page 2 of 19
(1706)Supermassive black hole spin evolution in cosmological simulations with OPENGADGET3
  • Luca Sala,
  • Milena Valentini,
  • Veronica Biffi,
  • Klaus Dolag
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202348925
abstract + abstract -

Context. The mass and spin of massive black holes (BHs) at the centre of galaxies evolve due to gas accretion and mergers with other BHs. Besides affecting the evolution of relativistic jets, for example, the BH spin determines the efficiency with which the BH radiates energy.
Aims: Using cosmological, hydrodynamical simulations, we investigate the evolution of the BH spin across cosmic time and its role in controlling the joint growth of supermassive BHs and their host galaxies.
Methods: We implemented a sub-resolution prescription that models the BH spin, accounting for both BH coalescence and misaligned accretion through a geometrically thin, optically thick disc. We investigated how BH spin evolves in two idealised setups, in zoomed-in simulations and in a cosmological volume. The latter simulation allowed us to retrieve statistically robust results for the evolution and distribution of BH spins as a function of BH properties.
Results: We find that BHs with MBH ≲ 2 × 107 M grow through gas accretion, occurring mostly in a coherent fashion that favours spin-up. Above MBH ≳ 2 × 107 M, the gas angular momentum directions of subsequent accretion episodes are often uncorrelated with each other. The probability of counter-rotating accretion and hence spin-down increases with BH mass. In the latter mass regime, BH coalescence plays an important role. The spin magnitude displays a wide variety of histories, depending on the dynamical state of the gas feeding the BH and the relative contribution of mergers and gas accretion. As a result of their combined effect, we observe a broad range of values of the spin magnitude at the high-mass end. Reorientation of the BH spin direction occurs on short timescales (≲ 10 Myr) only during highly accreting phases (ƒEdd ≳ 0.1). Our predictions for the distributions of BH spin and spin-dependent radiative efficiency as a function of BH mass are in very good agreement with observations.

Movie associated to Fig. 7 is available at https://www.aanda.org


(1705)Systematic comparison of neural networks used in discovering strong gravitational lenses
  • Anupreeta More,
  • Raoul Canameras,
  • Anton T. Jaelani,
  • Yiping Shu,
  • Yuichiro Ishida
  • +4
  • Kenneth C. Wong,
  • Kaiki Taro Inoue,
  • Stefan Schuldt,
  • Alessandro Sonnenfeld
  • (less)
abstract + abstract -

Efficient algorithms are being developed to search for strong gravitational lens systems owing to increasing large imaging surveys. Neural networks have been successfully used to discover galaxy-scale lens systems in imaging surveys such as the Kilo Degree Survey, Hyper-Suprime Cam (HSC) Survey and Dark Energy Survey over the last few years. Thus, it has become imperative to understand how some of these networks compare, their strengths and the role of the training datasets as most of the networks make use of supervised learning algorithms. In this work, we present the first-of-its-kind systematic comparison and benchmarking of networks from four teams that have analysed the HSC Survey data. Each team has designed their training samples and developed neural networks independently but coordinated apriori in reserving specific datasets strictly for test purposes. The test sample consists of mock lenses, real (candidate) lenses and real non-lenses gathered from various sources to benchmark and characterise the performance of each of the network. While each team's network performed much better on their own constructed test samples compared to those from others, all networks performed comparable on the test sample with real (candidate) lenses and non-lenses. We also investigate the impact of swapping the training samples amongst the teams while retaining the same network architecture. We find that this resulted in improved performance for some networks. These results have direct implications on measures to be taken for lens searches with upcoming imaging surveys such as the Rubin-Legacy Survey of Space and Time, Roman and Euclid.


