  • Adam Martin
arXiv e-prints (04/2022) e-Print:2204.01755
abstract + abstract -

We explore the effective field theory of a vector field $X^\mu$ that has a Stückelberg mass. The absence of a gauge symmetry for $X^\mu$ implies Lorentz-invariant operators are constructed directly from $X^\mu$. Beyond the kinetic and mass terms, allowed interactions at the renormalizable level include $X_\mu X^\mu H^\dagger H$, $(X_\mu X^\mu)^2$, and $X_\mu j^\mu$, where $j^\mu$ is a global current of the SM or of a hidden sector. We show that all of these interactions lead to scattering amplitudes that grow with powers of $\sqrt{s}/m_X$, except for the case of $X_\mu j^\mu$ where $j^\mu$ is a nonanomalous global current. The latter is well-known when $X$ is identified as a dark photon coupled to the electromagnetic current, often written equivalently as kinetic mixing between $X$ and the photon. The power counting for the energy growth of the scattering amplitudes is facilitated by isolating the longitudinal enhancement. We examine in detail the interaction with an anomalous global vector current $X_\mu j_{anom}^\mu$, carefully isolating the finite contribution to the fermion triangle diagram. We calculate the longitudinally-enhanced observables $Z \rightarrow X\gamma$ (when $m_X < m_Z$), $f\bar{f} \rightarrow X \gamma$, and $Z\gamma \to Z\gamma$ when $X$ couples to the baryon number current. Introducing a fake gauge-invariance by writing $X^\mu = A^\mu - \partial^\mu \pi/m_X$, the would-be gauge anomaly associated with $A_\mu j_{anom}^\mu$ is canceled by $j_{anom}^\mu \partial_\mu \pi/m_X$; this is the four-dimensional Green-Schwarz anomaly-cancellation mechanism at work. Our analysis suggests there is no free lunch by appealing to Stückelberg for the mass of a vector field: the price paid for avoiding a dark Higgs sector is replaced by the non-generic set of interactions that the Stückelberg vector field must have to avoid amplitudes that grow with energy.


(670)On the Superiority of the $|V_{cb}|-\gamma$ Plots over the Unitarity Triangle Plots in the 2020s
  • Andrzej J. Buras
arXiv e-prints (04/2022) e-Print:2204.10337
abstract + abstract -

The UT plots played already for three decades an important role in the tests of the SM and the determination of the CKM parameters. As of 2022, among the four CKM parameters, $V_{us}$ and $\beta$ are already measured with respectable precision, while this is not the case of $|V_{cb}|$ and $\gamma$. In the case of $|V_{cb}|$ the main obstacle are the significant tensions between its inclusive and exclusive determinations from tree-level decays. The present uncertainty in $\gamma$ of $4^\circ$ from tree-level decays will be reduced to $1^\circ$ by the LHCb and Belle II collaborations in the coming years. Unfortunately in the UT plots $|V_{cb}|$ is not seen and the experimental improvements in the determination of $\gamma$ from tree-level decays at the level of a few degrees are difficult to appreciate. In view of these deficiencies of the UT plots with respect to $|V_{cb}|$ and $\gamma$ and the central role these two CKM parameters will play in this decade, the recently proposed plots of $|V_{cb}|$ versus $\gamma$ extracted from various processes appear to be superior to the UT plots in the flavour phenomenology. We illustrate this idea with $\Delta M_s$, $\Delta M_d$, $\epsilon_K$ and with rare decays $B_s\to\mu^+\mu^-$, $B_d\to\mu^+\mu^-$, $K^+\to \pi^+\nu\bar\nu$ and $K_L\to\pi^0\nu\bar\nu$. The power of $\epsilon_K$, $K^+\to\pi^+\nu\bar\nu)$ and $K_{L}\to\pi^0\nu\bar\nu)$ in the determination of $|V_{cb}|$, due to their strong dependence on $|V_{cb}|$, is transparently exhibited in this manner. Combined with future reduced errors on $\gamma$ and $|V_{cb}|$ from tree-level decays such plots can better exhibit possible inconsistenices between various determinations of these two parameters, caused by new physics, than it is possible with the UT plots. This can already be illustrated on the example of the $2.7\sigma$ anomaly in $B_s\to\mu^+\mu^-$.


(669)Same-hemisphere three-gluon-emission contribution to the zero-jettiness soft function at N3LO QCD
  • Daniel Baranowski,
  • Maximilian Delto,
  • Kirill Melnikov,
  • Chen-Yu Wang
arXiv e-prints (04/2022) e-Print:2204.09459
abstract + abstract -

We complete the calculation of the three-gluon-emission contribution to the same-hemisphere part of the zero-jettiness soft function at next-to-next-to-next-to-leading order in perturbative QCD.


(668)Analytical evaluation of cosmological correlation functions
  • T. Heckelbacher,
  • I. Sachs,
  • E. Skvortsov,
  • P. Vanhove
arXiv e-prints (04/2022) e-Print:2204.07217
abstract + abstract -

Using the Schwinger-Keldysh-formalism, reformulated in arXiv:2108.01695 as an effective field theory in Euclidean anti-de Sitter, we evaluate the one-loop cosmological four-point function of a conformally coupled interacting scalar field in de Sitter. Recasting the Witten cosmological correlator as flat space Feynman integrals, we evaluate the one-loop cosmological four-point functions in de Sitter space in terms of single-valued multiple polylogarithms. From it we derive anomalous dimensions and OPE coefficients of the dual conformal field theory at space-like, future infinity. In particular, we find an interesting degeneracy in the anomalous dimensions relating operators of neighboring spins.


(667)Persistent homology in cosmic shear II: A tomographic analysis of DES-Y1
  • Sven Heydenreich,
  • Benjamin Brück,
  • Pierre Burger,
  • Joachim Harnois-Déraps,
  • Sandra Unruh
  • +3
  • Tiago Castro,
  • Klaus Dolag,
  • Nicolas Martinet
  • (less)
arXiv e-prints (04/2022) e-Print:2204.11831
abstract + abstract -

We demonstrate how to use persistent homology for cosmological parameter inference in a tomographic cosmic shear survey. We obtain the first cosmological parameter constraints from persistent homology by applying our method to the first-year data of the Dark Energy Survey. To obtain these constraints, we analyse the topological structure of the matter distribution by extracting persistence diagrams from signal-to-noise maps of aperture masses. This presents a natural extension to the widely used peak count statistics. Extracting the persistence diagrams from the cosmo-SLICS, a suite of $N$-body simulations with variable cosmological parameters, we interpolate the signal using Gaussian Processes and marginalise over the most relevant systematic effects, including intrinsic alignments and baryonic effects. We find for the structure growth parameter $S_8=0.747^{+0.025}_{-0.031}$, which is in full agreement with other late-time probes. We also constrain the intrinsic alignment parameter to $A=1.54\pm 0.52$, ruling out the case of no intrinsic alignments at a $3\sigma$-level.


(666)Radiative transfer in stars by feebly interacting bosons
  • Andrea Caputo,
  • Georg Raffelt,
  • Edoardo Vitagliano
arXiv e-prints (04/2022) e-Print:2204.11862
abstract + abstract -

Starting from first principles, we study radiative transfer by new feebly-interacting bosons (FIBs) such as axions, axion-like particles (ALPs), dark photons, and others. Our key simplification is to include only boson emission or absorption (including decay), but not scattering between different modes of the radiation field. Based on a given distribution of temperature and FIB absorption rate in a star, we derive explicit volume-integral expressions for the boson luminosity, reaching from the free-streaming to the strong-trapping limit. The latter is seen explicitly to correspond to quasi-thermal emission from a "FIB sphere" according to the Stefan-Boltzmann law. Our results supersede expressions and approximations found in the recent literature on FIB emission from a supernova core and, for radiatively unstable FIBs, provide explicit expressions for the nonlocal ("ballistic") transfer of energy recently discussed in horizontal-branch stars.


(665)Lattice Simulations of Axion-U(1) Inflation
  • Angelo Caravano,
  • Eiichiro Komatsu,
  • Kaloian D. Lozanov,
  • Jochen Weller
arXiv e-prints (04/2022) e-Print:2204.12874
abstract + abstract -

If gauge fields are coupled to an axion field during inflation, they can lead to unique observational signatures. However, this system often shows strong backreaction effects, invalidating the standard perturbation theory approach. In this work, we present the first nonlinear lattice simulation of an axion-U(1) system during inflation. We use it to fully characterize the statistics of the comoving curvature perturbation $\zeta$. We find that non-Gaussianity of $\zeta$ is large in the linear regime, whereas it is suppressed when the dynamics becomes nonlinear. This relaxes bounds from overproduction of primordial black holes, allowing for an observable gravitational waves signal at interferometer scales.


(664)Galaxies in the central regions of simulated galaxy clusters
  • Antonio Ragagnin,
  • Massimo Meneghetti,
  • Luigi Bassini,
  • Cinthia Ragone-Figueroa,
  • Gian Luigi Granato
  • +18
  • Giulia Despali,
  • Carlo Giocoli,
  • Giovanni Granata,
  • Lauro Moscardini,
  • Pietro Bergamini,
  • Elena Rasia,
  • Milena Valentini,
  • Stefano Borgani,
  • Francesco Calura,
  • Klaus Dolag,
  • Claudio Grillo,
  • Amata Mercurio,
  • Giuseppe Murante,
  • Priyamvada Natarajan,
  • Piero Rosati,
  • Giuliano Taffoni,
  • Luca Tornatore,
  • Luca Tortorelli
  • (less)
arXiv e-prints (04/2022) e-Print:2204.09067
abstract + abstract -

In this paper, we assess the impact of numerical resolution and of the implementation of energy input from AGN feedback models on the inner structure of cluster sub-haloes in hydrodynamic simulations. We compare several zoom-in re-simulations of a sub-sample of the cluster-sized haloes studied in Meneghetti et al. (2020), obtained by varying mass resolution, softening length and AGN energy feedback scheme. We study the impact of these different setups on the subhalo abundances, their radial distribution, their density and mass profiles and the relation between the maximum circular velocity, which is a proxy for subhalo compactness. Regardless of the adopted numerical resolution and feedback model, subhaloes with masses Msub < 1e11Msun/h, the most relevant mass-range for galaxy-galaxy strong lensing, have maximum circular velocities ~30% smaller than those measured from strong lensing observations of Bergamini et al. (2019). We also find that simulations with less effective AGN energy feedback produce massive subhaloes (Msub> 1e11 Msun/h ) with higher maximum circular velocity and that their Vmax - Msub relation approaches the observed one. However the stellar-mass number count of these objects exceeds the one found in observations and we find that the compactness of these simulated subhaloes is the result of an extremely over-efficient star formation in their cores, also leading to larger-than-observed subhalo stellar mass. We conclude that simulations are unable to simultaneously reproduce the observed stellar masses and compactness (or maximum circular velocities) of cluster galaxies. Thus, the discrepancy between theory and observations that emerged from the analysis of Meneghetti et al. (2020) persists. It remains an open question as to whether such a discrepancy reflects limitations of the current implementation of galaxy formation models or the LCDM paradigm.


(663)The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc
  • R. Luque,
  • B. J. Fulton,
  • M. Kunimoto,
  • P. J. Amado,
  • P. Gorrini
  • +63
  • S. Dreizler,
  • C. Hellier,
  • G. W. Henry,
  • K. Molaverdikhani,
  • G. Morello,
  • L. Peña-Moñino,
  • M. Pérez-Torres,
  • F. J. Pozuelos,
  • Y. Shan,
  • G. Anglada-Escudé,
  • V. J. S. Béjar,
  • G. Bergond,
  • A. W. Boyle,
  • J. A. Caballero,
  • D. Charbonneau,
  • D. R. Ciardi,
  • S. Dufoer,
  • N. Espinoza,
  • M. Everett,
  • D. Fischer,
  • A. P. Hatzes,
  • Th. Henning,
  • K. Hesse,
  • A. Howard,
  • S. B. Howell,
  • H. Isaacson,
  • S. V. Jeffers,
  • J. M. Jenkins,
  • S. R. Kane,
  • J. Kemmer,
  • S. Khalafinejad,
  • R. C.,
  • Jr. Kidwell,
  • D. Kossakowski,
  • D. W. Latham,
  • J. Lillo-Box,
  • J. J. Lissauer,
  • D. Montes,
  • J. Orell-Miquel,
  • E. Pallé,
  • D. Pollacco,
  • A. Quirrenbach,
  • S. Reffert,
  • A. Reiners,
  • I. Ribas,
  • G. R. Ricker,
  • L. A. Rogers,
  • J. Sanz-Forcada,
  • M. Schlecker,
  • A. Schweitzer,
  • S. Seager,
  • A. Shporer,
  • K. G. Stassun,
  • S. Stock,
  • L. Tal-Or,
  • E. B. Ting,
  • T. Trifonov,
  • S. Vanaverbeke,
  • R. Vanderspek,
  • J. Villaseñor,
  • J. N. Winn,
  • J. G. Winters,
  • M. R. Zapatero Osorio
  • (less)
arXiv e-prints (04/2022) e-Print:2204.10261
abstract + abstract -

We report the discovery of a multi-planetary system transiting the M0 V dwarf HD 260655 (GJ 239, TOI-4599). The system consists of at least two transiting planets, namely HD 260655 b, with a period of 2.77 d, a radius of R$_b$ = 1.240$\pm$0.023 R$_\oplus$, a mass of M$_b$ = 2.14$\pm$0.34 M$_\oplus$, and a bulk density of $\rho_b$ = 6.2$\pm$1.0 g cm$^{-3}$, and HD 260655 c, with a period of 5.71 d, a radius of R$_c$ = 1.533$^{+0.051}_{-0.046}$ R$_\oplus$, a mass of M$_c$ = 3.09$\pm$0.48 M$_\oplus$, and a bulk density of $\rho_c$ = 4.7$^{+0.9}_{-0.8}$ g cm$^{-3}$. The planets were detected in transit by the TESS mission and confirmed independently with archival and new precise radial velocities obtained with the HIRES and CARMENES instruments since 1998 and 2016, respectively. At a distance of 10 pc, HD 260655 becomes the fourth closest known multi-transiting planet system after HD 219134, LTT 1445 A, and AU Mic. Due to the apparent brightness of the host star (J = 6.7 mag), both planets are among the most suitable rocky worlds known today for atmospheric studies with the JWST, both in transmission and emission.


(662)Forecasting cosmological parameter constraints using multiple sparsity measurements as tracers of the mass profiles of dark matter haloes
  • P. S. Corasaniti,
  • A. M. C. Le Brun,
  • T. R. G. Richardson,
  • Y. Rasera,
  • S. Ettori
  • +2
arXiv e-prints (04/2022) e-Print:2204.06582
abstract + abstract -

The dark matter halo sparsity, i.e. the ratio between spherical halo masses enclosing two different overdensities, provides a non-parametric proxy of the halo mass distribution which has been shown to be a sensitive probe of the cosmological imprint encoded in the mass profile of haloes hosting galaxy clusters. Mass estimations at several overdensities would allow for multiple sparsity measurements, that can potentially retrieve the entirety of the cosmological information imprinted on the halo profile. Here, we investigate the impact of multiple sparsity measurements on the cosmological model parameter inference. For this purpose, we analyse N-body halo catalogues from the Raygal and M2Csims simulations and evaluate the correlations among six different sparsities from Spherical Overdensity halo masses at $\Delta=200,500,1000$ and $2500$ (in units of the critical density). Remarkably, sparsities associated to distinct halo mass shells are not highly correlated. This is not the case for sparsities obtained using halo masses estimated from the Navarro-Frenk-White (NFW) best-fit profile, that artificially correlates different sparsities to order one. This implies that there is additional information in the mass profile beyond the NFW parametrization and that it can be exploited with multiple sparsities. In particular, from a likelihood analysis of synthetic average sparsity data, we show that cosmological parameter constraints significantly improve when increasing the number of sparsity combinations, though the constraints saturate beyond four sparsity estimates. We forecast constraints for the CHEX-MATE cluster sample and find that systematic mass bias errors mildly impact the parameter inference, though more studies are needed in this direction.


(661)QTRAJ 1.0: A Lindblad equation solver for heavy-quarkonium dynamics
  • Hisham Ba Omar,
  • Miguel Ángel Escobedo,
  • Ajaharul Islam,
  • Michael Strickland,
  • Sabin Thapa
  • +2
  • Peter Vander Griend,
  • Johannes Heinrich Weber
  • (less)
Computer Physics Communications, 273 (04/2022) doi:10.1016/j.cpc.2021.108266
abstract + abstract -

We introduce an open-source package called QTraj that solves the Lindblad equation for heavy-quarkonium dynamics using the quantum trajectories algorithm. The package allows users to simulate the suppression of heavy-quarkonium states using externally-supplied input from 3+1D hydrodynamics simulations. The code uses a split-step pseudo-spectral method for updating the wave-function between jumps, which is implemented using the open-source multi-threaded FFTW3 package. This allows one to have manifestly unitary evolution when using real-valued potentials. In this paper, we provide detailed documentation of QTraj 1.0, installation instructions, and present various tests and benchmarks of the code.


(660)Flavor violating muon decay into an electron and a light gauge boson
  • Alejandro Ibarra,
  • Marcela Marín,
  • Pablo Roig
Physics Letters B, 827 (04/2022) doi:10.1016/j.physletb.2022.136933
abstract + abstract -

We analyze the flavor violating muon decay μ → eχ, where χ is a massive gauge boson, with emphasis in the regime where χ is ultralight. We first study this process from an effective field theory standpoint in terms of form factors. We then present two explicit models where μ → eχ is generated at tree level and at the one-loop level. We also comment on the prospects of observing the process μ → eχ in view of the current limits on μ → 3 e from the SINDRUM collaboration.


(659)Dust evolution in cosmological simulations
  • Massimiliano Parente,
  • Cinthia Ragone-Figueroa,
  • Gian Luigi Granato,
  • Stefano Borgani,
  • Giuseppe Murante
  • +3
  • Milena Valentini,
  • Alessandro Bressan,
  • Andrea Lapi
  • (less)
arXiv e-prints (04/2022) e-Print:2204.11884
abstract + abstract -

We study the evolution of dust in a cosmological volume using a hydrodynamical simulation in which the dust production is coupled with the MUPPI (MUlti Phase Particle Integrator) sub-resolution model of star formation and feedback. As for the latter, we keep as reference the model setup calibrated previously to match the general properties of Milky Way like galaxies in zoom-in simulations. However, we suggest that an increase of the star formation efficiency with the local dust to gas ratio would better reproduce the observed evolution of the cosmic star formation density. Moreover, the paucity of quenched galaxies at low redshift demands a stronger role of AGN feedback. We tune the parameters ruling direct dust production from evolved stars and accretion in the inter stellar medium to get scaling relations involving dust, stellar mass and metallicity in good agreement with observations. In low mass galaxies the accretion process is inefficient. As a consequence, they remain poorer in silicate and small grains than higher mass ones. We reproduce reasonably well the few available data on the radial distribution of dust outside the galactic region, supporting the assumption that the dust and gas dynamics are well coupled at galactic scales.


(658)The Galactic 3D large-scale dust distribution via Gaussian process regression on spherical coordinates
  • R. H. Leike,
  • G. Edenhofer,
  • J. Knollmüller,
  • C. Alig,
  • P. Frank
  • +1
arXiv e-prints (04/2022) e-Print:2204.11715
abstract + abstract -

Knowing the Galactic 3D dust distribution is relevant for understanding many processes in the interstellar medium and for correcting many astronomical observations for dust absorption and emission. Here, we aim for a 3D reconstruction of the Galactic dust distribution with an increase in the number of meaningful resolution elements by orders of magnitude with respect to previous reconstructions, while taking advantage of the dust's spatial correlations to inform the dust map. We use iterative grid refinement to define a log-normal process in spherical coordinates. This log-normal process assumes a fixed correlation structure, which was inferred in an earlier reconstruction of Galactic dust. Our map is informed through 111 Million data points, combining data of PANSTARRS, 2MASS, Gaia DR2 and ALLWISE. The log-normal process is discretized to 122 Billion degrees of freedom, a factor of 400 more than our previous map. We derive the most probable posterior map and an uncertainty estimate using natural gradient descent and the Fisher-Laplace approximation. The dust reconstruction covers a quarter of the volume of our Galaxy, with a maximum coordinate distance of $16\,\text{kpc}$, and meaningful information can be found up to at distances of $4\,$kpc, still improving upon our earlier map by a factor of 5 in maximal distance, of $900$ in volume, and of about eighteen in angular grid resolution. Unfortunately, the maximum posterior approach chosen to make the reconstruction computational affordable introduces artifacts and reduces the accuracy of our uncertainty estimate. Despite of the apparent limitations of the presented 3D dust map, a good part of the reconstructed structures are confirmed by independent maser observations. Thus, the map is a step towards reliable 3D Galactic cartography and already can serve for a number of tasks, if used with care.


(657)The probability of galaxy-galaxy strong lensing events in hydrodynamical simulations of galaxy clusters
  • Massimo Meneghetti,
  • Antonio Ragagnin,
  • Stefano Borgani,
  • Francesco Calura,
  • Giulia Despali
  • +25
  • Carlo Giocoli,
  • Gian Luigi Granato,
  • Claudio Grillo,
  • Lauro Moscardini,
  • Elena Rasia,
  • Piero Rosati,
  • Giuseppe Angora,
  • Luigi Bassini,
  • Pietro Bergamini,
  • Gabriel B. Caminha,
  • Giovanni Granata,
  • Amata Mercurio,
  • Robert Benton Metcalf,
  • Priyamvada Natarajan,
  • Mario Nonino,
  • Giada Venusta Pignataro,
  • Cinthia Ragone-Figueroa,
  • Eros Vanzella,
  • Ana Acebron,
  • Klaus Dolag,
  • Giuseppe Murante,
  • Giuliano Taffoni,
  • Luca Tornatore,
  • Luca Tortorelli,
  • Milena Valentini
  • (less)
arXiv e-prints (04/2022) e-Print:2204.09065
abstract + abstract -

Meneghetti et al. (2020) recently reported an excess of galaxy-galaxy strong lensing (GGSL) in galaxy clusters compared to expectations from the LCDM cosmological model. Theoretical estimates of the GGSL probability are based on the analysis of numerical hydrodynamical simulations in the LCDM cosmology. We quantify the impact of the numerical resolution and AGN feedback scheme adopted in cosmological simulations on the predicted GGSL probability and determine if varying these simulation properties can alleviate the gap with observations. We repeat the analysis of Meneghetti et al. (2020) on cluster-size halos simulated with different mass and force resolutions and implementing several independent AGN feedback schemes. We find that improving the mass resolution by a factor of ten and twenty-five, while using the same galaxy formation model that includes AGN feedback, does not affect the GGSL probability. We find similar results regarding the choice of gravitational softening. On the contrary, adopting an AGN feedback scheme that is less efficient at suppressing gas cooling and star formation leads to an increase in the GGSL probability by a factor between three and six. However, we notice that such simulations form overly massive subhalos whose contribution to the lensing cross-section would be significant while their Einstein radii are too large to be consistent with the observations. The primary contributors to the observed GGSL cross-sections are subhalos with smaller masses, that are compact enough to become critical for lensing. The population with these required characteristics appears to be absent in simulations.