(1704)(Re)mind the gap: a hiatus in star formation history unveiled by APOGEE DR17
  • E. Spitoni,
  • F. Matteucci,
  • R. Gratton,
  • B. Ratcliffe,
  • I. Minchev
  • +1
abstract + abstract -

The analysis of several spectroscopic surveys indicates the presence of a bimodality between the disc stars in the abundance ratio space of [${\alpha}$/Fe] versus [Fe/H]. The two stellar groups are commonly referred to as the high-${\alpha}$ and low-${\alpha}$ sequences. Some models capable of reproducing such a bimodality, invoke the presence of a hiatus in the star formation history in our Galaxy, whereas other models explain the two sequences by means of stellar migration. Our aim is to show that the existence of the gap in the star formation rate between high-$\alpha$ and low-$\alpha$ is evident in the stars of APOGEE DR17, if one plots [Fe/$\alpha$] versus [$\alpha$/H], thus confirming previous suggestions by Gratton et al. (1996) and Fuhrmann (1998). Then we try to interpret the data by means of detailed chemical models. We compare the APOGEE DR17 red giant stars with the predictions of a detailed chemical evolution model based on the two-infall paradigm, taking also into account possible accretion of dwarf satellites. The APOGEE DR17 abundance ratios [Fe/$\alpha$] versus [$\alpha$/H] exhibit a sharp increase of [Fe/$\alpha$] at a nearly constant [$\alpha$/H] (where $\alpha$ elements considered are Mg, Si, O) during the transition between the two disc phases. This observation strongly supports the hypothesis that a hiatus in star formation occurred during this evolutionary phase. Notably, the most pronounced growth in the [Fe/$\alpha$] versus [$\alpha$/H] relation is observed for oxygen, as this element is exclusively synthesised in core-collapse supernovae. A chemical model predicting a stop in the star formation of a duration of roughly 3.5 Gyr, and where the high-$\alpha$ disc starts forming from pre-enriched gas by a previous encounter with a dwarf galaxy can well explain the observations.