(656)Multi-Component Imaging of the Fermi Gamma-ray Sky in the Spatio-spectral Domain
  • Lukas I. Platz,
  • Jakob Knollmüller,
  • Philipp Arras,
  • Philipp Frank,
  • Martin Reinecke
  • +2
  • Dominik Jüstel,
  • Torsten A. Enßlin
  • (less)
arXiv e-prints (04/2022) e-Print:2204.09360
abstract + abstract -

We perform two distinct spatio-spectral reconstructions of the gamma-ray sky in the range of 0.56-316 GeV based on Fermi Large Area Telescope (LAT) data. Both describe the sky brightness to be composed of a diffuse-emission and a point-source component. The first model requires minimal assumptions and provides a template-free reconstruction as a reference. It makes use of spatial and spectral correlations to distinguish between the different components. The second model is physics-informed and further differentiates between diffuse emission of hadronic and leptonic origin. For this, we assume parametric, but spatially varying energy spectra to distinguish between the processes and use thermal Galactic dust observations to indicate the preferred sites of hadronic interactions. To account for instrumental effects we model the point-spread, the energy dispersion, and the exposure of the telescope throughout the observation. The reconstruction problem is formulated as a Bayesian inference task, that is solved by variational inference. We show decompositions of the Gamma-ray flux into diffuse and point-like emissions, and of the diffuse emissions into multiple physically motivated components. The diffuse decomposition provides an unprecedented view of the Galactic leptonic diffuse emission. It shows the Fermi bubbles and their spectral variations in high fidelity and other areas exhibiting strong cosmic ray electron contents, such as a thick disk in the inner Galaxy and outflow regions. Furthermore, we report a hard spectrum gamma ray arc in the northern outer bubble co-spatial with the reported X-ray arc by the eROSITA collaboration. All our spatio-spectral sky reconstructions and their uncertainty quantification are publicly available.


(655)Physics at Future Colliders: the Interplay Between Energy and Luminosity
  • Zhen Liu,
  • Lian-Tao Wang
arXiv e-prints (04/2022) e-Print:2205.00031
abstract + abstract -

In this note, as an input to the Snowmass studies, we provide a broad-brush picture of the physics output of future colliders as a function of their center of mass energies and luminosities. Instead of relying on precise projections of physics reaches, which are lacking in many cases, we mainly focused on simple benchmarks of physics yields, such as the number of Higgs boson produced. More detailed considerations for lepton colliders are given since there have been various recent proposals. A brief summary for hadron colliders based on a simple scaling estimate of the physics reaches is also included.


(654)Loop counting matters in SMEFT
  • G. Buchalla,
  • G. Heinrich,
  • Ch. Müller-Salditt,
  • F. Pandler
arXiv e-prints (04/2022) e-Print:2204.11808
abstract + abstract -

We show that, in addition to the counting of canonical dimensions, a counting of loop orders is necessary to fully specify the power counting of Standard Model Effective Field Theory (SMEFT). Using concrete examples, we demonstrate that considering the canonical dimensions of operators alone may lead to inconsistent results. The counting of both, canonical dimensions and loop orders, establishes a clear hierarchy of the terms in SMEFT. In practice, this serves to identify, and focus on, the potentially dominating effects in any given high-energy process in a meaningful way. Additionally, this will lead to a consistent limitation of free parameters in SMEFT applications.


(653)Lifetimes of singly charmed hadrons
  • James Gratrex,
  • Blaženka Melić,
  • Ivan Nišandžić
arXiv e-prints (04/2022) e-Print:2204.11935
abstract + abstract -

We provide an extensive study of the lifetimes of singly charmed baryons and mesons, within the heavy quark expansion with all known corrections included. A special attention is devoted to the choice of the charm mass and wavefunctions of heavy baryons. We give our predictions for lifetimes, lifetime ratios, and semileptonic branching ratios of singly charmed baryons. Our results accommodate the experimentally-favoured hierarchy of singly charmed baryon lifetimes \begin{eqnarray*} \tau\left(\Xi_c^{0}\right) < \tau\left(\Lambda_c^{+}\right)< \tau\left(\Omega_c^{0}\right) < \tau\left(\Xi_c^{+}\right)\, \end{eqnarray*} in contrast to earlier theoretical findings. Predictions for charmed meson lifetimes and semileptonic decay rates are in agreement with a recent comprehensive study and experimental results within uncertainties.


(652)Gaia EDR3 distances of the young stellar clusters in the extended Carina Nebula complex
  • C. Göppl,
  • T. Preibisch
Astronomy and Astrophysics, 660, p11 (04/2022) doi:10.1051/0004-6361/202142576
abstract + abstract -

Context. The Carina Nebula complex (CNC) is one of the most massive and active star-forming regions in our Galaxy and it contains several large young star clusters. The distances of the individual clusters and their physical connection were poorly known up to now, with strongly discrepant results reported in the literature.
Aims: We want to determine reliable distances of the young stellar clusters in the central Carina Nebula region (in particular, Tr 14, 15, and 16) and the prominent clusters NGC 3324 and NGC 3293 in the northwestern periphery of the CNC.
Methods: We analyzed the parallaxes in Gaia EDR3 for a comprehensive sample of 237 spectroscopically identified OB stars, as well as for 9562 X-ray-selected young stars throughout the complex. We also performed an astrometric analysis to identify members of the young cluster vdBH 99, which is located in the foreground of the northwestern part of the Carina Nebula.
Results: We find that the distances of the investigated clusters in the CNC are equal within ≤2%, and yield very consistent most likely mean distance values of 2.36−0.05+0.05 kpc for the OB star sample and 2.34−0.06+0.05 kpc for the sample of X-ray-selected young stars.
Conclusions: Our results show that the clusters in the CNC constitute a coherent star-forming region, in particular with regard to NGC 3324 and NGC 3293 at the northwestern periphery, which are (within ≤2%) at the same distance as the central Carina Nebula. For the foreground cluster vdBH 99, we find a mean distance of 441−2+2 pc and an age of ≃60 Myr. We quantified the contamination of X-ray-selected samples of Carina Nebula stars based on members of this foreground cluster.

Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/660/A11


(651)Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources
  • Laura ŠerkšnytÄ--,
  • Stephan Königstorfer,
  • Philip von Doetinchem,
  • Laura Fabbietti,
  • Diego Mauricio Gomez-Coral
  • +6
  • Johannes Herms,
  • Alejandro Ibarra,
  • Thomas Pöschl,
  • Anirvan Shukla,
  • Andrew Strong,
  • Ivan Vorobyev
  • (less)
Physical Review D, 105 (04/2022) doi:10.1103/PhysRevD.105.083021
abstract + abstract -

Cosmic-ray antideuterons could be a key for the discovery of exotic phenomena in our Galaxy, such as dark-matter annihilations or primordial black hole evaporation. Unfortunately the theoretical predictions of the antideuteron flux at Earth are plagued with uncertainties from the mechanism of antideuteron production and propagation in the Galaxy. We present the most up-to-date calculation of the antideuteron fluxes from cosmic-ray collisions with the interstellar medium and from exotic processes. We include for the first time the antideuteron inelastic interaction cross section recently measured by the ALICE collaboration to account for the loss of antideuterons during propagation. In order to bracket the uncertainty in the expected fluxes, we consider several state-of-the-art models of antideuteron production and of cosmic-ray propagation.


(650)Effective-range expansion of the $T_{cc}^+$ state at the complex $D^{*+}D^0$ threshold
  • Mikhail Mikhasenko
(03/2022) e-Print:2203.04622
abstract + abstract -

Evaluation of the effective-range parameters for the $T_{cc}^+$ state in the LHCb model is examined. The finite width of $D^*$ leads to a shift of the expansion point into the complex plane to match analytical properties of the expanded amplitude. We perform an analytic continuation of the three-body scattering amplitude to the complex plane in a vicinity of the branch point and develop a robust procedure for computation of the expansion coefficients. The results yield a nearly-real scattering length, and two contributions to the the effective range which have not been accounted before.


(649)Water cycles in a Hadean CO<SUB>2</SUB> atmosphere drive the evolution of long DNA
  • Alan Ianeselli,
  • Miguel Atienza,
  • Patrick W. Kudella,
  • Ulrich Gerland,
  • Christof B. Mast
  • +1
Nature Physics, 18, p7 (03/2022) doi:10.1038/s41567-022-01516-z
abstract + abstract -

Dew is a common form of water that deposits from saturated air on colder surfaces. Although presumably common on primordial Earth, its potential involvement in the origin of life in early replication has not been investigated in detail. Here we report that it can drive the first stages of Darwinian evolution for DNA and RNA, first by periodically denaturing their structures at low temperatures and second by promoting the replication of long strands over short, faster replicating ones. Our experiments mimicked a partially water-filled primordial rock pore in the probable CO2 atmosphere of Hadean Earth. Under heat flow, water continuously evaporated and recondensed as acidic dew droplets that created the humidity, salt and pH cycles that match many prebiotic replication chemistries. In low-salt and low-pH regimes, the strands melted at 30 K below the bulk melting temperature, whereas longer sequences preferentially accumulated at the droplet interface. Under an enzymatic replication to mimic a sped-up RNA world, long sequences of more than 1,000 nucleotides emerged. The replication was biased by the melting conditions of the dew and the initial short ATGC strands evolved into long AT-rich sequences with repetitive and structured nucleotide composition.


(648)A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
  • J. Aalbers,
  • K. Abe,
  • V. Aerne,
  • F. Agostini,
  • S. Ahmed Maouloud
  • +592
  • D. S. Akerib,
  • D. Yu. Akimov,
  • J. Akshat,
  • A. K. Al Musalhi,
  • F. Alder,
  • S. K. Alsum,
  • L. Althueser,
  • C. S. Amarasinghe,
  • F. D. Amaro,
  • A. Ames,
  • T. J. Anderson,
  • B. Andrieu,
  • N. Angelides,
  • E. Angelino,
  • J. Angevaare,
  • V. C. Antochi,
  • D. Antón Martin,
  • B. Antunovic,
  • E. Aprile,
  • H. M. Araújo,
  • J. E. Armstrong,
  • F. Arneodo,
  • M. Arthurs,
  • P. Asadi,
  • S. Baek,
  • X. Bai,
  • D. Bajpai,
  • A. Baker,
  • J. Balajthy,
  • S. Balashov,
  • M. Balzer,
  • A. Bandyopadhyay,
  • J. Bang,
  • E. Barberio,
  • J. W. Bargemann,
  • L. Baudis,
  • D. Bauer,
  • D. Baur,
  • A. Baxter,
  • A. L. Baxter,
  • M. Bazyk,
  • K. Beattie,
  • J. Behrens,
  • N. F. Bell,
  • L. Bellagamba,
  • P. Beltrame,
  • M. Benabderrahmane,
  • E. P. Bernard,
  • G. F. Bertone,
  • P. Bhattacharjee,
  • A. Bhatti,
  • A. Biekert,
  • T. P. Biesiadzinski,
  • A. R. Binau,
  • R. Biondi,
  • Y. Biondi,
  • H. J. Birch,
  • F. Bishara,
  • A. Bismark,
  • C. Blanco,
  • G. M. Blockinger,
  • E. Bodnia,
  • C. Boehm,
  • A. I. Bolozdynya,
  • P. D. Bolton,
  • S. Bottaro,
  • C. Bourgeois,
  • B. Boxer,
  • P. Brás,
  • A. Breskin,
  • P. A. Breur,
  • C. A. J. Brew,
  • J. Brod,
  • E. Brookes,
  • A. Brown,
  • E. Brown,
  • S. Bruenner,
  • G. Bruno,
  • R. Budnik,
  • T. K. Bui,
  • S. Burdin,
  • S. Buse,
  • J. K. Busenitz,
  • D. Buttazzo,
  • M. Buuck,
  • A. Buzulutskov,
  • R. Cabrita,
  • C. Cai,
  • D. Cai,
  • C. Capelli,
  • J. M. R. Cardoso,
  • M. C. Carmona-Benitez,
  • M. Cascella,
  • R. Catena,
  • S. Chakraborty,
  • C. Chan,
  • S. Chang,
  • A. Chauvin,
  • A. Chawla,
  • H. Chen,
  • V. Chepel,
  • N. I. Chott,
  • D. Cichon,
  • A. Cimental Chavez,
  • B. Cimmino,
  • M. Clark,
  • R. T. Co,
  • A. P. Colijn,
  • J. Conrad,
  • M. V. Converse,
  • M. Costa,
  • A. Cottle,
  • G. Cox,
  • O. Creaner,
  • J. J. Cuenca Garcia,
  • J. P. Cussonneau,
  • J. E. Cutter,
  • C. E. Dahl,
  • V. D'Andrea,
  • A. David,
  • M. P. Decowski,
  • J. B. Dent,
  • F. F. Deppisch,
  • L. de Viveiros,
  • P. Di Gangi,
  • A. Di Giovanni,
  • S. Di Pede,
  • J. Dierle,
  • S. Diglio,
  • J. E. Y. Dobson,
  • M. Doerenkamp,
  • D. Douillet,
  • G. Drexlin,
  • E. Druszkiewicz,
  • D. Dunsky,
  • K. Eitel,
  • A. Elykov,
  • T. Emken,
  • R. Engel,
  • S. R. Eriksen,
  • M. Fairbairn,
  • A. Fan,
  • J. J. Fan,
  • S. J. Farrell,
  • S. Fayer,
  • N. M. Fearon,
  • A. Ferella,
  • C. Ferrari,
  • A. Fieguth,
  • A. Fieguth,
  • S. Fiorucci,
  • H. Fischer,
  • H. Flaecher,
  • M. Flierman,
  • T. Florek,
  • R. Foot,
  • P. J. Fox,
  • R. Franceschini,
  • E. D. Fraser,
  • C. S. Frenk,
  • S. Frohlich,
  • T. Fruth,
  • W. Fulgione,
  • C. Fuselli,
  • P. Gaemers,
  • R. Gaior,
  • R. J. Gaitskell,
  • M. Galloway,
  • F. Gao,
  • I. Garcia Garcia,
  • J. Genovesi,
  • C. Ghag,
  • S. Ghosh,
  • E. Gibson,
  • W. Gil,
  • D. Giovagnoli,
  • F. Girard,
  • R. Glade-Beucke,
  • F. Glück,
  • S. Gokhale,
  • A. de Gouvêa,
  • L. Gráf,
  • L. Grandi,
  • J. Grigat,
  • B. Grinstein,
  • M. G. D. van der Grinten,
  • R. Grössle,
  • H. Guan,
  • M. Guida,
  • R. Gumbsheimer,
  • C. B. Gwilliam,
  • C. R. Hall,
  • L. J. Hall,
  • R. Hammann,
  • K. Han,
  • V. Hannen,
  • S. Hansmann-Menzemer,
  • R. Harata,
  • S. P. Hardin,
  • E. Hardy,
  • C. A. Hardy,
  • K. Harigaya,
  • R. Harnik,
  • S. J. Haselschwardt,
  • M. Hernandez,
  • S. A. Hertel,
  • A. Higuera,
  • C. Hils,
  • S. Hochrein,
  • L. Hoetzsch,
  • M. Hoferichter,
  • N. Hood,
  • D. Hooper,
  • M. Horn,
  • J. Howlett,
  • D. Q. Huang,
  • Y. Huang,
  • D. Hunt,
  • M. Iacovacci,
  • G. Iaquaniello,
  • R. Ide,
  • C. M. Ignarra,
  • G. Iloglu,
  • Y. Itow,
  • E. Jacquet,
  • O. Jahangir,
  • J. Jakob,
  • R. S. James,
  • A. Jansen,
  • W. Ji,
  • X. Ji,
  • F. Joerg,
  • J. Johnson,
  • A. Joy,
  • A. C. Kaboth,
  • A. C. Kamaha,
  • K. Kanezaki,
  • K. Kar,
  • M. Kara,
  • N. Kato,
  • P. Kavrigin,
  • S. Kazama,
  • A. W. Keaveney,
  • J. Kellerer,
  • D. Khaitan,
  • A. Khazov,
  • G. Khundzakishvili,
  • I. Khurana,
  • B. Kilminster,
  • M. Kleifges,
  • P. Ko,
  • M. Kobayashi,
  • M. Kobayashi,
  • D. Kodroff,
  • G. Koltmann,
  • A. Kopec,
  • A. Kopmann,
  • J. Kopp,
  • L. Korley,
  • V. N. Kornoukhov,
  • E. V. Korolkova,
  • H. Kraus,
  • L. M. Krauss,
  • S. Kravitz,
  • L. Kreczko,
  • V. A. Kudryavtsev,
  • F. Kuger,
  • J. Kumar,
  • B. López Paredes,
  • L. LaCascio,
  • Q. Laine,
  • H. Landsman,
  • R. F. Lang,
  • E. A. Leason,
  • J. Lee,
  • D. S. Leonard,
  • K. T. Lesko,
  • L. Levinson,
  • C. Levy,
  • I. Li,
  • S. C. Li,
  • T. Li,
  • S. Liang,
  • C. S. Liebenthal,
  • J. Lin,
  • Q. Lin,
  • S. Lindemann,
  • M. Lindner,
  • A. Lindote,
  • R. Linehan,
  • W. H. Lippincott,
  • X. Liu,
  • K. Liu,
  • J. Liu,
  • J. Loizeau,
  • F. Lombardi,
  • J. Long,
  • M. I. Lopes,
  • E. Lopez Asamar,
  • W. Lorenzon,
  • C. Lu,
  • S. Luitz,
  • Y. Ma,
  • P. A. N. Machado,
  • C. Macolino,
  • T. Maeda,
  • J. Mahlstedt,
  • P. A. Majewski,
  • A. Manalaysay,
  • A. Mancuso,
  • L. Manenti,
  • A. Manfredini,
  • R. L. Mannino,
  • N. Marangou,
  • J. March-Russell,
  • F. Marignetti,
  • T. Marrodán Undagoitia,
  • K. Martens,
  • R. Martin,
  • I. Martinez-Soler,
  • J. Masbou,
  • D. Masson,
  • E. Masson,
  • S. Mastroianni,
  • M. Mastronardi,
  • J. A. Matias-Lopes,
  • M. E. McCarthy,
  • N. McFadden,
  • E. McGinness,
  • D. N. McKinsey,
  • J. McLaughlin,
  • K. McMichael,
  • P. Meinhardt,
  • J. Menéndez,
  • Y. Meng,
  • M. Messina,
  • R. Midha,
  • D. Milisavljevic,
  • E. H. Miller,
  • B. Milosevic,
  • S. Milutinovic,
  • S. A. Mitra,
  • K. Miuchi,
  • E. Mizrachi,
  • K. Mizukoshi,
  • A. Molinario,
  • A. Monte,
  • C. M. B. Monteiro,
  • M. E. Monzani,
  • J. S. Moore,
  • K. Morå,
  • J. A. Morad,
  • J. D. Morales Mendoza,
  • S. Moriyama,
  • E. Morrison,
  • E. Morteau,
  • Y. Mosbacher,
  • B. J. Mount,
  • J. Mueller,
  • A. St. J. Murphy,
  • M. Murra,
  • D. Naim,
  • S. Nakamura,
  • E. Nash,
  • N. Navaieelavasani,
  • A. Naylor,
  • C. Nedlik,
  • H. N. Nelson,
  • F. Neves,
  • J. L. Newstead,
  • K. Ni,
  • J. A. Nikoleyczik,
  • V. Niro,
  • U. G. Oberlack,
  • M. Obradovic,
  • K. Odgers,
  • C. A. J. O'Hare,
  • P. Oikonomou,
  • I. Olcina,
  • K. Oliver-Mallory,
  • A. Oranday,
  • J. Orpwood,
  • I. Ostrovskiy,
  • K. Ozaki,
  • B. Paetsch,
  • S. Pal,
  • J. Palacio,
  • K. J. Palladino,
  • J. Palmer,
  • P. Panci,
  • M. Pandurovic,
  • A. Parlati,
  • N. Parveen,
  • S. J. Patton,
  • V. Pěč,
  • Q. Pellegrini,
  • B. Penning,
  • G. Pereira,
  • R. Peres,
  • Y. Perez-Gonzalez,
  • E. Perry,
  • T. Pershing,
  • R. Petrossian-Byrne,
  • J. Pienaar,
  • A. Piepke,
  • G. Pieramico,
  • M. Pierre,
  • M. Piotter,
  • V. Pizella,
  • G. Plante,
  • T. Pollmann,
  • D. Porzio,
  • J. Qi,
  • Y. Qie,
  • J. Qin,
  • N. Raj,
  • M. Rajado Silva,
  • K. Ramanathan,
  • D. Ramírez García,
  • J. Ravanis,
  • L. Redard-Jacot,
  • D. Redigolo,
  • S. Reichard,
  • J. Reichenbacher,
  • C. A. Rhyne,
  • A. Richards,
  • Q. Riffard,
  • G. R. C. Rischbieter,
  • A. Rocchetti,
  • S. L. Rosenfeld,
  • R. Rosero,
  • N. Rupp,
  • T. Rushton,
  • S. Saha,
  • L. Sanchez,
  • P. Sanchez-Lucas,
  • D. Santone,
  • J. M. F. dos Santos,
  • I. Sarnoff,
  • G. Sartorelli,
  • A. B. M. R. Sazzad,
  • M. Scheibelhut,
  • R. W. Schnee,
  • M. Schrank,
  • J. Schreiner,
  • P. Schulte,
  • D. Schulte,
  • H. Schulze Eissing,
  • M. Schumann,
  • T. Schwemberger,
  • A. Schwenk,
  • T. Schwetz,
  • L. Scotto Lavina,
  • P. R. Scovell,
  • H. Sekiya,
  • M. Selvi,
  • E. Semenov,
  • F. Semeria,
  • P. Shagin,
  • S. Shaw,
  • S. Shi,
  • E. Shockley,
  • T. A. Shutt,
  • R. Si-Ahmed,
  • J. J. Silk,
  • C. Silva,
  • M. C. Silva,
  • H. Simgen,
  • F. Šimkovic,
  • G. Sinev,
  • R. Singh,
  • W. Skulski,
  • J. Smirnov,
  • R. Smith,
  • M. Solmaz,
  • V. N. Solovov,
  • P. Sorensen,
  • J. Soria,
  • T. J. Sparmann,
  • I. Stancu,
  • M. Steidl,
  • A. Stevens,
  • K. Stifter,
  • L. E. Strigari,
  • D. Subotic,
  • B. Suerfu,
  • A. M. Suliga,
  • T. J. Sumner,
  • P. Szabo,
  • M. Szydagis,
  • A. Takeda,
  • Y. Takeuchi,
  • P. -L. Tan,
  • C. Taricco,
  • W. C. Taylor,
  • D. J. Temples,
  • A. Terliuk,
  • P. A. Terman,
  • D. Thers,
  • K. Thieme,
  • Th. Thümmler,
  • D. R. Tiedt,
  • M. Timalsina,
  • W. H. To,
  • F. Toennies,
  • Z. Tong,
  • F. Toschi,
  • D. R. Tovey,
  • J. Tranter,
  • M. Trask,
  • G. C. Trinchero,
  • M. Tripathi,
  • D. R. Tronstad,
  • R. Trotta,
  • Y. D. Tsai,
  • C. D. Tunnell,
  • W. G. Turner,
  • R. Ueno,
  • P. Urquijo,
  • U. Utku,
  • A. Vaitkus,
  • K. Valerius,
  • E. Vassilev,
  • S. Vecchi,
  • V. Velan,
  • S. Vetter,
  • A. C. Vincent,
  • L. Vittorio,
  • G. Volta,
  • B. von Krosigk,
  • M. von Piechowski,
  • D. Vorkapic,
  • C. E. M. Wagner,
  • A. M. Wang,
  • B. Wang,
  • Y. Wang,
  • W. Wang,
  • J. J. Wang,
  • L. -T. Wang,
  • M. Wang,
  • Y. Wang,
  • J. R. Watson,
  • Y. Wei,
  • C. Weinheimer,
  • E. Weisman,
  • M. Weiss,
  • D. Wenz,
  • S. M. West,
  • T. J. Whitis,
  • M. Williams,
  • M. J. Wilson,
  • D. Winkler,
  • C. Wittweg,
  • J. Wolf,
  • T. Wolf,
  • F. L. H. Wolfs,
  • S. Woodford,
  • D. Woodward,
  • C. J. Wright,
  • V. H. S. Wu,
  • P. Wu,
  • S. Wüstling,
  • M. Wurm,
  • Q. Xia,
  • X. Xiang,
  • Y. Xing,
  • J. Xu,
  • Z. Xu,
  • D. Xu,
  • M. Yamashita,
  • R. Yamazaki,
  • H. Yan,
  • L. Yang,
  • Y. Yang,
  • J. Ye,
  • M. Yeh,
  • I. Young,
  • H. B. Yu,
  • T. T. Yu,
  • L. Yuan,
  • G. Zavattini,
  • S. Zerbo,
  • Y. Zhang,
  • M. Zhong,
  • N. Zhou,
  • X. Zhou,
  • T. Zhu,
  • Y. Zhu,
  • Y. Zhuang,
  • J. P. Zopounidis,
  • K. Zuber,
  • J. Zupan
  • (less)
arXiv e-prints (03/2022) e-Print:2203.02309
abstract + abstract -

The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.


(647)Axion-gauge field dynamics with backreaction
  • Koji Ishiwata,
  • Eiichiro Komatsu,
  • Ippei Obata
Journal of Cosmology and Astroparticle Physics, 2022, p33 (03/2022) doi:10.1088/1475-7516/2022/03/010
abstract + abstract -

Phenomenological success of inflation models with axion and SU(2) gauge fields relies crucially on control of backreaction from particle production. Most of the previous study only demanded the backreaction terms in equations of motion for axion and gauge fields be small on the basis of order-of-magnitude estimation. In this paper, we solve the equations of motion with backreaction for a wide range of parameters of the spectator axion-SU(2) model. First, we find a new slow-roll solution of the axion-SU(2) system in the absence of backreaction. Next, we obtain accurate conditions for stable slow-roll solutions in the presence of backreaction. Finally, we show that the amplitude of primordial gravitational waves sourced by the gauge fields can exceed that of quantum vacuum fluctuations in spacetime by a large factor, without backreaction spoiling slow-roll dynamics. Imposing additional constraints on the power spectra of scalar and tensor modes measured at CMB scales, we find that the sourced contribution can be more than ten times the vacuum one. Imposing further a constraint of scalar modes non-linearly sourced by tensor modes, the two contributions can still be comparable.


(646)Substructure of Multiquark Hadrons (Snowmass 2021 White Paper)
  • Nora Brambilla,
  • Hua-Xing Chen,
  • Angelo Esposito,
  • Jacopo Ferretti,
  • Anthony Francis
  • +25
  • Feng-Kun Guo,
  • Christoph Hanhart,
  • Atsushi Hosaka,
  • Robert L. Jaffe,
  • Marek Karliner,
  • Richard Lebed,
  • Randy Lewis,
  • Luciano Maiani,
  • Nilmani Mathur,
  • Ulf-G. Meißner,
  • Alessandro Pilloni,
  • Antonio Davide Polosa,
  • Sasa Prelovsek,
  • Jean-Marc Richard,
  • Veronica Riquer,
  • Mitja Rosina,
  • Jonathan L. Rosner,
  • Elena Santopinto,
  • Eric S. Swanson,
  • Adam P. Szczepaniak,
  • Sachiko Takeuchi,
  • Makoto Takizawa,
  • Frank Wilczek,
  • Yasuhiro Yamaguchi,
  • Bing-Song Zou
  • (less)
(03/2022) e-Print:2203.16583
abstract + abstract -

In recent years there has been a rapidly growing body of experimental evidence for existence of exotic, multiquark hadrons, i.e. mesons which contain additional quarks, beyond the usual quark-antiquark pair and baryons which consist of more than three quarks. In all cases with robust evidence they contain at least one heavy quark Q=c or b, the majority including two heavy quarks. Two key theoretical questions have been triggered by these discoveries: (a) how are quarks organized inside these multiquark states -- as compact objects with all quarks within one confinement volume, interacting via color forces, perhaps with an important role played by diquarks, or as deuteron-like hadronic molecules, bound by light-meson exchange? (b) what other multiquark states should we expect? The two questions are tightly intertwined. Each of the interpretations provides a natural explanation of parts of the data, but neither explains all of the data. It is quite possible that both kinds of structures appear in Nature. It may also be the case that certain states are superpositions of the compact and molecular configurations. This Whitepaper brings together contributions from many leading practitioners in the field, representing a wide spectrum of theoretical interpretations. We discuss the importance of future experimental and phenomenological work, which will lead to better understandingof multiquark phenomena in QCD.


(645)The DECam Local Volume Exploration Survey Data Release 2
  • A. Drlica-Wagner,
  • P.S. Ferguson,
  • M. Adamów,
  • M. Aguena,
  • F. Andrade-Oliveira
  • +119
  • D. Bacon,
  • K. Bechtol,
  • E.F. Bell,
  • E. Bertin,
  • P. Bilaji,
  • S. Bocquet,
  • C.R. Bom,
  • D. Brooks,
  • D.L. Burke,
  • J.A. Carballo-Bello,
  • J.L. Carlin,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • F.J. Castander,
  • W. Cerny,
  • C. Chang,
  • Y. Choi,
  • C. Conselice,
  • M. Costanzi,
  • D. Crnojević,
  • L.N. da Costa,
  • J. De Vicente,
  • S. Desai,
  • J. Esteves,
  • S. Everett,
  • I. Ferrero,
  • M. Fitzpatrick,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. Gaztanaga,
  • D.W. Gerdes,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • W.G. Hartley,
  • D. Hernandez-Lang,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • A.K. Hughes,
  • A. Jacques,
  • D.J. James,
  • M.D. Johnson,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • T.S. Li,
  • C. Lidman,
  • H. Lin,
  • M. March,
  • J.L. Marshall,
  • D. Martínez-Delgado,
  • C.E. Martínez-Vázquez,
  • P. Massana,
  • S. Mau,
  • M. McNanna,
  • P. Melchior,
  • F. Menanteau,
  • A.E. Miller,
  • R. Miquel,
  • J.J. Mohr,
  • R. Morgan,
  • B. Mutlu-Pakdil,
  • R.R. Muñoz,
  • E.H. Neilsen,
  • D.L. Nidever,
  • R. Nikutta,
  • J.L. Nilo Castellon,
  • N.E.D. Noël,
  • R.L.C. Ogando,
  • K.A.G. Olsen,
  • A.B. Pace,
  • A. Palmese,
  • F. Paz-Chinchón,
  • M.E.S. Pereira,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • J. Prat,
  • A.H. Riley,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • A. Roodman,
  • M. Sako,
  • J.D. Sakowska,
  • E. Sanchez,
  • F.J. Sánchez,
  • D.J. Sand,
  • L. Santana-Silva,
  • B. Santiago,
  • M. Schubnell,
  • S. Serrano,
  • I. Sevilla-Noarbe,
  • J.D. Simon,
  • M. Smith,
  • M. Soares-Santos,
  • G.S. Stringfellow,
  • E. Suchyta,
  • D.J. Suson,
  • C.Y. Tan,
  • G. Tarle,
  • K. Tavangar,
  • D. Thomas,
  • C. To,
  • E.J. Tollerud,
  • M.A. Troxel,
  • D.L. Tucker,
  • T.N. Varga,
  • A.K. Vivas,
  • A.R. Walker,
  • J. Weller,
  • R.D. Wilkinson,
  • J.F. Wu,
  • B. Yanny,
  • E. Zaborowski,
  • A. Zenteno
  • (less)
(03/2022) e-Print:2203.16565
abstract + abstract -

We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ~160,000 exposures that cover >21,000 deg^2 of the high Galactic latitude (|b| > 10 deg) sky in four broadband optical/near-infrared filters (g, r, i, z). DELVE DR2 provides point-source and automatic aperture photometry for ~2.5 billion astronomical sources with a median 5σ point-source depth of g=24.3, r=23.9, i=23.5, and z=22.8 mag. A region of ~17,000 deg^2 has been imaged in all four filters, providing four-band photometric measurements for ~618 million astronomical sources. DELVE DR2 covers more than four times the area of the previous DELVE data release and contains roughly five times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.


(644)Systematic Parametrization of the Leading $B$-meson Light-Cone Distribution Amplitude
  • Thorsten Feldmann,
  • Philip Lüghausen,
  • Danny van Dyk
(03/2022) e-Print:2203.15679
abstract + abstract -

We propose a parametrization of the leading $B$-meson light-cone distribution amplitude (LCDA) in heavy-quark effective theory (HQET). In position space, it uses a conformal transformation that yields a systematic Taylor expansion and an integral bound, which enables control of the truncation error. Our parametrization further produces compact analytical expressions for a variety of derived quantities. At a given reference scale, our momentum-space parametrization corresponds to an expansion in associated Laguerre polynomials, which turn into confluent hypergeometric functions ${}_1F_1$ under renormalization-group evolution at one-loop accuracy. Our approach thus allows a straightforward and transparent implementation of a variety of phenomenological constraints, regardless of their origin. Moreover, we can include theoretical information on the Taylor coefficients by using the local operator production expansion. We showcase the versatility of the parametrization in a series of phenomenological pseudo-fits.


(643)Dark Energy Survey Year 3 results: imprints of cosmic voids and superclusters in the Planck CMB lensing map
  • A. Kovács,
  • P. Vielzeuf,
  • I. Ferrero,
  • P. Fosalba,
  • U. Demirbozan
  • +80
  • R. Miquel,
  • C. Chang,
  • N. Hamaus,
  • G. Pollina,
  • K. Bechtol,
  • M. Becker,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • M. Crocce,
  • A. Drlica-Wagner,
  • J. Elvin-Poole,
  • M. Gatti,
  • G. Giannini,
  • R.A. Gruendl,
  • A. Porredon,
  • A.J. Ross,
  • E.S. Rykoff,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • B. Yanny,
  • T. Abbott,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • G. Bernstein,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D. Burke,
  • J. Carretero,
  • F.J. Castander,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • H.T. Diehl,
  • J. Dietrich,
  • A. Ferté,
  • B. Flaugher,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztañaga,
  • D. Gerdes,
  • T. Giannantonio,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D. Huterer,
  • K. Kuehn,
  • O. Lahav,
  • M. Lima,
  • M. March,
  • J. Marshall,
  • P. Melchior,
  • F. Menanteau,
  • R. Morgan,
  • J. Muir,
  • R. Ogando,
  • A. Palmese,
  • F. Paz-Chinchon,
  • A. Pieres,
  • A. Plazas Malagón,
  • M. Rodriguez Monroy,
  • A. Roodman,
  • E. Sanchez,
  • M. Schubnell,
  • S. Serrano,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C.-H. To,
  • T.N. Varga,
  • J. Weller
  • (less)
(03/2022) e-Print:2203.11306
abstract + abstract -

The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the low-redshift cosmic web. In this analysis, we cross-correlated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set ($\sim$5,000 deg$^{2}$), extending previous measurements using Y1 catalogues ($\sim$1,300 deg$^{2}$). Given the increased statistical power compared to Y1 data, we report a $6.6\sigma$ detection of negative CMB convergence ($\kappa$) imprints using approximately 3,600 voids detected from a redMaGiC luminous red galaxy sample. However, the measured signal is lower than expected from the MICE N-body simulation that is based on the $\Lambda$CDM model (parameters $\Omega_{\rm m} = 0.25$, $\sigma_8 = 0.8$). The discrepancy is associated mostly with the void centre region. Considering the full void lensing profile, we fit an amplitude $A_{\kappa}=\kappa_{\rm DES}/\kappa_{\rm MICE}$ to a simulation-based template with fixed shape and found a moderate $2\sigma$ deviation in the signal with $A_{\kappa}\approx0.79\pm0.12$. We also examined the WebSky simulation that is based on a Planck 2018 $\Lambda$CDM cosmology, but the results were even less consistent given the slightly higher matter density fluctuations than in MICE. We then identified superclusters in the DES and the MICE catalogues, and detected their imprints at the $8.4\sigma$ level; again with a lower-than-expected $A_{\kappa}=0.84\pm0.10$ amplitude. The combination of voids and superclusters yields a $10.3\sigma$ detection with an $A_{\kappa}=0.82\pm0.08$ constraint on the CMB lensing amplitude, thus the overall signal is $2.3\sigma$ weaker than expected from MICE.


(642)Production and Polarization of $S$-Wave Quarkonia in Potential Nonrelativistic QCD
  • Nora Brambilla,
  • Hee Sok Chung,
  • Antonio Vairo,
  • Xiang-Peng Wang
(03/2022) e-Print:2203.07778
abstract + abstract -

Based on the potential nonrelativistic QCD formalism, we compute the nonrelativistic QCD long-distance matrix elements (LDMEs) for inclusive production of $S$-wave heavy quarkonia. This greatly reduces the number of nonperturbative unknowns and brings in a substantial enhancement in the predictive power of the NRQCD factorization formalism. We obtain improved determinations of the LDMEs and find cross sections and polarizations of $J/\psi$, $\psi(2S)$, and excited $\Upsilon$ states that agree well with LHC data. Our results may have important implications in pinning down the heavy quarkonium production mechanism.


(641)Snowmass white paper: Need for amplitude analysis in the discovery of new hadrons
  • Miguel Albaladejo,
  • Marco Battaglieri,
  • Lukasz Bibrzycki,
  • Andrea Celentano,
  • Igor V. Danilkin
  • +20
  • Sebastian M. Dawid,
  • Michael Doring,
  • Cristiano Fanelli,
  • Cesar Fernandez-Ramirez,
  • Sergi Gonzalez-Solis,
  • Astrid N. Hiller Blin,
  • Andrew W. Jackura,
  • Vincent Mathieu,
  • Mikhail Mikhasenko,
  • Victor I. Mokeev,
  • Emilie Passemar,
  • Robert J. Perry,
  • Alessandro Pilloni,
  • Arkaitz Rodas,
  • Matthew R. Shepherd,
  • Nathaniel Sherrill,
  • Jorge A. Silva-Castro,
  • Tomasz Skwarnicki,
  • Adam P. Szczepaniak,
  • Daniel Winney
  • (less)
(03/2022) e-Print:2203.08208
abstract + abstract -

We highlight the need for the development of comprehensive amplitude analysis methods to further our understanding of hadron spectroscopy. Reaction amplitudes constrained by first principles of $S$-matrix theory and by QCD phenomenology are needed to extract robust interpretations of the data from experiments and from lattice calculations.


(640)Snowmass2021 Cosmic Frontier White Paper: Prospects for obtaining Dark Matter Constraints with DESI
  • Monica Valluri,
  • Solene Chabanier,
  • Vid Irsic,
  • Eric Armengaud,
  • Michael Walther
  • +27
  • Connie Rockosi,
  • Miguel A. Sanchez-Conde,
  • Leandro Beraldo e Silva,
  • Andrew P. Cooper,
  • Elise Darragh-Ford,
  • Kyle Dawson,
  • Alis J. Deason,
  • Simone Ferraro,
  • Jaime E. Forero-Romero,
  • Antonella Garzilli,
  • Ting Li,
  • Zarija Lukic,
  • Christopher J. Manser,
  • Nathalie Palanque-Delabrouille,
  • Corentin Ravoux,
  • Ting Tan,
  • Wenting Wang,
  • Risa Weschler,
  • Andreia Carrillo,
  • Arjun Dey,
  • Sergey E. Koposov,
  • Yao-Yuan Mao,
  • Paulo Montero-Camacho,
  • Ekta Patel,
  • Graziano Rossi,
  • L. Arturo Urena-Lopez,
  • Octavio Valenzuela
  • (less)
(03/2022) e-Print:2203.07491
abstract + abstract -

Despite efforts over several decades, direct-detection experiments have not yet led to the discovery of the dark matter (DM) particle. This has led to increasing interest in alternatives to the Lambda CDM (LCDM) paradigm and alternative DM scenarios (including fuzzy DM, warm DM, self-interacting DM, etc.). In many of these scenarios, DM particles cannot be detected directly and constraints on their properties can ONLY be arrived at using astrophysical observations. The Dark Energy Spectroscopic Instrument (DESI) is currently one of the most powerful instruments for wide-field surveys. The synergy of DESI with ESA's Gaia satellite and future observing facilities will yield datasets of unprecedented size and coverage that will enable constraints on DM over a wide range of physical and mass scales and across redshifts. DESI will obtain spectra of the Lyman-alpha forest out to z~5 by detecting about 1 million QSO spectra that will put constraints on clustering of the low-density intergalactic gas and DM halos at high redshift. DESI will obtain radial velocities of 10 million stars in the Milky Way (MW) and Local Group satellites enabling us to constrain their global DM distributions, as well as the DM distribution on smaller scales. The paradigm of cosmological structure formation has been extensively tested with simulations. However, the majority of simulations to date have focused on collisionless CDM. Simulations with alternatives to CDM have recently been gaining ground but are still in their infancy. While there are numerous publicly available large-box and zoom-in simulations in the LCDM framework, there are no comparable publicly available WDM, SIDM, FDM simulations. DOE support for a public simulation suite will enable a more cohesive community effort to compare observations from DESI (and other surveys) with numerical predictions and will greatly impact DM science.


(639)Radiopurity of a kg-scale PbWO$_4$ cryogenic detector produced from archaeological Pb for the RES-NOVA experiment
  • J.W. Beeman,
  • G. Benato,
  • C. Bucci,
  • L. Canonica,
  • P. Carniti
  • +39
  • E. Celi,
  • M. Clemenza,
  • A. D'Addabbo,
  • F.A. Danevich,
  • S. Di Domizio,
  • S. Di Lorenzo,
  • O.M. Dubovik,
  • N. Ferreiro Iachellini,
  • F. Ferroni,
  • E. Fiorini,
  • S. Fu,
  • A. Garai,
  • S. Ghislandi,
  • L. Gironi,
  • P. Gorla,
  • C. Gotti,
  • P.V. Guillaumon,
  • D.L. Helis,
  • G.P. Kovtun,
  • M. Mancuso,
  • L. Marini,
  • M. Olmi,
  • L. Pagnanini,
  • L. Pattavina,
  • G. Pessina,
  • F. Petricca,
  • S. Pirro,
  • S. Pozzi,
  • A. Puiu,
  • S. Quitadamo,
  • J. Rothe,
  • A.P. Scherban,
  • S. Schoenert,
  • D.A. Solopikhin,
  • R. Strauss,
  • E. Tarabini,
  • V.I. Tretyak,
  • I.A. Tupitsyna,
  • V. Wagner
  • (less)
(03/2022) e-Print:2203.07441
abstract + abstract -

RES-NOVA is a newly proposed experiment for the detection of neutrinos from astrophysical sources, mainly Supernovae, using an array of cryogenic detectors made of PbWO$_4$ crystals produced from archaeological Pb. This unconventional material, characterized by intrinsic high radiopurity, enables to achieve low-background levels in the region of interest for the neutrino detection via Coherent Elastic neutrino-Nucleus Scattering (CE$\nu$NS). This signal lies at the detector energy threshold, O(1 keV), and it is expected to be hidden by naturally occurring radioactive contaminants of the crystal absorber. Here, we present the results of a radiopurity assay on a 0.84 kg PbWO$_4$ crystal produced from archaeological Pb operated as a cryogenic detector. The crystal internal radioactive contaminations are: $^{232}$Th $<$40 $\mu$Bq/kg, $^{238}$U $<$30 $\mu$Bq/kg, $^{226}$Ra 1.3 mBq/kg and $^{210}$Pb 22.5 mBq/kg. We present also a background projection for the final experiment and possible mitigation strategies for further background suppression. The achieved results demonstrate the feasibility of realizing this new class of detectors.


(638)Snowmass 2021 White Paper Instrumentation Frontier 05 - White Paper 1: MPGDs: Recent advances and current R&D
  • K. Dehmelt,
  • M. Della Pietra,
  • H. Muller,
  • S.E. Tzamarias,
  • A. White
  • +65
  • S. White,
  • Z. Zhang,
  • M. Alviggi,
  • I. Angelis,
  • S. Aune,
  • J. Bortfeldt,
  • M. Bregant,
  • F. Brunbauer,
  • M.T. Camerlingo,
  • V. Canale,
  • V. D'Amico,
  • D. Desforge,
  • C. Di Donato,
  • R. Di Nardo,
  • G. Fanourakis,
  • K.J. Floethner,
  • M. Gallinaro,
  • F. Garcia,
  • I. Giomataris,
  • K. Gnanvo,
  • T. Gustavsson,
  • R. Hall-Wilton,
  • P. Iengo,
  • F.J. Iguaz,
  • M. Iodice,
  • D. Janssens,
  • A. Kallitsopoulou,
  • M. Kebbiri,
  • K. Kordas,
  • C. Lampoudis,
  • P. Legou,
  • M. Lisowska,
  • J. Liu,
  • M. Lupberger,
  • S. Malace,
  • I. Maniatis,
  • I. Manthos,
  • Y. Meng,
  • H. Natal da Luz,
  • E. Oliveri,
  • G. Orlandini,
  • T. Papaevangelou,
  • K. Paraschou,
  • F. Petrucci,
  • D. Pfeiffer,
  • M. Pomorski,
  • S. Popescu,
  • F. Resnati,
  • L. Ropelewski,
  • A. Rusu,
  • D. Sampsonidis,
  • L. Scharenberg,
  • T. Schneider,
  • G. Sekhniaidze,
  • M. Sessa,
  • M. Shao,
  • L. Sohl,
  • J. Toledo-Alarcon,
  • A. Tsiamis,
  • Y. Tsipolitis,
  • A. Utrobicic,
  • M. van Stenis,
  • R. Veenhof,
  • X. Wang,
  • Y. Zhou
  • (less)
(03/2022) e-Print:2203.06562
abstract + abstract -

This paper will review the origins, development, and examples of new versions of Micro-Pattern Gas Detectors. The goal for MPGD development was the creation of detectors that could cost-effectively cover large areas while offering excellent position and timing resolution, and the ability to operate at high incident particle rates. The early MPGD developments culminated in the formation of the RD51 collaboration which has become the critical organization for the promotion of MPGDs and all aspects of their production, characterization, simulation, and uses in an expanding array of experimental configurations. For the Snowmass 2021 study, a number of Letters of Interest were received that illustrate ongoing developments and expansion of the use of MPGDs. In this paper, we highlight high precision timing, high rate application, trigger capability expansion of the SRS readout system, and a structure designed for low ion backflow.


(637)Studying $\Delta L=2$ Lepton Flavor Violation with Muons
  • Alexey A. Petrov,
  • Renae Conlin,
  • Cody Grant
Universe, 8, p169 (03/2022) e-Print:2203.04161 doi:10.3390/universe8030169
abstract + abstract -

Flavor violating processes in the lepton sector have highly suppressed branching ratios in the standard model. Thus, observation of lepton flavor violation (LFV) constitutes a clear indication of physics beyond the standard model (BSM). We review new physics searches in the processes that violate the conservation of lepton (muon) flavor by two units with muonia and muonium–antimuonium oscillations.


(636)Dark Energy and the Spinning Superparticle
  • Daniel Bockisch,
  • Ivo Sachs
arXiv e-prints (03/2022) e-Print:2203.06014
abstract + abstract -

We revisit the theory of background fields constructed on the BRST-algebra of a spinning particle with $\mathcal{N}=4$ worldline supersymmetry, whose spectrum contains the graviton but no other fields. On a generic background, the closure of the BRST algebra implies the vacuum Einstein equations with a cosmological constant that is undetermined. On the other hand, in the "vacuum" background with no metric, the cohomology is given by a collection of free scalar- and vector fields. Only certain combinations of linear excitations, necessarily involving a vector field, can be extended beyond the linear level with the vector field inducing an Einstein metric.


(635)RG of GR from on-shell amplitudes
  • Pietro Baratella,
  • Dominik Haslehner,
  • Maximilian Ruhdorfer,
  • Javi Serra,
  • Andreas Weiler
Journal of High Energy Physics, 2022 (03/2022) doi:10.1007/JHEP03(2022)156
abstract + abstract -

We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity h ∼ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in MPl, as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles.


(634)Unequal-mass mergers of dark matter haloes with rare and frequent self-interactions
  • Moritz S. Fischer,
  • Marcus Brüggen,
  • Kai Schmidt-Hoberg,
  • Klaus Dolag,
  • Antonio Ragagnin
  • +1
Monthly Notices of the Royal Astronomical Society, 510, p20 (03/2022) doi:10.1093/mnras/stab3544
abstract + abstract -

Dark matter (DM) self-interactions have been proposed to solve problems on small length scales within the standard cold DM cosmology. Here, we investigate the effects of DM self-interactions in merging systems of galaxies and galaxy clusters with equal and unequal mass ratios. We perform N-body DM-only simulations of idealized setups to study the effects of DM self-interactions that are elastic and velocity-independent. We go beyond the commonly adopted assumption of large-angle (rare) DM scatterings, paying attention to the impact of small-angle (frequent) scatterings on astrophysical observables and related quantities. Specifically, we focus on DM-galaxy offsets, galaxy-galaxy distances, halo shapes, morphology, and the phase-space distribution. Moreover, we compare two methods to identify peaks: one based on the gravitational potential and one based on isodensity contours. We find that the results are sensitive to the peak finding method, which poses a challenge for the analysis of merging systems in simulations and observations, especially for minor mergers. Large DM-galaxy offsets can occur in minor mergers, especially with frequent self-interactions. The subhalo tends to dissolve quickly for these cases. While clusters in late merger phases lead to potentially large differences between rare and frequent scatterings, we believe that these differences are non-trivial to extract from observations. We therefore study the galaxy/star populations which remain distinct even after the DM haloes have coalesced. We find that these collisionless tracers behave differently for rare and frequent scatterings, potentially giving a handle to learn about the micro-physics of DM.


(633)Gravitational soft theorem from emergent soft gauge symmetries
  • Martin Beneke,
  • Patrick Hager,
  • Robert Szafron
Journal of High Energy Physics, 2022 (03/2022) doi:10.1007/JHEP03(2022)199
abstract + abstract -

We consider and derive the gravitational soft theorem up to the sub-subleading power from the perspective of effective Lagrangians. The emergent soft gauge symmetries of the effective Lagrangian provide a transparent explanation of why soft graviton emission is universal to sub-subleading power, but gauge boson emission is not. They also suggest a physical interpretation of the form of the soft factors in terms of the charges related to the soft transformations and the kinematics of the multipole expansion. The derivation is done directly at Lagrangian level, resulting in an operatorial form of the soft theorems. In order to highlight the differences and similarities of the gauge-theory and gravitational soft theorems, we include an extensive discussion of soft gauge-boson emission from scalar, fermionic and vector matter at subleading power.


(632)zELDA: fitting Lyman alpha line profiles using deep learning
  • Siddhartha Gurung-López,
  • Max Gronke,
  • Shun Saito,
  • Silvia Bonoli,
  • Álvaro A. Orsi
Monthly Notices of the Royal Astronomical Society, 510, p31 (03/2022) doi:10.1093/mnras/stab3554
abstract + abstract -

We present zELDA (redshift Estimator for Line profiles of Distant Lyman Alpha emitters), an open source code to fit Lyman α (Ly α) line profiles. The main motivation is to provide the community with an easy to use and fast tool to analyse Ly α line profiles uniformly to improve the understating of Ly α emitting galaxies. zELDA is based on line profiles of the commonly used 'shell-model' pre-computed with the full Monte Carlo radiative transfer code LyaRT. Via interpolation between these spectra and the addition of noise, we assemble a suite of realistic Ly α spectra which we use to train a deep neural network.We show that the neural network can predict the model parameters to high accuracy (e.g. ≲ 0.34 dex H I column density for R ~ 12 000) and thus allows for a significant speedup over existing fitting methods. As a proof of concept, we demonstrate the potential of zELDA by fitting 97 observed Ly α line profiles from the LASD data base. Comparing the fitted value with the measured systemic redshift of these sources, we find that Ly α determines their rest frame Ly α wavelength with a remarkable good accuracy of ~0.3 Å ($\sim 75\,\, {\rm km\, s}^{-1}$). Comparing the predicted outflow properties and the observed Ly α luminosity and equivalent width, we find several possible trends. For example, we find an anticorrelation between the Ly α luminosity and the outflow neutral hydrogen column density, which might be explained by the radiative transfer process within galaxies.


(631)Moderately misaligned orbit of the warm sub-Saturn HD 332231 b
  • E. Sedaghati,
  • A. Sánchez-López,
  • S. Czesla,
  • M. López-Puertas,
  • P. J. Amado
  • +7
  • E. Palle,
  • K. Molaverdikhani,
  • J. A. Caballero,
  • L. Nortmann,
  • A. Quirrenbach,
  • A. Reiners,
  • I. Ribas
  • (less)
Astronomy and Astrophysics, 659, p14 (03/2022) doi:10.1051/0004-6361/202142471
abstract + abstract -

Measurements of exoplanetary orbital obliquity angles for different classes of planets are an essential tool in testing various planet formation theories. Measurements for those transiting planets on relatively large orbital periods (P > 10 d) present a rather difficult observational challenge. Here we present the obliquity measurement for the warm sub-Saturn planet HD 332231 b, which was discovered through Transiting Exoplanet Survey Satellite photometry of sectors 14 and 15, on a relatively large orbital period (18.7 d). Through a joint analysis of previously obtained spectroscopic data and our newly obtained CARMENES transit observations, we estimated the spin-orbit misalignment angle, λ, to be −42.0−10.6+11.3 deg, which challenges Laplacian ideals of planet formation. Through the addition of these new radial velocity data points obtained with CARMENES, we also derived marginal improvements on other orbital and bulk parameters for the planet, as compared to previously published values. We showed the robustness of the obliquity measurement through model comparison with an aligned orbit. Finally, we demonstrated the inability of the obtained data to probe any possible extended atmosphere of the planet, due to a lack of precision, and place the atmosphere in the context of a parameter detection space.


(630)Low-luminosity supernovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions
  • Alexandra Kozyreva,
  • Hans-Thomas Janka,
  • Daniel Kresse,
  • Stefan Taubenberger
arXiv e-prints (03/2022) e-Print:2203.00473
abstract + abstract -

SN 2020cxd is a representative of the family of low-energy, underluminous Type IIP supernovae (SNe), whose observations and analysis were recently reported by Yang et al. (2021). Here we re-evaluate the observational data for the diagnostic SN properties by employing the hydrodynamic explosion model of a 9 MSun red supergiant progenitor with an iron core and a pre-collapse mass of 8.75 Msun. The explosion of the star was obtained by the neutrino-driven mechanism in a fully self-consistent simulation in three dimensions (3D). Multi-band light curves and photospheric velocities for the plateau phase are computed with the one-dimensional radiation-hydrodynamics code STELLA, applied to the spherically averaged 3D explosion model as well as spherisized radial profiles in different directions of the 3D model. We find that the overall evolution of the bolometric light curve, duration of the plateau phase, and basic properties of the multi-band emission can be well reproduced by our SN model with its explosion energy of only 0.7x10^50 erg and an ejecta mass of 7.4 Msun. These values are considerably lower than the previously reported numbers, but they are compatible with those needed to explain the fundamental observational properties of the prototype low-luminosity SN 2005cs. Because of the good compatibility of our photospheric velocities with line velocities determined for SN 2005cs, we conclude that the line velocities of SN 2020cxd are probably overestimated by up to a factor of about 3. The evolution of the line velocities of SN 2005cs compared to photospheric velocities in different explosion directions might point to intrinsic asymmetries in the SN ejecta.


(629)Functions Beyond Multiple Polylogarithms for Precision Collider Physics
  • Jacob L. Bourjaily,
  • Johannes Broedel,
  • Ekta Chaubey,
  • Claude Duhr,
  • Hjalte Frellesvig
  • +12
  • Martijn Hidding,
  • Robin Marzucca,
  • Andrew J. McLeod,
  • Marcus Spradlin,
  • Lorenzo Tancredi,
  • Cristian Vergu,
  • Matthias Volk,
  • Anastasia Volovich,
  • Matt von Hippel,
  • Stefan Weinzierl,
  • Matthias Wilhelm,
  • Chi Zhang
  • (less)
arXiv e-prints (03/2022) e-Print:2203.07088
abstract + abstract -

Feynman diagrams constitute one of the essential ingredients for making precision predictions for collider experiments. Yet, while the simplest Feynman diagrams can be evaluated in terms of multiple polylogarithms -- whose properties as special functions are well understood -- more complex diagrams often involve integrals over complicated algebraic manifolds. Such diagrams already contribute at NNLO to the self-energy of the electron, $t \bar{t}$ production, $\gamma \gamma$ production, and Higgs decay, and appear at two loops in the planar limit of maximally supersymmetric Yang-Mills theory. This makes the study of these more complicated types of integrals of phenomenological as well as conceptual importance. In this white paper contribution to the Snowmass community planning exercise, we provide an overview of the state of research on Feynman diagrams that involve special functions beyond multiple polylogarithms, and highlight a number of research directions that constitute essential avenues for future investigation.


(628)Hadronic vacuum polarization contribution to the muon $g-2$ in holographic QCD
  • Josef Leutgeb,
  • Anton Rebhan,
  • Michael Stadlbauer
arXiv e-prints (03/2022) e-Print:2203.16508
abstract + abstract -

We evaluate the leading-order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon with two light flavors in minimal hard-wall and soft-wall holographic QCD models, as well as in simple generalizations thereof, and compare with the rather precise results available from dispersive and lattice approaches. While holographic QCD cannot be expected to shed light on the existing small discrepancies between the latter, this comparison in turn provides useful information on the holographic models, which have been used to evaluate hadronic light-by-light contributions where errors in data-driven and lattice approaches are more sizable. In particular, in the hard-wall model that has recently been used to implement the Melnikov-Vainshtein short-distance constraint on hadronic light-by-light contributions, a matching of the hadronic vacuum polarization to the data-driven approach points to the same correction of parameters that has been proposed recently in order to account for next-to-leading order effects.


(627)NLO QCD Renormalization Group Evolution for Non-Leptonic $\Delta F=2$ Transitions in the SMEFT
  • Jason Aebischer,
  • Andrzej J. Buras,
  • Jacky Kumar
arXiv e-prints (03/2022) e-Print:2203.11224
abstract + abstract -

We present for the first time NLO QCD Renormalization Group (RG) evolution matrices for non-leptonic $\Delta F=2$ transitions in the Standard Model Effective Field Theory (SMEFT). To this end we transform first the known two-loop QCD anomalous dimension matrices (ADMs) of the BSM operators in the so-called BMU basis into the ones in the common Weak Effective Theory (WET) basis (the so-called JMS basis) for which tree-level and one-loop matching to the SMEFT are already known. This allows us subsequently to find the two-loop QCD ADMs for the SMEFT non-leptonic $\Delta F=2$ operators in the Warsaw basis. Having all these ingredients we investigate the impact of these NLO QCD effects on the QCD RG evolution of SMEFT Wilson coefficients for non-leptonic $\Delta F=2$ transitions from the new physics scale $\Lambda$ down to the electroweak scale $\mu_\text{ew}$. The main benefit of these new contributions is that they allow to remove renormalization scheme dependences present both in the one-loop matchings between the WET and SMEFT and also between SMEFT and a chosen UV completion. But the NLO QCD effects, calculated here in the NDR scheme, turn out to be small, in the ballpark of a few percent but larger than one-loop Yukawa top effects when only the $\Delta F=2$ operators are considered. The technology developed in our paper allows to obtain the ADMs in the SMEFT from the ones of the BMU basis also for non-leptonic $\Delta F=1$ decays and the results of this more involved analysis will be presented soon in another publication.


(626)α -event characterization and rejection in point-contact HPGe detectors
  • I. J. Arnquist,
  • F. T. Avignone,
  • A. S. Barabash,
  • C. J. Barton,
  • F. E. Bertrand
  • +60
  • E. Blalock,
  • B. Bos,
  • M. Busch,
  • M. Buuck,
  • T. S. Caldwell,
  • Y. -D. Chan,
  • C. D. Christofferson,
  • P. -H. Chu,
  • M. L. Clark,
  • C. Cuesta,
  • J. A. Detwiler,
  • A. Drobizhev,
  • T. R. Edwards,
  • D. W. Edwins,
  • F. Edzards,
  • Y. Efremenko,
  • S. R. Elliott,
  • T. Gilliss,
  • G. K. Giovanetti,
  • M. P. Green,
  • J. Gruszko,
  • I. S. Guinn,
  • V. E. Guiseppe,
  • C. R. Haufe,
  • R. J. Hegedus,
  • R. Henning,
  • D. Hervas Aguilar,
  • E. W. Hoppe,
  • A. Hostiuc,
  • I. Kim,
  • R. T. Kouzes,
  • A. M. Lopez,
  • J. M. López-Castaño,
  • E. L. Martin,
  • R. D. Martin,
  • R. Massarczyk,
  • S. J. Meijer,
  • S. Mertens,
  • J. Myslik,
  • T. K. Oli,
  • G. Othman,
  • W. Pettus,
  • A. W. P. Poon,
  • D. C. Radford,
  • J. Rager,
  • A. L. Reine,
  • K. Rielage,
  • N. W. Ruof,
  • B. Saykı,
  • S. Schönert,
  • M. J. Stortini,
  • D. Tedeschi,
  • R. L. Varner,
  • S. Vasilyev,
  • J. F. Wilkerson,
  • M. Willers,
  • C. Wiseman,
  • W. Xu,
  • C. -H. Yu,
  • B. X. Zhu
  • (less)
European Physical Journal C, 82 (03/2022) doi:10.1140/epjc/s10052-022-10161-y
abstract + abstract -

P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p+ surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the MAJORANADEMONSTRATOR experiment, a search for neutrinoless double-beta decay (0 ν β β ) in 76Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν β β region of interest window by an order of magnitude in the MAJORANADEMONSTRATOR and will be used in the upcoming LEGEND-200 experiment.


(625)Asymmetric Nuclear Matter and Neutron Star Properties in Relativistic ab initio Theory in the Full Dirac Space
  • Sibo Wang,
  • Hui Tong,
  • Qiang Zhao,
  • Chencan Wang,
  • Peter Ring
  • +1
arXiv e-prints (03/2022) e-Print:2203.05397
abstract + abstract -

The long-standing controversy about the isospin dependence of the effective Dirac mass in ab-initio calculations of asymmetric nuclear matter is clarified by solving the Relativistic Brueckner-Hartree-Fock equations in the full Dirac space. The symmetry energy and its slope parameter at the saturation density are $E_{\text{sym}}(\rho_0)=33.1$ MeV and $L=65.2$ MeV, in agreement with empirical and experimental values. Further applications predict the neutron star radius $R_{1.4M_\odot}\approx 12$ km and the maximum mass of a neutron star $M_{\text{max}}\leq 2.4M_\odot$.


(624)The relativistic Schrödinger equation through FFTW 3: An extension of quantumfdtd
  • Rafael L. Delgado,
  • Sebastian Steinbeißer,
  • Michael Strickland,
  • Johannes Heinrich Weber
Computer Physics Communications, 272 (03/2022) doi:10.1016/j.cpc.2021.108250
abstract + abstract -

In order to solve the time-independent three-dimensional Schrödinger equation, one can transform the time-dependent Schrödinger equation to imaginary time and use a parallelized iterative method to obtain the full three-dimensional eigen-states and eigen-values on very large lattices. In the case of the non-relativistic Schrödinger equation, there exists a publicly available code called quantumfdtd which implements this algorithm. In this paper, we (a) extend the quantumfdtd code to include the case of the relativistic Schrödinger equation and (b) add two optimized Fast Fourier Transform (FFT) based kinetic energy terms for non-relativistic cases. The new kinetic energy terms (two non-relativistic and one relativistic) are computed using the parallelized FFT-algorithm provided by the FFTW 3 library. The resulting quantumfdtd v3 code, which is publicly released with this paper, is backwards compatible with version 2, supporting explicit finite-differences schemes in addition to the new FFT-based schemes. Finally, we (c) extend the original code so that it supports arbitrary external file-based potentials and the option to project out distinct parity eigen-states from the solutions. Herein, we provide details of the quantumfdtd v3 implementation, comparisons and tests of the three new kinetic energy terms, and code documentation.


(623)Boundary Heisenberg algebras and their deformations
  • Martín Enríquez Rojo,
  • H. R. Safari
Journal of High Energy Physics, 2022 (03/2022) doi:10.1007/JHEP03(2022)089
abstract + abstract -

We investigate the deformations and rigidity of boundary Heisenberg-like algebras. In particular, we focus on the Heisenberg and Heisenberg ⊕ witt algebras which arise as symmetry algebras in three-dimensional gravity theories. As a result of the deformation procedure we find a large class of algebras. While some of these algebras are new, some of them have already been obtained as asymptotic and boundary symmetry algebras, supporting the idea that symmetry algebras associated to diverse boundary conditions and spacetime loci are algebraically interconnected through deformation of algebras. The deformation/contraction relationships between the new algebras are investigated. In addition, it is also shown that the deformation procedure reaches new algebras inaccessible to the Sugawara construction. As a byproduct of our analysis, we obtain that Heisenberg ⊕ witt and the asymptotic symmetry algebra Weyl-bms3 are not connected via single deformation but in a more subtle way.


(622)A low-threshold diamond cryogenic detector for sub-GeV Dark Matter searches
  • A. H. Abdelhameed,
  • G. Angloher,
  • A. Bento,
  • E. Bertoldo,
  • A. Bertolini
  • +11
  • L. Canonica,
  • N. Ferreiro Iachellini,
  • D. Fuchs,
  • A. Garai,
  • D. Hauff,
  • A. Nilima,
  • M. Mancuso,
  • F. Petricca,
  • F. Pröbst,
  • F. Pucci,
  • J. Rothe
  • (less)
arXiv e-prints (03/2022) e-Print:2203.11999
abstract + abstract -

In this work we report the realization of the first low-threshold cryogenic detector that uses diamond as absorber for astroparticle physics applications. We tested two 0.175$\,$g CVD diamond samples, each instrumented with a W-TES. The sensors showed transitions at about 25 mK. We present the performance of the diamond detectors and we highlight the best performing one, where we obtained an energy threshold as low as 16.8 eV. This promising result lays the foundation for the use of diamond for different fields of applications where low threshold and excellent energy resolution are required, as i.e. light dark matter searches and BSM physics with coherent elastic neutrino nucleus scattering.


(621)Production and Polarization of $S$-Wave Quarkonia in Potential Nonrelativistic QCD
  • Nora Brambilla,
  • Hee Sok Chung,
  • Antonio Vairo,
  • Xiang-Peng Wang
arXiv e-prints (03/2022) e-Print:2203.07778
abstract + abstract -

Based on the potential nonrelativistic QCD formalism, we compute the nonrelativistic QCD long-distance matrix elements (LDMEs) for inclusive production of $S$-wave heavy quarkonia. This greatly reduces the number of nonperturbative unknowns and brings in a substantial enhancement in the predictive power of the NRQCD factorization formalism. We obtain improved determinations of the LDMEs and find cross sections and polarizations of $J/\psi$, $\psi(2S)$, and excited $\Upsilon$ states that agree well with LHC data. Our results may have important implications in pinning down the heavy quarkonium production mechanism.


(620)The Diffuse Gamma-Ray Flux from Clusters of Galaxies
  • Saqib Hussain,
  • Rafael Alves Batista,
  • Elisabete M. de Gouveia Dal Pino,
  • Klaus Dolag
arXiv e-prints (03/2022) e-Print:2203.01260
abstract + abstract -

The origin of the diffuse gamma-ray background (DGRB) detected by EGRET and Fermi-LAT, the one that remains after subtracting all individual sources from the observed gamma-ray sky, is unknown. The DGRB possibly encompasses contributions from different source populations such as star-forming galaxies, starburst galaxies, active galactic nuclei, gamma-ray bursts, or galaxy clusters. Here, we combine cosmological magnetohydrodynamical simulations of clusters of galaxies with the propagation of CRs using Monte Carlo simulations, in the redshift range $z\leq 5.0$, and find that the integrated gamma-ray flux from clusters can contribute up to $100\%$ of the DGRB flux observed by Fermi-LAT above $100$~GeV, for CR spectral indices $\alpha = 1.5 - 2.5$ and energy cutoffs $E_{\text{max}} = 10^{16} - 10^{17}$~eV. The flux is dominated by clusters with masses $10^{13}< M/M_{\odot} < 10^{15}$ and redshift $ z \leq 0.3$. Our results also predict the potential observation of high-energy gamma rays from clusters by experiments like HAWC, LHAASO, and even the upcoming CTA.


(619)Coarsening and wavelength selection far from equilibrium: a unifying framework based on singular perturbation theory
  • Henrik Weyer,
  • Fridtjof Brauns,
  • Erwin Frey
arXiv e-prints (03/2022) e-Print:2203.03892
abstract + abstract -

Intracellular protein patterns are described by (nearly) mass-conserving reaction-diffusion systems. While these patterns initially form out of a homogeneous steady state due to the well-understood Turing instability, no general theory exists for the dynamics of fully nonlinear patterns. We develop a unifying theory for wavelength-selection dynamics in (nearly) mass-conserving two-component reaction-diffusion systems independent of the specific mathematical model chosen. This encompasses both the dynamics of the mesa- and peak-shaped patterns found in these systems. Our analysis uncovers a diffusion- and a reaction-limited regime of the dynamics, which provides a systematic link between the dynamics of mass-conserving reaction-diffusion systems and the Cahn-Hilliard as well as conserved Allen-Cahn equations, respectively. A stability threshold in the family of stationary patterns with different wavelengths predicts the wavelength selected for the final stationary pattern. At short wavelengths, self-amplifying mass transport between single pattern domains drives coarsening while at large wavelengths weak source terms that break strict mass conservation lead to an arrest of the coarsening process. The rate of mass competition between pattern domains is calculated analytically using singular perturbation theory, and rationalized in terms of the underlying physical processes. The resulting closed-form analytical expressions enable us to quantitatively predict the coarsening dynamics and the final pattern wavelength. We find excellent agreement of these expressions with numerical results. The systematic understanding of the length-scale dynamics of fully nonlinear patterns in two-component systems provided here builds the basis to reveal the mechanisms underlying wavelength selection in multi-component systems with potentially several conservation laws.


(618)NOEMA confirmation of an optically dark ALMA-AzTEC submillimetre galaxy at z = 5.24. A late-stage starburst prior to quenching
  • S. Ikarashi,
  • R. J. Ivison,
  • W. I. Cowley,
  • K. Kohno
Astronomy and Astrophysics, 659, p9 (03/2022) doi:10.1051/0004-6361/202141196
abstract + abstract -

We have obtained deep 1 and 3 mm spectral-line scans towards a candidate z ≳ 5 ALMA-identified AzTEC submillimetre galaxy (SMG) in the Subaru/XMM-Newton Deep Field (or UKIDSS UDS), ASXDF1100.053.1, using the NOrthern Extended Millimeter Array (NOEMA), aiming to obtain its spectroscopic redshift. ASXDF1100.053.1 is an unlensed optically dark millimetre-bright SMG with S1100 μm = 3.5 mJy and KAB > 25.7 (2σ), which was expected to lie at z = 5-7 based on its radio-submillimetre photometric redshift. Our NOEMA spectral scan detected line emission due to 12CO(J = 5-4) and (J = 6-5), providing a robust spectroscopic redshift, zCO = 5.2383 ± 0.0005. Energy-coupled spectral energy distribution modelling from optical to radio wavelengths indicates an infrared luminosity LIR = 8.3−1.4+1.5 × 1012 L, a star formation rate SFR = 630−380+260 M yr−1, a dust mass Md = 4.4−0.3+0.4 × 108 M, a stellar mass Mstellar = 3.5−1.4+3.6 × 1011 M, and a dust temperature Td = 37.4−1.8+2.3 K. The CO luminosity allows us to estimate a gas mass Mgas = 3.1 ± 0.3 × 1010 M, suggesting a gas-to-dust mass ratio of around 70, fairly typical for z ∼ 2 SMGs. ASXDF1100.053.1 has ALMA continuum size Re = 1.0−0.1+0.2 kpc, so its surface infrared luminosity density ΣIR is 1.2−0.2+0.1 × 1012 L kpc−2. These physical properties indicate that ASXDF1100.053.1 is a massive dusty star-forming galaxy with an unusually compact starburst. It lies close to the star-forming main sequence at z ∼ 5, with low Mgas/Mstellar = 0.09, SFR/SFRMS(RSB) = 0.6, and a gas-depletion time τdep of ≈50 Myr, modulo assumptions about the stellar initial mass function in such objects. ASXDF1100.053.1 has extreme values of Mgas/Mstellar, RSB, and τdep compared to SMGs at z ∼ 2-4, and those of ASXDF1100.053.1 are the smallest among SMGs at z > 5. ASXDF1100.053.1 is likely a late-stage dusty starburst prior to passivisation. The number of z = 5.1-5.3 unlensed SMGs now suggests a number density dN/dz = 30.4 ± 19.0 deg−2, barely consistent with the latest cosmological simulations.


(617)A tentative detection of He I in the atmosphere of GJ 1214 b
  • J. Orell-Miquel,
  • F. Murgas,
  • E. Pallé,
  • M. Lampón,
  • M. López-Puertas
  • +25
  • J. Sanz-Forcada,
  • E. Nagel,
  • A. Kaminski,
  • N. Casasayas-Barris,
  • L. Nortmann,
  • R. Luque,
  • K. Molaverdikhani,
  • E. Sedaghati,
  • J. A. Caballero,
  • P. J. Amado,
  • G. Bergond,
  • S. Czesla,
  • A. P. Hatzes,
  • Th. Henning,
  • S. Khalafinejad,
  • D. Montes,
  • G. Morello,
  • A. Quirrenbach,
  • A. Reiners,
  • I. Ribas,
  • A. Sánchez-López,
  • A. Schweitzer,
  • M. Stangret,
  • F. Yan,
  • M. R. Zapatero Osorio
  • (less)
Astronomy and Astrophysics, 659, p12 (03/2022) doi:10.1051/0004-6361/202142455
abstract + abstract -

The He I λ10833 Å triplet is a powerful tool for characterising the upper atmosphere of exoplanets and tracing possible mass loss. Here, we analysed one transit of GJ 1214 b observed with the CARMENES high-resolution spectrograph to study its atmosphere via transmission spectroscopy around the He I triplet. Although previous studies using lower resolution instruments have reported non-detections of He I in the atmosphere of GJ 1214 b, we report here the first potential detection. We reconcile the conflicting results arguing that previous transit observations did not present good opportunities for the detection of He I, due to telluric H2O absorption and OH emission contamination. We simulated those earlier observations, and show evidence that the planetary signal was contaminated. From our single non-telluric-contaminated transit, we determined an excess absorption of 2.10−0.50+0.45% (4.6 σ) with a full width at half maximum (FWHM) of 1.30−0.25+0.30 Å. The detection of He I is statistically significant at the 4.6 σ level, but repeatability of the detection could not be confirmed due to the availability of only one transit. By applying a hydrodynamical model and assuming an H/He composition of 98/2, we found that GJ 1214 b would undergo hydrodynamic escape in the photon-limited regime, losing its primary atmosphere with a mass-loss rate of (1.5-18) × 1010 g s−1 and an outflow temperature in the range of 2900-4400 K. Further high-resolution follow-up observations of GJ 1214 b are needed to confirm and fully characterise the detection of an extended atmosphere surrounding GJ 1214 b. If confirmed, this would be strong evidence that this planet has a primordial atmosphere accreted from the original planetary nebula. Despite previous intensive observations from space- and ground-based observatories, our He I excess absorption is the first tentative detection of a chemical species in the atmosphere of this benchmark sub-Neptune planet.


(616)Soft-collinear gravity beyond the leading power
  • Martin Beneke,
  • Patrick Hager,
  • Robert Szafron
Journal of High Energy Physics, 2022 (03/2022) doi:10.1007/JHEP03(2022)080
abstract + abstract -

We construct "soft-collinear gravity", the effective field theory which describes the interaction of collinear and soft gravitons with matter (and themselves), to all orders in the soft-collinear power expansion. Despite the absence of collinear divergences in gravity at leading power, the construction exhibits remarkable similarities with soft-collinear effective theory of QCD (gauge fields). It reveals an emergent soft background gauge symmetry, which allows for a manifestly gauge-invariant representation of the interactions in terms of a soft covariant derivative, the soft Riemann tensor, and a covariant generalisation of the collinear light-cone gauge metric field. The gauge symmetries control both the unsuppressed collinear field components and the inherent inhomogeneity in λ of the invariant objects to all orders, resulting in a consistent expansion.


(615)Effective-range expansion of the $T_{cc}^+$ state at the complex $D^{*+}D^0$ threshold
  • Mikhail Mikhasenko
arXiv e-prints (03/2022) e-Print:2203.04622
abstract + abstract -

Evaluation of the effective-range parameters for the $T_{cc}^+$ state in the LHCb model is examined. The finite width of $D^*$ leads to a shift of the expansion point into the complex plane to match analytical properties of the expanded amplitude. We perform an analytic continuation of the three-body scattering amplitude to the complex plane in a vicinity of the branch point and develop a robust procedure for computation of the expansion coefficients. The results yield a nearly-real scattering length, and two contributions to the the effective range which have not been accounted before.


(614)neos: End-to-End-Optimised Summary Statistics for High Energy Physics
  • Nathan Simpson,
  • Lukas Heinrich
arXiv e-prints (03/2022) e-Print:2203.05570
abstract + abstract -

The advent of deep learning has yielded powerful tools to automatically compute gradients of computations. This is because training a neural network equates to iteratively updating its parameters using gradient descent to find the minimum of a loss function. Deep learning is then a subset of a broader paradigm; a workflow with free parameters that is end-to-end optimisable, provided one can keep track of the gradients all the way through. This work introduces neos: an example implementation following this paradigm of a fully differentiable high-energy physics workflow, capable of optimising a learnable summary statistic with respect to the expected sensitivity of an analysis. Doing this results in an optimisation process that is aware of the modelling and treatment of systematic uncertainties.


(613)Two-loop mixed QCD-EW corrections to $q \overline{q} \to H g$, $qg \to Hq$, and $\overline{q}g \to H\overline{q}$
  • Marco Bonetti,
  • Erik Panzer,
  • Lorenzo Tancredi
arXiv e-prints (03/2022) e-Print:2203.17202
abstract + abstract -

We compute the two-loop mixed QCD-Electroweak corrections to $q \overline{q} \to H g$ and its crossed channels $q g \to H q$, $\overline{q} g \to H \overline{q}$, limiting ourselves to the contribution of light virtual quarks. We compute the independent helicity amplitudes as well as the form factors for this process, expressing them in terms of hyperlogarithms with algebraic arguments. The Feynman integrals are computed by direct integration over Feynman parameters and the results are expressed in terms of a basis of rational prefactors.


(612)Pseudo-Kähler-Einstein geometries
  • Carlos G. Boiza,
  • Jose A. R. Cembranos
Physical Review D, 105 (03/2022) doi:10.1103/PhysRevD.105.065006
abstract + abstract -

Solutions to vacuum Einstein field equations with cosmological constants, such as the de Sitter space and the anti-de Sitter space, are basic in different cosmological and theoretical developments. It is also well known that complex structures admit metrics of this type. The most famous example is the complex projective space endowed with the Fubini-Study metric. In this work, we perform a systematic study of Einstein complex geometries derived from a logarithmic Kähler potential. Depending on the different contribution to the argument of such logarithmic term, we shall distinguish among direct, inverted and hybrid coordinates. They are directly related to the signature of the metric and determine the maximum domain of the complex space where the geometry can be defined.


(611)Mineral Snowflakes on Exoplanets and Brown Dwarfs: Coagulation and Fragmentation of Cloud Particles with {\sc HyLandS}
  • Dominic Samra,
  • Christiane Helling,
  • Tilman Birnstiel
arXiv e-prints (03/2022) e-Print:2203.07461
abstract + abstract -

Brown dwarfs and exoplanets provide unique atmospheric regimes that hold information about their formation routes and evolutionary states. Modelling mineral cloud particle formation is key to prepare for missions and instruments like CRIRES+, JWST and ARIEL as well as possible polarimetry missions like {\sc PolStar}. The aim is to support more detailed observations that demand greater understanding of microphysical cloud processes. We extend our kinetic cloud formation model that treats nucleation, condensation, evaporation and settling of mixed material cloud particles to consistently model cloud particle-particle collisions. The new hybrid code, {\sc HyLandS}, is applied to a grid of {\sc Drift-Phoenix} (T, p)-profiles. Effective medium theory and Mie theory are used to investigate the optical properties. Turbulence is the main driving process of collisions, with collisions becoming the dominant process at the cloud base ($p>10^{-4}\,{\rm bar}$). Collisions produce one of three outcomes: fragmenting atmospheres ($\log_{10}(g)=3$), coagulating atmospheres ($\log_{10}(g)=5$, $T_{\rm eff} \leq 1800\, {\rm K}$) and condensational growth dominated atmospheres ($\log_{10}(g\,)=5$, $T_{\rm eff} > 1800\, {\rm K}$). Cloud particle opacity slope at optical wavelengths (HST) is increased with fragmentation, as are the silicate features at mid-infrared wavelengths. The hybrid moment-bin method {\sc HyLandS} demonstrates the feasibility of combining a moment and a bin method whilst assuring element conservation. It provides a powerful and fast tool for capturing general trends of particle collisions, consistently with other microphysical processes. Collisions are important in exoplanet and brown dwarf atmospheres but cannot be assumed to be hit-and-stick only. The spectral effects of collisions complicates inferences of cloud particle size and material composition from observational data.


(610)Rare radiative decays of charm baryons
  • Nico Adolph,
  • Gudrun Hiller
arXiv e-prints (03/2022) e-Print:2203.14982
abstract + abstract -

We study weak radiative $|\Delta c|=|\Delta u|=1$ decays of the charmed anti-triplett ($\Lambda_c$, $\Xi_c^{+}$, $\Xi_c^{0}$) and sextet ($\Sigma_c^{++}$, $\Sigma_c^+$, $\Sigma_c^0$, $\Xi_c^{\prime +}$, $\Xi_c^{\prime 0}$, $\Omega_c$) baryons in the standard model (SM) and beyond. We work out $SU(2)$ and $SU(3)_F$-symmetry relations. We propose to study self-analyzing decay chains such as $\Xi_c^+ \to \Sigma^+ (\to p \pi^0) \gamma$ and $\Xi_c^0 \to \Lambda (\to p \pi^-) \gamma$, which enable new physics sensitive polarization studies. SM contributions can be controlled by corresponding analysis of the Cabibbo-favored decays $\Lambda_c^+ \to \Sigma^+ (\to p \pi^0) \gamma$ and $\Xi_c^0 \to \Xi^0 (\to \Lambda \pi^0) \gamma$. Further tests of the SM are available with initially polarized baryons including $\Lambda_c \to p \gamma$ together with $\Lambda_c \to \Sigma^+ \gamma$ decays, or $\Omega_c \to \Xi^0 \gamma$ together with $\Omega_c \to (\Lambda,\Sigma^0) \gamma$. In addition, CP-violating new physics contributions to dipole operators can enhance CP-asymmetries up to few percent.


(609)Data and Analysis Preservation, Recasting, and Reinterpretation
  • Stephen Bailey,
  • Christian Bierlich,
  • Andy Buckley,
  • Jon Butterworth,
  • Kyle Cranmer
  • +13
  • Matthew Feickert,
  • Lukas Heinrich,
  • Axel Huebl,
  • Sabine Kraml,
  • Anders Kvellestad,
  • Clemens Lange,
  • Andre Lessa,
  • Kati Lassila-Perini,
  • Christine Nattrass,
  • Mark S. Neubauer,
  • Sezen Sekmen,
  • Giordon Stark,
  • Graeme Watt
  • (less)
arXiv e-prints (03/2022) e-Print:2203.10057
abstract + abstract -

We make the case for the systematic, reliable preservation of event-wise data, derived data products, and executable analysis code. This preservation enables the analyses' long-term future reuse, in order to maximise the scientific impact of publicly funded particle-physics experiments. We cover the needs of both the experimental and theoretical particle physics communities, and outline the goals and benefits that are uniquely enabled by analysis recasting and reinterpretation. We also discuss technical challenges and infrastructure needs, as well as sociological challenges and changes, and give summary recommendations to the particle-physics community.


(608)Systematic Parametrization of the Leading $B$-meson Light-Cone Distribution Amplitude
  • Thorsten Feldmann,
  • Philip Lüghausen,
  • Danny van Dyk
arXiv e-prints (03/2022) e-Print:2203.15679
abstract + abstract -

We propose a parametrization of the leading $B$-meson light-cone distribution amplitude (LCDA) in heavy-quark effective theory (HQET). In position space, it uses a conformal transformation that yields a systematic Taylor expansion and an integral bound, which enables control of the truncation error. Our parametrization further produces compact analytical expressions for a variety of derived quantities. At a given reference scale, our momentum-space parametrization corresponds to an expansion in associated Laguerre polynomials, which turn into confluent hypergeometric functions ${}_1F_1$ under renormalization-group evolution at one-loop accuracy. Our approach thus allows a straightforward and transparent implementation of a variety of phenomenological constraints, regardless of their origin. Moreover, we can include theoretical information on the Taylor coefficients by using the local operator production expansion. We showcase the versatility of the parametrization in a series of phenomenological pseudo-fits.


(607)Complementarity of experiments in probing the non-relativistic effective theory of dark matter-nucleon interactions
  • Anja Brenner,
  • Gonzalo Herrera,
  • Alejandro Ibarra,
  • Sunghyun Kang,
  • Stefano Scopel
  • +1
arXiv e-prints (03/2022) e-Print:2203.04210
abstract + abstract -

The non-relativistic effective theory of dark matter-nucleon interactions depends on 28 coupling strengths for dark matter spin up to 1/2. Due to the vast parameter space of the effective theory, most experiments searching for dark matter interpret the results assuming that only one of the coupling strengths is non-zero. On the other hand, dark matter models generically lead in the non-relativistic limit to several interactions which interfere with one another, therefore the published limits cannot be straightforwardly applied to model predictions. We present a method to determine a rigorous upper limit on the dark matter-nucleon interaction strength including all possible interferences among operators. We illustrate the method to derive model independent upper limits on the interaction strengths from the null search results from XENON1T, PICO-60 and IceCube. For some interactions, the limits on the coupling strengths are relaxed by more than one order of magnitude. We also present a method that allows to combine the results from different experiments, thus exploiting the synergy between different targets in exploring the parameter space of dark matter-nucleon interactions.


(606)A new tool to search for physics beyond the Standard Model in ${\bar B}\to D^{*+}\ell^- {\bar\nu}$
  • Bhubanjyoti Bhattacharya,
  • Thomas Browder,
  • Quinn Campagna,
  • Alakabha Datta,
  • Shawn Dubey
  • +2
  • Lopamudra Mukherjee,
  • Alexei Sibidanov
  • (less)
arXiv e-prints (03/2022) e-Print:2203.07189
abstract + abstract -

Recent experimental results in $B$ physics from Belle, BaBar and LHCb suggest new physics (NP) in the weak $b\to c$ charged-current and the $b\to s$ neutral-current processes. Here we focus on the charged-current case and specifically on the decay modes $B\to D^{*+}\ell^- \bar{\nu}$ with $\ell = e, \mu,$ and $\tau$. The world averages of the ratios $R_D$ and $R_D^{*}$ currently differ from the Standard Model (SM) by $3.4\sigma$ while $\Delta A_{FB} = A_{FB}(B\to D^{*} \mu\nu) - A_{FB} (B\to D^{*} e \nu)$ is found to be $4.1\sigma$ away from the SM prediction in an analysis of 2019 Belle data. These intriguing results suggest an urgent need for improved simulation and analysis techniques in $B\to D^{*+}\ell^- \bar{\nu}$ decays. Here we describe a Monte Carlo Event-generator tool based on EVTGEN developed to allow simulation of the NP signatures in $B\to D^*\ell^- \nu$, which arise due to the interference between the SM and NP amplitudes. As a demonstration of the proposed approach, we exhibit some examples of NP couplings that are consistent with current data and could explain the $\Delta A_{FB}$ anomaly in $B\to D^*\ell^- \nu$ while remaining consistent with other constraints. We show that the $\Delta$-type observables such as $\Delta A_{FB}$ and $\Delta S_5$ eliminate most QCD uncertainties from form factors and allow for clean measurements of NP. We introduce correlated observables that improve the sensitivity to NP. We discuss prospects for improved observables sensitive to NP couplings with the expected 50 ab$^{-1}$ of Belle II data, which seems to be ideally suited for this class of measurements.


(605)On the Importance of Rare Kaon Decays: A Snowmass 2021 White Paper
  • Jason Aebischer,
  • Andrzej J. Buras,
  • Jacky Kumar
arXiv e-prints (03/2022) e-Print:2203.09524
abstract + abstract -

We stress the importance of precise measurements of rare decays $K^+\rightarrow\pi^+\nu\bar\nu$, $K_L\rightarrow\pi^0\nu\bar\nu$, $K_{L,S}\to\mu^+\mu^-$ and $K_{L,S}\to\pi^0\ell^+\ell^-$ for the search of new physics (NP). This includes both branching ratios and the distributions in $q^2$, the invariant mass-squared of the neutrino system in the case of $K^+\rightarrow\pi^+\nu\bar\nu$ and $K_L\rightarrow\pi^0\nu\bar\nu$ and of the $\ell^+\ell^-$ system in the case of the remaining decays. In particular the correlations between these observables and their correlations with the ratio $\varepsilon'/\varepsilon$ in $K_L\to\pi\pi$ decays, the CP-violating parameter $\varepsilon_K$ and the $K^0-\bar K^0$ mass difference $\Delta M_K$, should help to disentangle the nature of possible NP. We stress the strong sensitivity of all observables with the exception of $\Delta M_K$ to the CKM parameter $|V_{cb}|$ and list a number of $|V_{cb}|$-independent ratios within the SM which exhibit rather different dependences on the angles $\beta$ and $\gamma$ of the unitarity triangle. The particular role of these decays in probing very short distance scales far beyond the ones explored at the LHC is emphasized. In this context the role of the Standard Model Effective Field Theory (SMEFT) is very important. We also address briefly the issue of the footprints of Majorana neutrinos in $K^+\rightarrow\pi^+\nu\bar\nu$ and $K_L\rightarrow\pi^0\nu\bar\nu$.


(604)Cosmic Birefringence from the Planck Data Release 4
  • P. Diego-Palazuelos,
  • J. R. Eskilt,
  • Y. Minami,
  • M. Tristram,
  • R. M. Sullivan
  • +10
  • A. J. Banday,
  • R. B. Barreiro,
  • H. K. Eriksen,
  • K. M. Górski,
  • R. Keskitalo,
  • E. Komatsu,
  • E. Martínez-González,
  • D. Scott,
  • P. Vielva,
  • I. K. Wehus
  • (less)
Physical Review Letters, 128 (03/2022) doi:10.1103/PhysRevLett.128.091302
abstract + abstract -

We search for the signature of parity-violating physics in the cosmic microwave background, called cosmic birefringence, using the Planck data release 4. We initially find a birefringence angle of β =0.30 °±0.11 ° (68% C.L.) for nearly full-sky data. The values of β decrease as we enlarge the Galactic mask, which can be interpreted as the effect of polarized foreground emission. Two independent ways to model this effect are used to mitigate the systematic impact on β for different sky fractions. We choose not to assign cosmological significance to the measured value of β until we improve our knowledge of the foreground polarization.


(603)Filament collapse: A two phase process
  • Elena Hoemann,
  • Stefan Heigl,
  • Andreas Burkert
arXiv e-prints (03/2022) e-Print:2203.07002
abstract + abstract -

Using numerical simulations, we investigate the gravitational evolution of filamentary molecular cloud structures and their condensation into dense protostellar cores. One possible process is the so called 'edge effect', the pile-up of matter at the end of the filament due to self-gravity. This effect is predicted by theory but only rarely observed. To get a better understanding of the underlying processes we used a simple analytic approach to describe the collapse and the corresponding collapse time. We identify a model of two distinct phases: The first phase is free fall dominated, due to the self-gravity of the filament. In the second phase, after the turning point, the collapse is balanced by the ram pressure, produced by the inside material of the filament, which leads to a constant collapse velocity. This approach reproduces the established collapse time of uniform density filaments and agrees well with our hydrodynamic simulations. In addition, we investigate the influence of different radial density profiles on the collapse. We find that the deviations compared to the uniform filament are less than 10%. Therefore, the analytic collapse model of the uniform density filament is an excellent general approach.


(602)Radiopurity of a kg-scale PbWO$_4$ cryogenic detector produced from archaeological Pb for the RES-NOVA experiment
  • J. W. Beeman,
  • G. Benato,
  • C. Bucci,
  • L. Canonica,
  • P. Carniti
  • +39
  • E. Celi,
  • M. Clemenza,
  • A. D'Addabbo,
  • F. A. Danevich,
  • S. Di Domizio,
  • S. Di Lorenzo,
  • O. M. Dubovik,
  • N. Ferreiro Iachellini,
  • F. Ferroni,
  • E. Fiorini,
  • S. Fu,
  • A. Garai,
  • S. Ghislandi,
  • L. Gironi,
  • P. Gorla,
  • C. Gotti,
  • P. V. Guillaumon,
  • D. L. Helis,
  • G. P. Kovtun,
  • M. Mancuso,
  • L. Marini,
  • M. Olmi,
  • L. Pagnanini,
  • L. Pattavina,
  • G. Pessina,
  • F. Petricca,
  • S. Pirro,
  • S. Pozzi,
  • A. Puiu,
  • S. Quitadamo,
  • J. Rothe,
  • A. P. Scherban,
  • S. Schoenert,
  • D. A. Solopikhin,
  • R. Strauss,
  • E. Tarabini,
  • V. I. Tretyak,
  • I. A. Tupitsyna,
  • V. Wagner
  • (less)
arXiv e-prints (03/2022) e-Print:2203.07441
abstract + abstract -

RES-NOVA is a newly proposed experiment for the detection of neutrinos from astrophysical sources, mainly Supernovae, using an array of cryogenic detectors made of PbWO$_4$ crystals produced from archaeological Pb. This unconventional material, characterized by intrinsic high radiopurity, enables to achieve low-background levels in the region of interest for the neutrino detection via Coherent Elastic neutrino-Nucleus Scattering (CE$\nu$NS). This signal lies at the detector energy threshold, O(1 keV), and it is expected to be hidden by naturally occurring radioactive contaminants of the crystal absorber. Here, we present the results of a radiopurity assay on a 0.84 kg PbWO$_4$ crystal produced from archaeological Pb operated as a cryogenic detector. The crystal internal radioactive contaminations are: $^{232}$Th $<$40 $\mu$Bq/kg, $^{238}$U $<$30 $\mu$Bq/kg, $^{226}$Ra 1.3 mBq/kg and $^{210}$Pb 22.5 mBq/kg. We present also a background projection for the final experiment and possible mitigation strategies for further background suppression. The achieved results demonstrate the feasibility of realizing this new class of detectors.


(601)Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck II: Cross-correlation measurements and cosmological constraints
  • C. Chang,
  • Y. Omori,
  • E. J. Baxter,
  • C. Doux,
  • A. Choi
  • +161
  • S. Pandey,
  • A. Alarcon,
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • K. Bechtol,
  • M. R. Becker,
  • G. M. Bernstein,
  • F. Bianchini,
  • J. Blazek,
  • L. E. Bleem,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • R. Chen,
  • J. Cordero,
  • T. M. Crawford,
  • M. Crocce,
  • C. Davis,
  • J. DeRose,
  • S. Dodelson,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • O. Friedrich,
  • M. Gatti,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • I. Harrison,
  • K. Herner,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • M. Jarvis,
  • A. Kovacs,
  • E. Krause,
  • N. Kuropatkin,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • N. MacCrann,
  • J. McCullough,
  • J. Muir,
  • J. Myles,
  • A. Navarro-Alsina,
  • Y. Park,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • R. P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • E. S. Rykoff,
  • C. Sánchez,
  • J. Sanchez,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • T. M. C. Abbott,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • B. A. Benson,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D. L. Burke,
  • J. E. Carlstrom,
  • J. Carretero,
  • C. L. Chang,
  • R. Chown,
  • M. Costanzi,
  • L. N. da Costa,
  • A. T. Crites,
  • M. E. S. Pereira,
  • T. de Haan,
  • J. De Vicente,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • P. Doel,
  • W. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztanaga,
  • E. M. George,
  • T. Giannantonio,
  • N. W. Halverson,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • D. J. James,
  • L. Knox,
  • K. Kuehn,
  • O. Lahav,
  • A. T. Lee,
  • M. Lima,
  • D. Luong-Van,
  • M. March,
  • J. J. McMahon,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • T. Natoli,
  • S. Padin,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • C. Pryke,
  • C. L. Reichardt,
  • M. Rodríguez-Monroy,
  • A. K. Romer,
  • J. E. Ruhl,
  • E. Sanchez,
  • K. K. Schaffer,
  • M. Schubnell,
  • S. Serrano,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • J. D. Vieira,
  • J. Weller,
  • R. Williamson
  • (less)
arXiv e-prints (03/2022) e-Print:2203.12440
abstract + abstract -

Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg$^2$ SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of $\Omega_{m} = 0.272^{+0.032}_{-0.052}$ and $S_{8} \equiv \sigma_8 \sqrt{\Omega_{m}/0.3}= 0.736^{+0.032}_{-0.028}$ ($\Omega_{m} = 0.245^{+0.026}_{-0.044}$ and $S_{8} = 0.734^{+0.035}_{-0.028}$) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find $\Omega_{m} = 0.270^{+0.043}_{-0.061}$ and $S_{8} = 0.740^{+0.034}_{-0.029}$. Our constraints on $S_8$ are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck.


(600)Hydro-, Magnetohydro-, and Dust-Gas Dynamics of Protoplanetary Disks
  • G. Lesur,
  • B. Ercolano,
  • M. Flock,
  • M. -K. Lin,
  • C. -C. Yang
  • +14
  • J. A. Barranco,
  • P. Benitez-Llambay,
  • J. Goodman,
  • A. Johansen,
  • H. Klahr,
  • G. Laibe,
  • W. Lyra,
  • P. Marcus,
  • R. P. Nelson,
  • J. Squire,
  • J. B. Simon,
  • N. Turner,
  • O. M. Umurhan,
  • A. N. Youdin
  • (less)
arXiv e-prints (03/2022) e-Print:2203.09821
abstract + abstract -

The building of planetary systems is controlled by the gas and dust dynamics of protoplanetary disks. While the gas is simultaneously accreted onto the central star and dissipated away by winds, dust grains aggregate and collapse to form planetesimals and eventually planets. This dust and gas dynamics involves instabilities, turbulence and complex non-linear interactions which ultimately control the observational appearance and the secular evolution of these disks. This chapter is dedicated to the most recent developments in our understanding of the dynamics of gaseous and dusty disks, covering hydrodynamic and magnetohydrodynamic turbulence, gas-dust instabilities, dust clumping and disk winds. We show how these physical processes have been tested from observations and highlight standing questions that should be addressed in the future.


(599)Learning Optimal Test Statistics in the Presence of Nuisance Parameters
  • Lukas Heinrich
arXiv e-prints (03/2022) e-Print:2203.13079
abstract + abstract -

The design of optimal test statistics is a key task in frequentist statistics and for a number of scenarios optimal test statistics such as the profile-likelihood ratio are known. By turning this argument around we can find the profile likelihood ratio even in likelihood-free cases, where only samples from a simulator are available, by optimizing a test statistic within those scenarios. We propose a likelihood-free training algorithm that produces test statistics that are equivalent to the profile likelihood ratios in cases where the latter is known to be optimal.


(598)The Exclusive Vision of Rare $K$ and $B$ Decays and of the Quark Mixing in the Standard Model
  • Andrzej J. Buras,
  • Elena Venturini
arXiv e-prints (03/2022) e-Print:2203.11960
abstract + abstract -

The most common predictions for rare $K$ and $B$ decay branching ratios in the Standard Model are based on the CKM elements $|V_{cb}|$ and $|V_{ub}|$ resulting from global fits, that are in the ballpark of their inclusive and exclusive determinations, respectively. In the present paper we follow another route. We assume that the future true values of $|V_{cb}|$ and $|V_{ub}|$ will be both from exclusive determinations and set them equal to the most recent ones from FLAG. An unusual pattern of SM predictions results from this study with some existing tensions being dwarfed and new tensions being born. In particular using the HPQCD $B^0_{s,d}-\bar B^0_{s,d}$ hadronic matrix elements a $3.1\sigma$ tension in $\Delta M_s$ independently of $\gamma$ is found. For $60^\circ\le\gamma\le 75^\circ$ the tension in $\Delta M_d$ between $4.0\sigma$ and $1.1\sigma$ is found and in the case of $\epsilon_K$ between $5.2\sigma$ and $2.1\sigma$. Moreover, the room for new physics in $K^+\to\pi^+\nu\bar\nu$, $K_L\to\pi^0\nu\bar\nu$ and $B\to K(K^*)\nu\bar\nu$ decays is significantly increased. We compare the results in this EXCLUSIVE scenario with the HYBRID one in which $|V_{cb}|$ in the former scenario is replaced by the most recent inclusive $|V_{cb}|$ and present the dependence of all observables considered by us in both scenarios as functions of $\gamma$. We also compare the determination of $|V_{cb}|$ from $\Delta M_s$, $\Delta M_d$, $\epsilon_K$ and $S_{\psi K_S}$ using $B^0_{s,d}-\bar B^0_{s,d}$ hadronic matrix elements from LQCD with $2+1+1$ flavours, $2+1$ flavours and their average. Only for the $2+1+1$ case values for $\beta$ and $\gamma$ exist for which the same value of $|V_{cb}|$ is found: $|V_{cb}|=42.6(7)\times 10^{-3}$. This in turn implies a $2.7\sigma$ anomaly in $B_s\to\mu^+\mu^-$.


(597)Snowmass white paper: Need for amplitude analysis in the discovery of new hadrons
  • Miguel Albaladejo,
  • Marco Battaglieri,
  • Lukasz Bibrzycki,
  • Andrea Celentano,
  • Igor V. Danilkin
  • +20
  • Sebastian M. Dawid,
  • Michael Doring,
  • Cristiano Fanelli,
  • Cesar Fernandez-Ramirez,
  • Sergi Gonzalez-Solis,
  • Astrid N. Hiller Blin,
  • Andrew W. Jackura,
  • Vincent Mathieu,
  • Mikhail Mikhasenko,
  • Victor I. Mokeev,
  • Emilie Passemar,
  • Robert J. Perry,
  • Alessandro Pilloni,
  • Arkaitz Rodas,
  • Matthew R. Shepherd,
  • Nathaniel Sherrill,
  • Jorge A. Silva-Castro,
  • Tomasz Skwarnicki,
  • Adam P. Szczepaniak,
  • Daniel Winney
  • (less)
arXiv e-prints (03/2022) e-Print:2203.08208
abstract + abstract -

We highlight the need for the development of comprehensive amplitude analysis methods to further our understanding of hadron spectroscopy. Reaction amplitudes constrained by first principles of $S$-matrix theory and by QCD phenomenology are needed to extract robust interpretations of the data from experiments and from lattice calculations.


(596)Is cosmic birefringence due to dark energy or dark matter? A tomographic approach
  • Hiromasa Nakatsuka,
  • Toshiya Namikawa,
  • Eiichiro Komatsu
arXiv e-prints (03/2022) e-Print:2203.08560
abstract + abstract -

A pseudoscalar "axionlike" field, $\phi$, may explain the $3\sigma$ hint of cosmic birefringence observed in the $EB$ power spectrum of the cosmic microwave background (CMB) polarization data. Is $\phi$ dark energy or dark matter? A tomographic approach can answer this question. The effective mass of dark energy field responsible for the accelerated expansion of the Universe today must be smaller than $m_\phi\simeq 10^{-33}$ eV. If $m_\phi \gtrsim 10^{-32}$ eV, $\phi$ starts evolving before the epoch of reionization and we should observe different amounts of birefringence from the $EB$ power spectrum at low ($l\lesssim 10$) and high multipoles. Such an observation, which requires a full-sky satellite mission, would rule out $\phi$ being dark energy. If $m_\phi \gtrsim 10^{-28}$ eV, $\phi$ starts oscillating during the epoch of recombination, leaving a distinct signature in the $EB$ power spectrum at high multipoles, which can be measured precisely by ground-based CMB observations. Our tomographic approach relies on the shape of the $EB$ power spectrum and is less sensitive to miscalibration of polarization angles.


(595)Standard Model Predictions for Rare $K$ and $B$ Decays without $|V_{cb}|$ and $|V_{ub}|$ Uncertainties
  • Andrzej J. Buras,
  • Elena Venturini
arXiv e-prints (03/2022) e-Print:2203.10099
abstract + abstract -

The persistent tensions between inclusive and exclusive determinations of $|V_{cb}|$ and $|V_{ub}|$ weaken the power of theoretically clean rare $K$ and $B$ decays in the search for new physics (NP). We demonstrate how this uncertainty can be practically removed by considering within the SM suitable ratios of various branching ratios. This includes the branching ratios for $K^+\to\pi^+\nu\bar\nu$, $K_{L}\to\pi^0\nu\bar\nu$, $K_S\to\mu^+\mu^-$, $B_{s,d}\to\mu^+\mu^-$ and $B\to K(K^*)\nu\bar\nu$. Also $\epsilon_K$, $\Delta M_d$, $\Delta M_s$ and the mixing induced CP-asymmetry $S_{\psi K_S}$, all measured already very precisely, play an important role in this analysis. The highlights of our analysis are 16 $|V_{cb}|$ and $|V_{ub}|$ independent ratios that often are independent of the CKM arameters or depend only on the angles $\beta$ and $\gamma$ in the Unitarity Triangle with $\beta$ already precisely known and $\gamma$ to be measured precisely in the coming years by the LHCb and Belle II collaborations. Once $\gamma$ Once $\gamma$ is measured precisely these 16 ratios taken together are expected to be a powerful tool in the search for new physics. Assuming no NP in $|\epsilon_K|$ and $S_{\psi K_S}$ we determine independently of $|V_{cb}|$: $\mathcal{B}(K^+\to\pi^+\nu\bar\nu)_\text{SM}= (8.60\pm0.42)\times 10^{-11}$ and $\mathcal{B}(K_L\to\pi^0\nu\bar\nu)_\text{SM}=(2.94\pm 0.15)\times 10^{-11}$. This are the most precise determinations to date. Assuming no NP in $\Delta M_{s,d}$ allows to obtain analogous results for all $B$ decay branching ratios considered in our paper without any CKM uncertainties.


(594)Dust entrainment in photoevaporative winds: Synthetic observations of transition disks
  • R. Franz,
  • G. Picogna,
  • B. Ercolano,
  • S. Casassus,
  • T. Birnstiel
  • +2
Astronomy and Astrophysics, 659, p29 (03/2022) doi:10.1051/0004-6361/202142785
abstract + abstract -

Context. X-ray- and extreme-ultraviolet- (XEUV-) driven photoevaporative winds acting on protoplanetary disks around young T Tauri stars may strongly impact disk evolution, affecting both gas and dust distributions. Small dust grains in the disk are entrained in the outflow and may produce a detectable signal. In this work, we investigate the possibility of detecting dusty outflows from transition disks with an inner cavity.
Aims: We compute dust densities for the wind regions of XEUV-irradiated transition disks and determine whether they can be observed at wavelengths 0.7 ≲ λobs [μm] ≲ 1.8 with current instrumentation.
Methods: We simulated dust trajectories on top of 2D hydrodynamical gas models of two transition disks with inner holes of 20 and 30 AU, irradiated by both X-ray and EUV spectra from a central T Tauri star. The trajectories and two different settling prescriptions for the dust distribution in the underlying disk were used to calculate wind density maps for individual grain sizes. Finally, the resulting dust densities were converted to synthetic observations in scattered and polarised light.
Results: For an XEUV-driven outflow around a M* = 0.7 M T Tauri star with LX = 2 × 1030 erg s-1, we find dust mass-loss rates Ṁdust ≲ 2.0 × 10−3gas, and if we invoke vertical settling, the outflow is quite collimated. The synthesised images exhibit a distinct chimney-like structure. The relative intensity of the chimneys is low, but their detection may still be feasible with current instrumentation under optimal conditions.
Conclusions: Our results motivate observational campaigns aimed at the detection of dusty photoevaporative winds in transition disks using JWST NIRCam and SPHERE IRDIS.


(593)New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets
  • Paolo Campeti,
  • Ogan Özsoy,
  • Ippei Obata,
  • Maresuke Shiraishi
arXiv e-prints (03/2022) e-Print:2203.03401
abstract + abstract -

We present new constraints on spectator axion-${\rm U}(1)$ gauge field interactions during inflation using the latest Planck ($PR4$) and BICEP/Keck 2018 data releases. This model can source tensor perturbations from amplified gauge field fluctuations, driven by an axion rolling for a few e-folds during inflation. The gravitational waves sourced in this way have a strongly scale-dependent (and chiral) spectrum, with potentially visible contributions to large/intermediate scale $B$-modes of the CMB. We first derive theoretical bounds on the model imposing validity of the perturbative regime and negligible backreaction of the gauge field on the background dynamics. Then, we determine bounds from current CMB observations, adopting a frequentist profile likelihood approach. We study the behaviour of constraints for typical choices of the model's parameters, analyzing the impact of different dataset combinations. We find that observational bounds are competitive with theoretical ones and together they exclude a significant portion of the model's parameter space. We argue that the parameter space still remains large and interesting for future CMB experiments targeting large/intermediate scales $B$-modes.


(592)Discovery and mass measurement of the hot, transiting, Earth-sized planet, GJ 3929 b
  • J. Kemmer,
  • S. Dreizler,
  • D. Kossakowski,
  • S. Stock,
  • A. Quirrenbach
  • +62
  • J. A. Caballero,
  • P. J. Amado,
  • K. A. Collins,
  • N. Espinoza,
  • E. Herrero,
  • J. M. Jenkins,
  • D. W. Latham,
  • J. Lillo-Box,
  • N. Narita,
  • E. Pallé,
  • A. Reiners,
  • I. Ribas,
  • G. Ricker,
  • E. Rodríguez,
  • S. Seager,
  • R. Vanderspek,
  • R. Wells,
  • J. Winn,
  • F. J. Aceituno,
  • V. J. S. Béjar,
  • T. Barclay,
  • P. Bluhm,
  • P. Chaturvedi,
  • C. Cifuentes,
  • K. I. Collins,
  • M. Cortés-Contreras,
  • B. -O. Demory,
  • M. M. Fausnaugh,
  • A. Fukui,
  • Y. Gómez Maqueo Chew,
  • D. Galadí-Enríquez,
  • T. Gan,
  • M. Gillon,
  • A. Golovin,
  • A. P. Hatzes,
  • Th. Henning,
  • C. Huang,
  • S. V. Jeffers,
  • A. Kaminski,
  • M. Kunimoto,
  • M. Kürster,
  • M. J. López-González,
  • M. Lafarga,
  • R. Luque,
  • J. McCormac,
  • K. Molaverdikhani,
  • D. Montes,
  • J. C. Morales,
  • V. M. Passegger,
  • S. Reffert,
  • L. Sabin,
  • P. Schöfer,
  • N. Schanche,
  • M. Schlecker,
  • U. Schroffenegger,
  • R. P. Schwarz,
  • A. Schweitzer,
  • A. Sota,
  • P. Tenenbaum,
  • T. Trifonov,
  • S. Vanaverbeke,
  • M. Zechmeister
  • (less)
Astronomy and Astrophysics, 659, p23 (03/2022) doi:10.1051/0004-6361/202142653
abstract + abstract -

We report the discovery of GJ 3929 b, a hot Earth-sized planet orbiting the nearby M3.5 V dwarf star, GJ 3929 (G 180-18, TOI-2013). Joint modelling of photometric observations from TESS sectors 24 and 25 together with 73 spectroscopic observations from CARMENES and follow-up transit observations from SAINT-EX, LCOGT, and OSN yields a planet radius of Rb = 1.150 ± 0.040 R, a mass of Mb = 1.21 ± 0.42 M, and an orbital period of Pb = 2.6162745 ± 0.0000030 d. The resulting density of ρb = 4.4 ± 1.6 g cm−3 is compatible with the Earth's mean density of about 5.5 g cm−3. Due to the apparent brightness of the host star (J = 8.7 mag) and its small size, GJ 3929 b is a promising target for atmospheric characterisation with the JWST. Additionally, the radial velocity data show evidence for another planet candidate with P[c] = 14.303 ± 0.035 d, which is likely unrelated to the stellar rotation period, Prot = 122 ± 13 d, which we determined from archival HATNet and ASAS-SN photometry combined with newly obtained TJO data.

RV data and stellar activity indices are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/659/A17


(591)Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper
  • Tommaso Dorigo,
  • Andrea Giammanco,
  • Pietro Vischia,
  • Max Aehle,
  • Mateusz Bawaj
  • +31
  • Alexey Boldyrev,
  • Pablo de Castro Manzano,
  • Denis Derkach,
  • Julien Donini,
  • Auralee Edelen,
  • Federica Fanzago,
  • Nicolas R. Gauger,
  • Christian Glaser,
  • Atılım G. Baydin,
  • Lukas Heinrich,
  • Ralf Keidel,
  • Jan Kieseler,
  • Claudius Krause,
  • Maxime Lagrange,
  • Max Lamparth,
  • Lukas Layer,
  • Gernot Maier,
  • Federico Nardi,
  • Helge E. S. Pettersen,
  • Alberto Ramos,
  • Fedor Ratnikov,
  • Dieter Röhrich,
  • Roberto Ruiz de Austri,
  • Pablo Martínez Ruiz del Árbol,
  • Oleg Savchenko,
  • Nathan Simpson,
  • Giles C. Strong,
  • Angela Taliercio,
  • Mia Tosi,
  • Andrey Ustyuzhanin,
  • Haitham Zaraket
  • (less)
arXiv e-prints (03/2022) e-Print:2203.13818
abstract + abstract -

The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters. In this document we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications.


(590)Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck I: Construction of CMB Lensing Maps and Modeling Choices
  • Y. Omori,
  • E. J. Baxter,
  • C. Chang,
  • O. Friedrich,
  • A. Alarcon
  • +158
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • K. Bechtol,
  • M. R. Becker,
  • G. M. Bernstein,
  • J. Blazek,
  • L. E. Bleem,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • R. Chen,
  • A. Choi,
  • J. Cordero,
  • T. M. Crawford,
  • M. Crocce,
  • C. Davis,
  • J. DeRose,
  • S. Dodelson,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • M. Gatti,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • I. Harrison,
  • K. Herner,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • M. Jarvis,
  • E. Krause,
  • N. Kuropatkin,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • N. MacCrann,
  • J. McCullough,
  • J. Muir,
  • J. Myles,
  • A. Navarro-Alsina,
  • S. Pandey,
  • Y. Park,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • R. P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • E. S. Rykoff,
  • C. Sánchez,
  • J. Sanchez,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • T. M. C. Abbott,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • B. A. Benson,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D. L. Burke,
  • J. E. Carlstrom,
  • J. Carretero,
  • C. L. Chang,
  • R. Chown,
  • M. Costanzi,
  • L. N. da Costa,
  • A. T. Crites,
  • M. E. S. Pereira,
  • T. de Haan,
  • J. De Vicente,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • P. Doel,
  • W. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztanaga,
  • E. M. George,
  • T. Giannantonio,
  • N. W. Halverson,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • D. J. James,
  • L. Knox,
  • K. Kuehn,
  • O. Lahav,
  • A. T. Lee,
  • M. Lima,
  • D. Luong-Van,
  • M. March,
  • J. J. McMahon,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • T. Natoli,
  • S. Padin,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • C. Pryke,
  • C. L. Reichardt,
  • A. K. Romer,
  • J. E. Ruhl,
  • E. Sanchez,
  • K. K. Schaffer,
  • M. Schubnell,
  • S. Serrano,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • J. D. Vieira,
  • J. Weller,
  • R. Williamson
  • (less)
arXiv e-prints (03/2022) e-Print:2203.12439
abstract + abstract -

Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint, and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on $S_8=\sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5 to 10% level.


(589)Constraining the multi-scale dark-matter distribution in CASSOWARY 31 with strong gravitational lensing and stellar dynamics
  • H. Wang,
  • R. Cañameras,
  • G. B. Caminha,
  • S. H. Suyu,
  • A. Yıldırım
  • +4
  • G. Chirivì,
  • L. Christensen,
  • C. Grillo,
  • S. Schuldt
  • (less)
arXiv e-prints (03/2022) e-Print:2203.13759
abstract + abstract -

We study the inner structure of the group-scale lens CASSOWARY 31 (CSWA 31) by adopting both strong lensing and dynamical modeling. CSWA 31 is a peculiar lens system. The brightest group galaxy (BGG) is an ultra-massive elliptical galaxy at z = 0.683 with a weighted mean velocity dispersion of $\sigma = 432 \pm 31$ km s$^{-1}$. It is surrounded by group members and several lensed arcs probing up to ~150 kpc in projection. Our results significantly improve previous analyses of CSWA 31 thanks to the new HST imaging and MUSE integral-field spectroscopy. From the secure identification of five sets of multiple images and measurements of the spatially-resolved stellar kinematics of the BGG, we conduct a detailed analysis of the multi-scale mass distribution using various modeling approaches, both in the single and multiple lens-plane scenarios. Our best-fit mass models reproduce the positions of multiple images and provide robust reconstructions for two background galaxies at z = 1.4869 and z = 2.763. The relative contributions from the BGG and group-scale halo are remarkably consistent in our three reference models, demonstrating the self-consistency between strong lensing analyses based on image position and extended image modeling. We find that the ultra-massive BGG dominates the projected total mass profiles within 20 kpc, while the group-scale halo dominates at larger radii. The total projected mass enclosed within $R_{eff}$ = 27.2 kpc is $1.10_{-0.04}^{+0.02} \times 10^{13}$ M$_\odot$. We find that CSWA 31 is a peculiar fossil group, strongly dark-matter dominated towards the central region, and with a projected total mass profile similar to higher-mass cluster-scale halos. The total mass-density slope within the effective radius is shallower than isothermal, consistent with previous analyses of early-type galaxies in overdense environments.


(588)Snowmass White Paper: Probing New Physics with $\mu^+ \mu^- \to bs$ at a Muon Collider
  • Wolfgang Altmannshofer,
  • Sri Aditya Gadam,
  • Stefano Profumo
arXiv e-prints (03/2022) e-Print:2203.07495
abstract + abstract -

In this white paper for the Snowmass process, we discuss the prospects of probing new physics explanations of the persistent rare $B$ decay anomalies with a muon collider. If the anomalies are indirect signs of heavy new physics, non-standard rates for $\mu^+ \mu^- \to b s$ production should be observed with high significance at a muon collider with center of mass energy of $\sqrt{s} = 10$ TeV. The forward-backward asymmetry of the $b$-jet provides diagnostics of the chirality structure of the new physics couplings. In the absence of a signal, $\mu^+ \mu^- \to b s$ can indirectly probe new physics scales as large as $86$ TeV. Beam polarization would have an important impact on the new physics sensitivity.


(587)Machine Learning and LHC Event Generation
  • Anja Butter,
  • Tilman Plehn,
  • Steffen Schumann,
  • Simon Badger,
  • Sascha Caron
  • +46
  • Kyle Cranmer,
  • Francesco Armando Di Bello,
  • Etienne Dreyer,
  • Stefano Forte,
  • Sanmay Ganguly,
  • Dorival Gonçalves,
  • Eilam Gross,
  • Theo Heimel,
  • Gudrun Heinrich,
  • Lukas Heinrich,
  • Alexander Held,
  • Stefan Höche,
  • Jessica N. Howard,
  • Philip Ilten,
  • Joshua Isaacson,
  • Timo Janßen,
  • Stephen Jones,
  • Marumi Kado,
  • Michael Kagan,
  • Gregor Kasieczka,
  • Felix Kling,
  • Sabine Kraml,
  • Claudius Krause,
  • Frank Krauss,
  • Kevin Kröninger,
  • Rahool Kumar Barman,
  • Michel Luchmann,
  • Vitaly Magerya,
  • Daniel Maitre,
  • Bogdan Malaescu,
  • Fabio Maltoni,
  • Till Martini,
  • Olivier Mattelaer,
  • Benjamin Nachman,
  • Sebastian Pitz,
  • Juan Rojo,
  • Matthew Schwartz,
  • David Shih,
  • Frank Siegert,
  • Roy Stegeman,
  • Bob Stienen,
  • Jesse Thaler,
  • Rob Verheyen,
  • Daniel Whiteson,
  • Ramon Winterhalder,
  • Jure Zupan
  • (less)
arXiv e-prints (03/2022) e-Print:2203.07460
abstract + abstract -

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.


(586)The Mini-EUSO telescope on board the International Space Station: Launch and first results
  • M. Casolino,
  • J. H.,
  • Jr. Adams,
  • A. Anzalone,
  • E. Arnone
  • +90
  • D. Barghini,
  • S. Bartocci,
  • M. Battisti,
  • R. Bellotti,
  • M. Bertaina,
  • F. Bisconti,
  • S. Blin-Bondil,
  • A. Bruno,
  • G. Cambié,
  • R. Caruso,
  • M. Casolino,
  • C. Cassardo,
  • A. Castellina,
  • O. Catalano,
  • A. Cellino,
  • R. Colalillo,
  • L. Conti,
  • G. Cotto,
  • L. del Peral,
  • A. Diaz Damian,
  • F. Fenu,
  • S. Ferrarese,
  • C. Fornaro,
  • P. Galeotti,
  • D. Gardiol,
  • A. Golzio,
  • F. Guarino,
  • J. Hernández Carretero,
  • F. Isgrò,
  • J. F. Krizmanic,
  • A. Kusenko,
  • M. Manfrin,
  • M. Mese,
  • H. Miyamoto,
  • A. Monaco,
  • A. Neronov,
  • A. Pagliaro,
  • P. E. Picozza,
  • Z. E. Plebaniak,
  • R. Prevete,
  • G. Saccá,
  • A. Scagliola,
  • V. Scotti,
  • A. Sotgiu,
  • P. Vallania,
  • L. Valore,
  • C. Vigorito,
  • P. von Ballmoos,
  • R. Weigand Muñoz,
  • M. Casolino,
  • D. Barghini,
  • M. Battisti,
  • A. Belov,
  • M. Bertaina,
  • F. Bisconti,
  • C. Blaksley,
  • K. Bolmgren,
  • F. Cafagna,
  • G. Cambiè,
  • F. Capel,
  • T. Ebisuzaki,
  • F. Fenu,
  • A. Franceschi,
  • C. Fuglesang,
  • A. Golzio,
  • P. Gorodetzki,
  • F. Kajino,
  • H. Kasuga,
  • P. A. Klimov,
  • V. Kungel,
  • M. Manfrin,
  • L. Marcelli,
  • W. Marszał,
  • H. Miyamoto,
  • M. Mignone,
  • T. Napolitano,
  • G. Osteria,
  • E. Parizot,
  • P. Picozza,
  • Z. Plebaniak,
  • G. Prévôt,
  • E. Reali,
  • M. Ricci,
  • N. Sakaki,
  • K. Shinozaki,
  • J. Szabelski,
  • Y. Takizawa,
  • S. Wada,
  • L. R. Wiencke,
  • L. Piotrowski
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. It is also capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 10$^{21}$ eV and detect artificial showers generated with lasers from the ground. Mini-EUSO can map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 $\mu$s, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019/08/22 from the Baikonur cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44$^{\circ}$. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first year of operation.


(585)Observation of ELVES with Mini-EUSO telescope on board the International Space Station
  • L. Marcelli,
  • E. Arnone,
  • M. Barghini,
  • M. Battisti,
  • A. S. Belov
  • +26
  • M. E. Bertaina,
  • C. Blaksley,
  • K. Bolmgren,
  • G. Cambiè,
  • F. Capel,
  • M. Casolino,
  • T. Ebisuzaki,
  • C. Fuglesang,
  • P. Gorodetzki,
  • F. Kajino,
  • P. Klimov,
  • W. Marszał,
  • M. Mignone,
  • E. Parizot,
  • P. Picozza,
  • L. Wictor Piotrowski,
  • Z. Plebaniak,
  • G. Prévôt,
  • G. Romoli,
  • E. Reali,
  • M. Ricci,
  • N. Sakaki,
  • K. Shinozaki,
  • J. Szabelski,
  • Y. Takizawa,
  • J. e. Collaboration
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

Mini-EUSO is a detector observing the Earth in the ultraviolet band from the International Space Station through a nadir-facing window, transparent to the UV radiation, in the Russian Zvezda module. Mini-EUSO main detector consists in an optical system with two Fresnel lenses and a focal surface composed of an array of 36 Hamamatsu Multi-Anode Photo-Multiplier tubes, for a total of 2304 pixels, with single photon counting sensitivity. The telescope also contains two ancillary cameras, in the near infrared and visible ranges, to complement measurements in these bandwidths. The instrument has a field of view of 44 degrees, a spatial resolution of about 6.3 km on the Earth surface and of about 4.7 km on the ionosphere. The telescope detects UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few micoseconds upwards. On the fastest timescale of 2.5 microseconds, Mini-EUSO is able to observe atmospheric phenomena as Transient Luminous Events and in particular the ELVES, which take place when an electromagnetic wave generated by intra-cloud lightning interacts with the ionosphere, ionizing it and producing apparently superluminal expanding rings of several 100 km and lasting about 100 microseconds. These highly energetic fast events have been observed to be produced in conjunction also with Terrestrial Gamma-Ray Flashes and therefore a detailed study of their characteristics (speed, radius, energy...) is of crucial importance for the understanding of these phenomena. In this paper we present the observational capabilities of ELVE detection by Mini-EUSO and specifically the reconstruction and study of ELVE characteristics.


(584)An overview of the JEM-EUSO program and results
  • M. E. Bertaina,
  • JEM-EUSO Collaboration
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth's atmosphere and forward-beamed Cherenkov radiation reflected from the Earth's surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEMEUSO will do several secondary studies due to the instruments' unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 microsecond: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA), from stratospheric balloons (EUSO-Balloon, EUSO-SPB1, EUSO-SPB2), and from space (TUS, Mini-EUSO) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO and POEMMA. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented.


(583)Towards observations of nuclearites in Mini-EUSO
  • L. Piotrowski,
  • D. Barghini,
  • M. Battisti,
  • A. S. Belov,
  • M. E. Bertaina
  • +36
  • F. Bisconti,
  • C. Blaksley,
  • K. Bolmgren,
  • F. Cafagna,
  • G. Cambiè,
  • F. Capel,
  • M. Casolino,
  • T. Ebisuzaki,
  • F. Fenu,
  • A. Franceschi,
  • C. Fuglesang,
  • A. Golzio,
  • P. Gorodetzki,
  • F. Kajino,
  • H. Kasuga,
  • P. Klimov,
  • V. Kungel,
  • M. Manfrin,
  • L. Marcelli,
  • W. Marszał,
  • H. Miyamoto,
  • M. Mignone,
  • T. Napolitano,
  • G. Osteria,
  • E. Parizot,
  • P. Picozza,
  • Z. Plebaniak,
  • G. Prévôt,
  • E. Reali,
  • M. Ricci,
  • N. Sakaki,
  • K. Shinozaki,
  • J. Szabelski,
  • Y. Takizawa,
  • S. Wada,
  • L. Wiencke
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

Mini-EUSO is a small orbital telescope with a field of view of $44^{\circ}\times 44^{\circ}$, observing the night-time Earth mostly in 320-420 nm band. Its time resolution spanning from microseconds (triggered) to milliseconds (untriggered) and more than $300\times 300$ km of the ground covered, already allowed it to register thousands of meteors. Such detections make the telescope a suitable tool in the search for hypothetical heavy compact objects, which would leave trails of light in the atmosphere due to their high density and speed. The most prominent example are the nuclearites -- hypothetical lumps of strange quark matter that could be stabler and denser than the nuclear matter. In this paper, we show potential limits on the flux of nuclearites after collecting 42 hours of observations data.


(582)The Fluorescence Telescope on board EUSO-SPB2 for the detection of Ultra High Energy Cosmic Rays
  • G. Osteria,
  • J. H. Adams,
  • M. Battisti,
  • A. S. Belov,
  • M. E. Bertaina
  • +35
  • F. Bisconti,
  • F. Saverio Cafagna,
  • D. Campana,
  • R. Caruso,
  • M. Casolino,
  • M. Christi,
  • T. Ebisuzaki,
  • J. Eser,
  • F. Fenu,
  • G. Filippatos,
  • C. Fornaro,
  • F. Guarino,
  • P. Klimov,
  • V. Kungel,
  • S. Mackovjak,
  • M. Mese,
  • M. Miller,
  • H. Miyamoto,
  • A. Olinto,
  • Y. Onel,
  • E. Parizot,
  • M. Pech,
  • F. Perfetto,
  • L. Piotrowski,
  • G. Prévôt,
  • P. Reardon,
  • M. Ricci,
  • F. Sarazin,
  • V. Scotti,
  • K. Shinozaki,
  • P. Shovanec,
  • J. Szabelski,
  • Y. Takizawa,
  • L. Valore,
  • L. Wiencke
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

The Fluorescence Telescope is one of the two telescopes on board the Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2). EUSO-SPB2 is an ultra-long-duration balloon mission that aims at the detection of Ultra High Energy Cosmic Rays (UHECR) via the fluorescence technique (using a Fluorescence Telescope) and of Ultra High Energy (UHE) neutrinos via Cherenkov emission (using a Cherenkov Telescope). The mission is planned to fly in 2023 and is a precursor of the Probe of Extreme Multi-Messenger Astrophysics (POEMMA). The Fluorescence Telescope is a second generation instrument preceded by the telescopes flown on the EUSO-Balloon and EUSO-SPB1 missions. It features Schmidt optics and has a 1-meter diameter aperture. The focal surface of the telescope is equipped with a 6912-pixel Multi Anode Photo Multipliers (MAPMT) camera covering a 37.4 x 11.4 degree Field of Regard. Such a big Field of Regard, together with a flight target duration of up to 100 days, would allow, for the first time from suborbital altitudes, detection of UHECR fluorescence tracks. This contribution will provide an overview of the instrument including the current status of the telescope development.


(581)Expected Performance of the EUSO-SPB2 Fluorescence Telescope
  • G. Filippatos,
  • M. Battisti,
  • M. E. Bertaina,
  • F. Bisconti,
  • J. Eser
  • +4
  • G. Osteria,
  • F. Sarazin,
  • L. Wiencke,
  • JEM-EUSO Collaboration
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

The Extreme Universe Space Observatory Supper Pressure Balloon 2 (EUSO-SPB2) is under development, and will prototype instrumentation for future satellite-based missions, including the Probe of Extreme Multi-Messenger Astrophysics (POEMMA). EUSO-SPB2 will consist of two telescopes. The first is a Cherenkov telescope (CT) being developed to identify and estimate the background sources for future below-the-limb very high energy (E>10 PeV) astrophysical neutrino observations, as well as above-the-limb cosmic ray induced signals (E>1 PeV). The second is a fluorescence telescope (FT) being developed for detection of Ultra High Energy Cosmic Rays (UHECRs). In preparation for the expected launch in 2023, extensive simulations tuned by preliminary laboratory measurements have been preformed to understand the FT capabilities. The energy threshold has been estimated at $10^{18.2}$ eV, and results in a maximum detection rate at $10^{18.6}$ eV when taking into account the shape of the UHECR spectrum. In addition, onboard software has been developed based on the simulations as well as experience with previous EUSO missions. This includes a level 1 trigger to be run on the computationally limited flight hardware, as well as a deep learning based prioritization algorithm in order to accommodate the balloon's telemetry budget. These techniques could also be used later for future, space-based missions.


(580)Overview of Cherenkov Telescope on-board EUSO-SPB2 for the Detection of Very-High-Energy Neutrinos
  • M. Bagheri,
  • P. Bertone,
  • I. Fontane,
  • E. Gazda,
  • E. G. Judd
  • +10
  • J. F. Krizmanic,
  • E. N. Kuznetsov,
  • M. J. Miller,
  • J. Nachtman,
  • Y. Onel,
  • A. Nepomuk Otte,
  • P. J. Reardon,
  • O. Romero Matamala,
  • L. Wiencke,
  • JEM-EUSO Collaboration
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

We present the status of the development of a Cherenkov telescope to be flown on a long-duration balloon flight, the Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2). EUSO-SPB2 is an approved NASA balloon mission that is planned to fly in 2023 and is a precursor of the Probe of Extreme Multi-Messenger Astrophysics (POEMMA), a candidate for an Astrophysics probe-class mission. The purpose of the Cherenkov telescope on-board EUSOSPB2 is to classify known and unknown sources of backgrounds for future space-based neutrino detectors. Furthermore, we will use the Earth-skimming technique to search for Very-High-Energy (VHE) tau neutrinos below the limb (E > 10 PeV) and observe air showers from cosmic rays above the limb. The 0.785 m^2 Cherenkov telescope is equipped with a 512-pixel SiPM camera covering a 12.8° x 6.4° (Horizontal x Vertical) field of view. The camera signals are digitized with a 100 MS/s readout system. In this paper, we discuss the status of the telescope development, the camera integration, and simulation studies of the camera response.


(579)EUSO-SPB2 Telescope Optics and Testing
  • V. Kungel,
  • R. Bachman",
  • J. Brewster",
  • M. Dawes",
  • J. Desiato"
  • +12
  • J. Eser",
  • W. Finch",
  • L. Huelett",
  • A. V. Olinto",
  • J. Pace",
  • M. Pech",
  • P. Reardon",
  • P. Schovanek",
  • C. Wang",
  • L. Wiencke",
  • V. Kungel",
  • JEM-EUSO Collaboration
  • (less)
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Čerenkov- and fluorescence-emission of extensive air-showers from cosmic rays at the PeV and EeV-scale, and search for tau-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Čerenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Čerenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand.


(578)Science and mission status of EUSO-SPB2
  • J. Eser,
  • A. V. Olinto,
  • L. Wiencke,
  • JEM-EUSO Collaboration
37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (03/2022)
abstract + abstract -

The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observational goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals ($\sim$10 ns) and points near the Earth's limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals.


(577)Observational properties of puffy discs: radiative GRMHD spectra of mildly sub-Eddington accretion
  • Maciek Wielgus,
  • Debora Lancova,
  • Odele Straub,
  • Wlodek Kluzniak,
  • Ramesh Narayan
  • +5
  • David Abarca,
  • Agata Rozanska,
  • Frederic Vincent,
  • Gabriel Torok,
  • Marek Abramowicz
  • (less)
Mon.Not.Roy.Astron.Soc., 514, p780 (02/2022) e-Print:2202.08831 doi:10.1093/mnras/stac1317
abstract + abstract -

Numerical general relativistic radiative magnetohydrodynamic simulations of accretion discs around a stellar-mass black hole with a luminosity above 0.5 of the Eddington value reveal their stratified, elevated vertical structure. We refer to these thermally stable numerical solutions as puffy discs. Above a dense and geometrically thin core of dimensionless thickness h/r ∼ 0.1, crudely resembling a classic thin accretion disc, a puffed-up, geometrically thick layer of lower density is formed. This puffy layer corresponds to h/r ∼ 1.0, with a very limited dependence of the dimensionless thickness on the mass accretion rate. We discuss the observational properties of puffy discs, particularly the geometrical obscuration of the inner disc by the elevated puffy region at higher observing inclinations, and collimation of the radiation along the accretion disc spin axis, which may explain the apparent super-Eddington luminosity of some X-ray objects. We also present synthetic spectra of puffy discs, and show that they are qualitatively similar to those of a Comptonized thin disc. We demonstrate that the existing xspec spectral fitting models provide good fits to synthetic observations of puffy discs, but cannot correctly recover the input black hole spin. The puffy region remains optically thick to scattering; in its spectral properties, the puffy disc roughly resembles that of a warm corona sandwiching the disc core. We suggest that puffy discs may correspond to X-ray binary systems of luminosities above 0.3 of the Eddington luminosity in the intermediate spectral states.


(576)Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions
  • J. Adamczewski-Musch,
  • O. Arnold,
  • C. Behnke,
  • A. Belounnas,
  • A. Belyaev
  • +122
  • J.C. Berger-Chen,
  • A. Blanco,
  • C. Blume,
  • M. Böhmer,
  • P. Bordalo,
  • S. Chernenko,
  • L. Chlad,
  • I. Ciepał,
  • C. Deveaux,
  • J. Dreyer,
  • E. Epple,
  • L. Fabbietti,
  • O. Fateev,
  • P. Filip,
  • P. Fonte,
  • C. Franco,
  • J. Friese,
  • I. Fröhlich,
  • T. Galatyuk,
  • J.A. Garzon,
  • R. Gernhäuser,
  • S. Gläßel,
  • R. Greifenhagen,
  • F. Guber,
  • M. Gumberidze,
  • S. Harabasz,
  • T. Heinz,
  • T. Hennino,
  • S. Hlavac,
  • C. Höhne,
  • R. Holzmann,
  • A. Ierusalimov,
  • A. Ivashkin,
  • B. Kämpfer,
  • T. Karavicheva,
  • B. Kardan,
  • I. Koenig,
  • W. Koenig,
  • M. Kohls,
  • B.W. Kolb,
  • G. Korcyl,
  • G. Kornakov,
  • F. Kornas,
  • R. Kotte,
  • A. Kugler,
  • T. Kunz,
  • A. Kurepin,
  • A. Kurilkin,
  • P. Kurilkin,
  • V. Ladygin,
  • R. Lalik,
  • K. Lapidus,
  • A. Lebedev,
  • S. Linev,
  • L. Lopes,
  • M. Lorenz,
  • T. Mahmoud,
  • L. Maier,
  • A. Malige,
  • A. Mangiarotti,
  • J. Markert,
  • T. Matulewicz,
  • S. Maurus,
  • V. Metag,
  • J. Michel,
  • D.M. Mihaylov,
  • S. Morozov,
  • C. Müntz,
  • R. Münzer,
  • M. Nabroth,
  • L. Naumann,
  • K. Nowakowski,
  • Y. Parpottas,
  • M. Parschau,
  • V. Pechenov,
  • O. Pechenova,
  • O. Petukhov,
  • K. Piasecki,
  • J. Pietraszko,
  • W. Przygoda,
  • K. Pysz,
  • S. Ramos,
  • B. Ramstein,
  • N. Rathod,
  • A. Reshetin,
  • P. Rodriguez-Ramos,
  • P. Rosier,
  • A. Rost,
  • A. Rustamov,
  • A. Sadovsky,
  • P. Salabura,
  • T. Scheib,
  • H. Schuldes,
  • N. Schild,
  • E. Schwab,
  • F. Scozzi,
  • F. Seck,
  • P. Sellheim,
  • I. Selyuzhenkov,
  • J. Siebenson,
  • L. Silva,
  • U. Singh,
  • J. Smyrski,
  • Yu.G. Sobolev,
  • S. Spataro,
  • S. Spies,
  • H. Ströbele,
  • J. Stroth,
  • C. Sturm,
  • K. Sumara,
  • O. Svoboda,
  • M. Szala,
  • P. Tlusty,
  • M. Traxler,
  • H. Tsertos,
  • E. Usenko,
  • V. Wagner,
  • C. Wendisch,
  • M.G. Wiebusch,
  • J. Wirth,
  • Y. Zanevsky,
  • P. Zumbruch
  • (less)
(02/2022) e-Print:2202.12750
abstract + abstract -

In nuclear collisions the incident protons generate a Coulomb field which acts on produced charged particles. The impact of these interactions on charged pion transverse-mass and rapidity spectra, as well as on pion-pion momentum correlations is investigated in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We show that the low-mt part of the data ($m_t < 0.2$ GeV/c$^2$) can be well described with a Coulomb-modified Boltzmann distribution that also takes changes of the Coulomb field during the expansion of the fireball into account. The observed centrality dependence of the fitted mean Coulomb potential deviates strongly from a $A_{part}^{2/3}$ scaling, indicating that, next to the fireball, the non-interacting charged spectators have to be taken into account. For the most central collisions, the Coulomb modifications of the HBT source radii are found to be consistent with the potential extracted from the single-pion transverse-mass distributions. This finding suggests that the region of homogeneity obtained from two-pion correlations coincides with the region in which the pions freeze-out. Using the inferred mean-square radius of the charge distribution at freeze-out, we have deduced a baryon density, in fair agreement with values obtained from statistical hadronization model fits to the particle yields.


(575)Measuring Cosmological Parameters with Type Ia Supernovae in redMaGiC galaxies
  • R. Chen,
  • D. Scolnic,
  • E. Rozo,
  • E.S. Rykoff,
  • B. Popovic
  • +80
  • R. Kessler,
  • M. Vincenzi,
  • T.M. Davis,
  • P. Armstrong,
  • D. Brout,
  • L. Galbany,
  • L. Kelsey,
  • C. Lidman,
  • A. Möller,
  • B. Rose,
  • M. Sako,
  • M. Sullivan,
  • G. Taylor,
  • P. Wiseman,
  • J. Asorey,
  • A. Carr,
  • C. Conselice,
  • K. Kuehn,
  • G.F. Lewis,
  • E. Macaulay,
  • M. Rodriguez-Monroy,
  • B.E. Tucker,
  • T.M.C. Abbott,
  • M. Aguena,
  • S. Allam,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • R. Cawthon,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • S. Desai,
  • H.T. Diehl,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. Gaztanaga,
  • D. Gruen,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • O. Lahav,
  • M. Lima,
  • M. March,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • J. Prat,
  • A.K. Romer,
  • A. Roodman,
  • E. Sanchez,
  • M. Schubnell,
  • S. Serrano,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • M. Soares-Santos,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • D.L. Tucker,
  • T.N. Varga
  • (less)
(02/2022) e-Print:2202.10480
abstract + abstract -

Current and future cosmological analyses with Type Ia Supernovae (SNe Ia) face three critical challenges: i) measuring redshifts from the supernova or its host galaxy; ii) classifying SNe without spectra; and iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each challenge. In the context of the Dark Energy Survey (DES), we analyze a SNIa sample with host galaxies in the redMaGiC galaxy catalog, a selection of Luminous Red Galaxies. Photo-$z$ estimates for these galaxies are expected to be accurate to $\sigma_{\Delta z/(1+z)}\sim0.02$. The DES-5YR photometrically classified SNIa sample contains approximately 1600 SNe and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns with classification uncertainties. With this subsample, we find similar Hubble scatter (to within $\sim0.01$ mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show the bias due to using photo-$z$s from redMaGiC host galaxies on the measurement of the dark energy equation-of-state $w$ is up to $\Delta w \sim 0.01-0.02$. With real data, we measure a difference in $w$ when using redMaGiC photometric redshifts versus spectroscopic redshifts of $\Delta w = 0.005$. Finally, we discuss how SNe in redMaGiC galaxies appear to be a more standardizable population due to a weaker relation between color and luminosity ($\beta$) compared to the DES-3YR population by $\sim5\sigma$; this finding is consistent with predictions that redMaGiC galaxies exhibit lower reddening ratios ($\textrm{R}_\textrm{V}$) than the general population of SN host galaxies. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.


(574)Observation of the doubly charmed baryon decay $ {\varXi}_{cc}^{++}\to {\varXi}_c^{\prime +}{\pi}^{+} $
  • Roel Aaij,
  • Ahmed Sameh Wagih Abdelmotteleb,
  • Carlos Abellán Beteta,
  • Fernando Jesus Abudinén,
  • Thomas Ackernley
  • +1006
  • Bernardo Adeva,
  • Marco Adinolfi,
  • Hossein Afsharnia,
  • Christina Agapopoulou,
  • Christine Angela Aidala,
  • Salvatore Aiola,
  • Ziad Ajaltouni,
  • Simon Akar,
  • Johannes Albrecht,
  • Federico Alessio,
  • Michael Alexander,
  • Alejandro Alfonso Albero,
  • Zakariya Aliouche,
  • Georgy Alkhazov,
  • Paula Alvarez Cartelle,
  • Sandra Amato,
  • Jake Lewis Amey,
  • Yasmine Amhis,
  • Liupan An,
  • Lucio Anderlini,
  • Martin Andersson,
  • Aleksei Andreianov,
  • Mirco Andreotti,
  • Dong Ao,
  • Flavio Archilli,
  • Alexander Artamonov,
  • Marina Artuso,
  • Kenenbek Arzymatov,
  • Elie Aslanides,
  • Michele Atzeni,
  • Benjamin Audurier,
  • Sebastian Bachmann,
  • Marie Bachmayer,
  • John Back,
  • Pablo Baladron Rodriguez,
  • Vladislav Balagura,
  • Wander Baldini,
  • Juan Baptista de Souza Leite,
  • Matteo Barbetti,
  • Roger Barlow,
  • Sergey Barsuk,
  • William Barter,
  • Matteo Bartolini,
  • Fedor Baryshnikov,
  • Jan-Marc Basels,
  • Giovanni Bassi,
  • Baasansuren Batsukh,
  • Alexander Battig,
  • Aurelio Bay,
  • Anja Beck,
  • Maik Becker,
  • Franco Bedeschi,
  • Ignacio Bediaga,
  • Andrew Beiter,
  • Vladislav Belavin,
  • Samuel Belin,
  • Violaine Bellee,
  • Konstantin Belous,
  • Ilia Belov,
  • Ivan Belyaev,
  • Giovanni Bencivenni,
  • Eli Ben-Haim,
  • Alexander Berezhnoy,
  • Roland Bernet,
  • Daniel Berninghoff,
  • Harris Conan Bernstein,
  • Claudia Bertella,
  • Alessandro Bertolin,
  • Christopher Betancourt,
  • Federico Betti,
  • Ia. Bezshyiko,
  • Iaroslava Bezshyiko,
  • Srishti Bhasin,
  • Jihyun Bhom,
  • Lingzhu Bian,
  • Martin Stefan Bieker,
  • Nicolo Vladi Biesuz,
  • Simone Bifani,
  • Pierre Billoir,
  • Alice Biolchini,
  • Matthew Birch,
  • Fionn Caitlin Ros Bishop,
  • Alexander Bitadze,
  • Andrea Bizzeti,
  • Mikkel Bjørn,
  • Michele Piero Blago,
  • Thomas Blake,
  • Frederic Blanc,
  • Steven Blusk,
  • Dana Bobulska,
  • Julian Alexander Boelhauve,
  • Oscar Boente Garcia,
  • Thomas Boettcher,
  • Alexey Boldyrev,
  • Alexander Bondar,
  • Nikolay Bondar,
  • Silvia Borghi,
  • Maxim Borisyak,
  • Martino Borsato,
  • Jozef Tomasz Borsuk,
  • Sonia Amina Bouchiba,
  • Themistocles Bowcock,
  • Alexandre Boyer,
  • Concezio Bozzi,
  • Matthew John Bradley,
  • Svende Braun,
  • Alexandre Brea Rodriguez,
  • Jolanta Brodzicka,
  • Arnau Brossa Gonzalo,
  • Davide Brundu,
  • Annarita Buonaura,
  • Laura Buonincontri,
  • Aodhan Tomas Burke,
  • Christopher Burr,
  • Albert Bursche,
  • Anatoly Butkevich,
  • Jordy Sebastiaan Butter,
  • Jan Buytaert,
  • Wiktor Byczynski,
  • Sandro Cadeddu,
  • Hao Cai,
  • Roberto Calabrese,
  • Lukas Calefice,
  • Stefano Cali,
  • Ryan Calladine,
  • Marta Calvi,
  • Miriam Calvo Gomez,
  • Patricia Camargo Magalhaes,
  • Pierluigi Campana,
  • Angel Fernando Campoverde Quezada,
  • Simone Capelli,
  • Lorenzo Capriotti,
  • Angelo Carbone,
  • Giovanni Carboni,
  • Roberta Cardinale,
  • Alessandro Cardini,
  • Ina Carli,
  • Paolo Carniti,
  • Leon David Carus,
  • Kazuyoshi Carvalho Akiba,
  • Adrian Casais Vidal,
  • Rowina Caspary,
  • Gianluigi Casse,
  • Marco Cattaneo,
  • Giovanni Cavallero,
  • Sara Celani,
  • Jacopo Cerasoli,
  • Daniel Cervenkov,
  • Abbie Jane Chadwick,
  • Matthew George Chapman,
  • Matthew Charles,
  • Philippe Charpentier,
  • Ph. Charpentier,
  • Carlos Alberto Chavez Barajas,
  • Maximilien Chefdeville,
  • Chen Chen,
  • Shanzhen Chen,
  • Aleksei Chernov,
  • Veronika Chobanova,
  • Serhii Cholak,
  • Marcin Chrzaszcz,
  • Alexsei Chubykin,
  • Vladimir Chulikov,
  • Paolo Ciambrone,
  • Maria Flavia Cicala,
  • Xabier Cid Vidal,
  • Gregory Ciezarek,
  • P.E. L. Clarke,
  • Marco Clemencic,
  • Harry Cliff,
  • Joel Closier,
  • John Leslie Cobbledick,
  • Victor Coco,
  • Joao A B Coelho,
  • Julien Cogan,
  • Eric Cogneras,
  • Lucian Cojocariu,
  • Paula Collins,
  • Tommaso Colombo,
  • Liliana Congedo,
  • Andrea Contu,
  • Naomi Cooke,
  • George Coombs,
  • Imanol Corredoira,
  • Gloria Corti,
  • Cayo Mar Costa Sobral,
  • Benjamin Couturier,
  • Daniel Charles Craik,
  • Jana Crkovská,
  • Melissa Maria Cruz Torres,
  • Robert Currie,
  • Cesar Luiz Da Silva,
  • Shakhzod Dadabaev,
  • Lingyun Dai,
  • Elena Dall'Occo,
  • Jeremy Dalseno,
  • Carmelo D'Ambrosio,
  • Anna Danilina,
  • Philippe d'Argent,
  • Aigerim Dashkina,
  • Jonathan Edward Davies,
  • Adam Davis,
  • Oscar De Aguiar Francisco,
  • Kristof De Bruyn,
  • Stefano De Capua,
  • Michel De Cian,
  • Ulisses De Freitas Carneiro Da Graca,
  • Erika De Lucia,
  • Jussara De Miranda,
  • Leandro De Paula,
  • Marilisa De Serio,
  • Dario De Simone,
  • Patrizia De Simone,
  • Fabio De Vellis,
  • Jacco de Vries,
  • Cameron Thomas Dean,
  • Francesco Debernardis,
  • Daniel Decamp,
  • Vlad-George Dedu,
  • Luigi Del Buono,
  • Blaise Delaney,
  • Hans Peter Dembinski,
  • Vadym Denysenko,
  • Denis Derkach,
  • Olivier Deschamps,
  • Francesco Dettori,
  • Biplab Dey,
  • Alessandro Di Cicco,
  • Pasquale Di Nezza,
  • Sergey Didenko,
  • Lorena Dieste Maronas,
  • Shuchong Ding,
  • Vasyl Dobishuk,
  • Chenzhi Dong,
  • Amanda May Donohoe,
  • Francesca Dordei,
  • Alberto dos Reis,
  • Lauren Douglas,
  • Anatoliy Dovbnya,
  • Anthony Gavin Downes,
  • Maciej Wojciech Dudek,
  • Laurent Dufour,
  • Viacheslav Duk,
  • Paolo Durante,
  • John Matthew Durham,
  • Deepanwita Dutta,
  • Agnieszka Dziurda,
  • Alexey Dzyuba,
  • Sajan Easo,
  • Ulrik Egede,
  • Victor Egorychev,
  • Semen Eidelman,
  • Stephan Eisenhardt,
  • Surapat Ek-In,
  • Lars Eklund,
  • Scott Ely,
  • Alexandru Ene,
  • Eliane Epple,
  • Stephan Escher,
  • Jonas Nathanael Eschle,
  • Sevda Esen,
  • Timothy Evans,
  • Lucas Falcao,
  • Yanting Fan,
  • Bo Fang,
  • Stephen Farry,
  • Davide Fazzini,
  • Mauricio Féo,
  • Antonio Fernandez Prieto,
  • Alex Daniel Fernez,
  • Fabio Ferrari,
  • Lino Ferreira Lopes,
  • Fernando Ferreira Rodrigues,
  • Silvia Ferreres Sole,
  • Martina Ferrillo,
  • Massimiliano Ferro-Luzzi,
  • Sergey Filippov,
  • Rosa Anna Fini,
  • Massimiliano Fiorini,
  • Miroslaw Firlej,
  • Kamil Leszek Fischer,
  • K.M. Fischer,
  • Dillon Scott Fitzgerald,
  • Conor Fitzpatrick,
  • Tomasz Fiutowski,
  • Aristeidis Fkiaras,
  • Frederic Fleuret,
  • Marianna Fontana,
  • Flavio Fontanelli,
  • Roger Forty,
  • Daniel Foulds-Holt,
  • Vinicius Franco Lima,
  • Manuel Franco Sevilla,
  • Markus Frank,
  • Edoardo Franzoso,
  • Giulia Frau,
  • Christoph Frei,
  • David Anthony Friday,
  • Jinlin Fu,
  • Quentin Fuehring,
  • Emmy Gabriel,
  • Giuliana Galati,
  • Abraham Gallas Torreira,
  • Domenico Galli,
  • Silvia Gambetta,
  • Yuyue Gan,
  • Miriam Gandelman,
  • Paolo Gandini,
  • Yuanning Gao,
  • Michela Garau,
  • Luis Miguel Garcia Martin,
  • Paula Garcia Moreno,
  • Julián García Pardiñas,
  • Beatriz Garcia Plana,
  • Felipe Andres Garcia Rosales,
  • Lluis Garrido,
  • Clara Gaspar,
  • Robbert Erik Geertsema,
  • David Gerick,
  • Louis Lenard Gerken,
  • Evelina Gersabeck,
  • Marco Gersabeck,
  • Timothy Gershon,
  • Luca Giambastiani,
  • Valerie Gibson,
  • Henryk Karol Giemza,
  • Alexander Leon Gilman,
  • Matteo Giovannetti,
  • Alessandra Gioventù,
  • Pere Gironella Gironell,
  • Carmen Giugliano,
  • Konstantin Gizdov,
  • Evangelos Leonidas Gkougkousis,
  • Vladimir Gligorov,
  • Carla Göbel,
  • Elisabet Golobardes,
  • Dmitry Golubkov,
  • Andrey Golutvin,
  • Alvaro Gomes,
  • Sergio Gomez Fernandez,
  • Fernanda Goncalves Abrantes,
  • Mateusz Goncerz,
  • Guanghua Gong,
  • Petr Gorbounov,
  • Igor Vladimirovich Gorelov,
  • Claudio Gotti,
  • Jascha Peter Grabowski,
  • Thomas Grammatico,
  • Luis Alberto Granado Cardoso,
  • Eugeni Graugés,
  • Elena Graverini,
  • Giacomo Graziani,
  • Alexandru Grecu,
  • Lex Marinus Greeven,
  • Nathan Allen Grieser,
  • Lucia Grillo,
  • Sergey Gromov,
  • Barak Raimond Gruberg Cazon,
  • Chenxi Gu,
  • Marco Guarise,
  • Manuel Guittiere,
  • Paul Andre Günther,
  • Evgeny Gushchin,
  • Andreas Guth,
  • Yury Guz,
  • Thierry Gys,
  • Thomas Hadavizadeh,
  • Guido Haefeli,
  • Christophe Haen,
  • Jakob Haimberger,
  • Susan Haines,
  • Tabitha Halewood-leagas,
  • Phoebe Meredith Hamilton,
  • Jan Patrick Hammerich,
  • Qundong Han,
  • Xiaoxue Han,
  • Eva Brottmann Hansen,
  • Stephanie Hansmann-Menzemer,
  • Neville Harnew,
  • Thomas Harrison,
  • Christoph Hasse,
  • Mark Hatch,
  • Jibo He,
  • Kevin Heijhoff,
  • Kevin Heinicke,
  • Riley Dylan Leslie Henderson,
  • Arthur Marius Hennequin,
  • Karol Hennessy,
  • Louis Henry,
  • Johannes Heuel,
  • Adlène Hicheur,
  • Donal Hill,
  • Martha Hilton,
  • Sophie Elizabeth Hollitt,
  • Ruiwe Hou,
  • Yingrui Hou,
  • Jiangqiao Hu,
  • Jifeng Hu,
  • Wenhua Hu,
  • Xiaofan Hu,
  • Wenqian Huang,
  • Xiaotao Huang,
  • Wouter Hulsbergen,
  • Ross John Hunter,
  • Mikhail Hushchyn,
  • David Hutchcroft,
  • Daniel Hynds,
  • Philipp Ibis,
  • Marek Idzik,
  • Dmitrii Ilin,
  • Philip Ilten,
  • Alexander Inglessi,
  • Aleksandr Iniukhin,
  • Artur Ishteev,
  • Kuzma Ivshin,
  • Richard Jacobsson,
  • Hendrik Jage,
  • Sune Jakobsen,
  • Eddy Jans,
  • Brij Kishor Jashal,
  • Abolhassan Jawahery,
  • Vukan Jevtic,
  • Xiaojie Jiang,
  • Malcolm John,
  • Daniel Johnson,
  • Christopher Jones,
  • Thomas Peter Jones,
  • Beat Jost,
  • Nathan Jurik,
  • Sergii Kandybei,
  • Youen Kang,
  • Matthias Karacson,
  • Dmitrii Karpenkov,
  • Maksim Karpov,
  • Jacob William Kautz,
  • Floris Keizer,
  • Dustin Michael Keller,
  • Matthew Kenzie,
  • Tjeerd Ketel,
  • Basem Khanji,
  • Anastasiia Kharisova,
  • Sergei Kholodenko,
  • Thomas Kirn,
  • Veronica Soelund Kirsebom,
  • Ouail Kitouni,
  • Suzanne Klaver,
  • Nico Kleijne,
  • Konrad Klimaszewski,
  • Mateusz Rafal Kmiec,
  • Serhii Koliiev,
  • Almagul Kondybayeva,
  • Anatoly Konoplyannikov,
  • Pawel Kopciewicz,
  • Renata Kopecna,
  • Patrick Koppenburg,
  • Mikhail Korolev,
  • Igor Kostiuk,
  • Oleksander Kot,
  • Sofia Kotriakhova,
  • Anastasiia Kozachuk,
  • Polina Kravchenko,
  • Leonid Kravchuk,
  • Rafal Dominik Krawczyk,
  • Michal Kreps,
  • Sophie Katharina Kretzschmar,
  • Pavel Krokovny,
  • Wojciech Krupa,
  • Wojciech Krzemien,
  • Jakub Kubat,
  • Marcin Kucharczyk,
  • Vasily Kudryavtsev,
  • Hilbrand Steffen Kuindersma,
  • Gerd Joachim Kunde,
  • Tengiz Kvaratskheliya,
  • Daniel Lacarrere,
  • George Lafferty,
  • Adriano Lai,
  • Andrea Lampis,
  • Davide Lancierini,
  • John Jake Lane,
  • Richard Lane,
  • Gaia Lanfranchi,
  • Christoph Langenbruch,
  • Jan Langer,
  • Oliver Lantwin,
  • Thomas Latham,
  • Federico Lazzari,
  • Renaud Le Gac,
  • Sook Hyun Lee,
  • Regis Lefèvre,
  • Alexander Leflat,
  • Sergey Legotin,
  • Olivier Leroy,
  • Tadeusz Lesiak,
  • Blake Leverington,
  • Hengne Li,
  • Peilian Li,
  • Shiyang Li,
  • Yiming Li,
  • Zhuoming Li,
  • Xixin Liang,
  • Tai-hua Lin,
  • Rolf Lindner,
  • Vitalii Lisovskyi,
  • Roman Litvinov,
  • Guoming Liu,
  • Huanhuan Liu,
  • Qian Liu,
  • Shuaiyi Liu,
  • Aniol Lobo Salvia,
  • Angelo Loi,
  • Riccardo Lollini,
  • Julian Lomba Castro,
  • Iain Longstaff,
  • Jose Lopes,
  • Saúl López Soliño,
  • George Holger Lovell,
  • Yu Lu,
  • Chiara Lucarelli,
  • Donatella Lucchesi,
  • Stanislav Luchuk,
  • Miriam Lucio Martinez,
  • Valeriia Lukashenko,
  • Yiheng Luo,
  • Anna Lupato,
  • Eleonora Luppi,
  • Oliver Lupton,
  • Alberto Lusiani,
  • Xiao-Rui Lyu,
  • Lishuang Ma,
  • Ruiting Ma,
  • Serena Maccolini,
  • Frederic Machefert,
  • Florin Maciuc,
  • Vladimir Macko,
  • Patrick Mackowiak,
  • Samuel Maddrell-Mander,
  • Lakshan Ram Madhan Mohan,
  • Oleg Maev,
  • Artem Maevskiy,
  • Dmitrii Maisuzenko,
  • Maciej Witold Majewski,
  • Jakub Jacek Malczewski,
  • Sneha Malde,
  • Bartosz Malecki,
  • Alexander Malinin,
  • Timofei Maltsev,
  • Hanna Malygina,
  • Giulia Manca,
  • Giampiero Mancinelli,
  • Daniele Manuzzi,
  • Claudio Andrea Manzari,
  • Daniele Marangotto,
  • Jan Maratas,
  • Jean François Marchand,
  • Umberto Marconi,
  • Saverio Mariani,
  • Carla Marin Benito,
  • Matthieu Marinangeli,
  • Jörg Marks,
  • Alexander Mclean Marshall,
  • Phillip John Marshall,
  • Gabriele Martelli,
  • Giuseppe Martellotti,
  • Loris Martinazzoli,
  • Maurizio Martinelli,
  • Diego Martinez Santos,
  • Fernando Martinez Vidal,
  • André Massafferri,
  • Marcel Materok,
  • Rosen Matev,
  • Abhijit Mathad,
  • Viacheslav Matiunin,
  • Clara Matteuzzi,
  • Kara Renee Mattioli,
  • Andrea Mauri,
  • Emilie Maurice,
  • Juan Mauricio,
  • Michal Kazimierz Mazurek,
  • Michael McCann,
  • Lucas Mcconnell,
  • Tamaki Holly Mcgrath,
  • Niall Thomas Mchugh,
  • Andrew McNab,
  • Ronan McNulty,
  • James Vincent Mead,
  • Brian Meadows,
  • Gerwin Meier,
  • Dmytro Melnychuk,
  • Simone Meloni,
  • Marcel Merk,
  • Andrea Merli,
  • Lucas Meyer Garcia,
  • Mikhail Mikhasenko,
  • Diego Alejandro Milanes,
  • Edward James Millard,
  • Marko Milovanovic,
  • Marie-Noelle Minard,
  • Alessandro Minotti,
  • Sara Elizabeth Mitchell,
  • Biljana Mitreska,
  • Dominik Stefan Mitzel,
  • Antje Mödden,
  • Rizwaan Adeeb Mohammed,
  • Razvan Daniel Moise,
  • Sergei Mokhnenko,
  • Titus Mombächer,
  • Igancio Alberto Monroy,
  • Stephane Monteil,
  • Mauro Morandin,
  • Gianfranco Morello,
  • Michael Joseph Morello,
  • Jakub Moron,
  • Adam Benjamin Morris,
  • Andrew George Morris,
  • Raymond Mountain,
  • Hongjie Mu,
  • Franz Muheim,
  • Mick Mulder,
  • Katharina Müller,
  • Colm Harold Murphy,
  • Donal Murray,
  • Rebecca Murta,
  • Piera Muzzetto,
  • Paras Naik,
  • Tatsuya Nakada,
  • Raja Nandakumar,
  • Tara Nanut,
  • Irina Nasteva,
  • Matthew Needham,
  • Nicola Neri,
  • Sebastian Neubert,
  • Niko Neufeld,
  • Ryan Newcombe,
  • Elisabeth Maria Niel,
  • Simon Nieswand,
  • Nikolay Nikitin,
  • Niklas Stefan Nolte,
  • Camille Normand,
  • Cynthia Nunez,
  • Agnieszka Oblakowska-Mucha,
  • Vladimir Obraztsov,
  • Thomas Oeser,
  • Daniel Patrick O'Hanlon,
  • Shinichi Okamura,
  • Rudolf Oldeman,
  • Federica Oliva,
  • Mario Edgardo Olivares,
  • C.J. G. Onderwater,
  • Ryunosuke Hugo O'Neil,
  • Juan Martin Otalora Goicochea,
  • Tatiana Ovsiannikova,
  • Patrick Owen,
  • Maria Aranzazu Oyanguren,
  • Ozlem Ozcelik,
  • Klaas Ole Padeken,
  • Bhagyashree Pagare,
  • Preema Rennee Pais,
  • Tommaso Pajero,
  • Antimo Palano,
  • Matteo Palutan,
  • Yue Pan,
  • Gennady Panshin,
  • Antonios Papanestis,
  • Marco Pappagallo,
  • Luciano Pappalardo,
  • Cheryl Pappenheimer,
  • William Parker,
  • Christopher Parkes,
  • Barbara Passalacqua,
  • Giovanni Passaleva,