(1703)Insights into the broadband emission of the TeV blazar Mrk 501 during the first X-ray polarization measurements
  • MAGIC Collaboration,
  • S. Abe,
  • J. Abhir,
  • V. A. Acciari,
  • A. Aguasca-Cabot
  • +206
  • I. Agudo,
  • T. Aniello,
  • S. Ansoldi,
  • L. A. Antonelli,
  • A. Arbet Engels,
  • C. Arcaro,
  • K. Asano,
  • A. Babić,
  • A. Baquero,
  • U. Barres de Almeida,
  • J. A. Barrio,
  • I. Batković,
  • A. Bautista,
  • J. Baxter,
  • J. Becerra González,
  • W. Bednarek,
  • E. Bernardini,
  • M. Bernardos,
  • J. Bernete,
  • A. Berti,
  • J. Besenrieder,
  • C. Bigongiari,
  • A. Biland,
  • O. Blanch,
  • G. Bonnoli,
  • Ž. Bošnjak,
  • I. Burelli,
  • G. Busetto,
  • A. Campoy-Ordaz,
  • A. Carosi,
  • R. Carosi,
  • M. Carretero-Castrillo,
  • A. J. Castro-Tirado,
  • G. Ceribella,
  • Y. Chai,
  • A. Cifuentes,
  • E. Colombo,
  • J. L. Contreras,
  • J. Cortina,
  • S. Covino,
  • G. D'Amico,
  • V. D'Elia,
  • P. da Vela,
  • F. Dazzi,
  • A. de Angelis,
  • B. de Lotto,
  • R. de Menezes,
  • A. Del Popolo,
  • M. Delfino,
  • J. Delgado,
  • C. Delgado Mendez,
  • F. di Pierro,
  • L. di Venere,
  • D. Dominis Prester,
  • A. Donini,
  • D. Dorner,
  • M. Doro,
  • D. Elsaesser,
  • G. Emery,
  • J. Escudero,
  • L. Fariña,
  • A. Fattorini,
  • L. Foffano,
  • L. Font,
  • S. Fröse,
  • Y. Fukazawa,
  • R. J. García López,
  • M. Garczarczyk,
  • S. Gasparyan,
  • M. Gaug,
  • J. G. Giesbrecht Paiva,
  • N. Giglietto,
  • F. Giordano,
  • P. Gliwny,
  • N. Godinović,
  • T. Gradetzke,
  • R. Grau,
  • D. Green,
  • J. G. Green,
  • P. Günther,
  • D. Hadasch,
  • A. Hahn,
  • T. Hassan,
  • L. Heckmann,
  • J. Herrera,
  • D. Hrupec,
  • M. Hütten,
  • R. Imazawa,
  • K. Ishio,
  • I. Jiménez Martínez,
  • T. Kayanoki,
  • D. Kerszberg,
  • G. W. Kluge,
  • Y. Kobayashi,
  • P. M. Kouch,
  • H. Kubo,
  • J. Kushida,
  • M. Láinez Lezáun,
  • A. Lamastra,
  • F. Leone,
  • E. Lindfors,
  • L. Linhoff,
  • S. Lombardi,
  • F. Longo,
  • R. López-Coto,
  • M. López-Moya,
  • A. López-Oramas,
  • S. Loporchio,
  • A. Lorini,
  • E. Lyard,
  • B. Machado de Oliveira Fraga,
  • P. Majumdar,
  • M. Makariev,
  • G. Maneva,
  • N. Mang,
  • M. Manganaro,
  • S. Mangano,
  • K. Mannheim,
  • M. Mariotti,
  • M. Martínez,
  • M. Martínez-Chicharro,
  • A. Mas-Aguilar,
  • D. Mazin,
  • S. Menchiari,
  • S. Mender,
  • D. Miceli,
  • T. Miener,
  • J. M. Miranda,
  • R. Mirzoyan,
  • M. Molero González,
  • E. Molina,
  • H. A. Mondal,
  • A. Moralejo,
  • D. Morcuende,
  • T. Nakamori,
  • C. Nanci,
  • V. Neustroev,
  • C. Nigro,
  • L. Nikolić,
  • K. Nilsson,
  • K. Nishijima,
  • T. Njoh Ekoume,
  • K. Noda,
  • S. Nozaki,
  • Y. Ohtani,
  • A. Okumura,
  • J. Otero-Santos,
  • S. Paiano,
  • M. Palatiello,
  • D. Paneque,
  • R. Paoletti,
  • J. M. Paredes,
  • M. Peresano,
  • M. Persic,
  • M. Pihet,
  • G. Pirola,
  • F. Podobnik,
  • P. G. Prada Moroni,
  • E. Prandini,
  • G. Principe,
  • C. Priyadarshi,
  • W. Rhode,
  • M. Ribó,
  • J. Rico,
  • C. Righi,
  • N. Sahakyan,
  • T. Saito,
  • K. Satalecka,
  • F. G. Saturni,
  • B. Schleicher,
  • K. Schmidt,
  • F. Schmuckermaier,
  • J. L. Schubert,
  • T. Schweizer,
  • A. Sciaccaluga,
  • G. Silvestri,
  • J. Sitarek,
  • D. Sobczynska,
  • A. Spolon,
  • A. Stamerra,
  • J. Strišković,
  • D. Strom,
  • Y. Suda,
  • S. Suutarinen,
  • H. Tajima,
  • M. Takahashi,
  • R. Takeishi,
  • F. Tavecchio,
  • P. Temnikov,
  • K. Terauchi,
  • T. Terzić,
  • M. Teshima,
  • L. Tosti,
  • S. Truzzi,
  • A. Tutone,
  • S. Ubach,
  • J. van Scherpenberg,
  • S. Ventura,
  • I. Viale,
  • C. F. Vigorito,
  • V. Vitale,
  • I. Vovk,
  • R. Walter,
  • M. Will,
  • C. Wunderlich,
  • T. Yamamoto
  • (less)
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202348709
abstract + abstract -


Aims: We present the first multiwavelength study of Mrk 501 that contains simultaneous very-high-energy (VHE) γ-ray observations and X-ray polarization measurements from the Imaging X-ray Polarimetry Explorer (IXPE).
Methods: We used radio-to-VHE data from a multiwavelength campaign carried out between March 1, 2022, and July 19, 2022 (MJD 59639 to MJD 59779). The observations were performed by MAGIC, Fermi-LAT, NuSTAR, Swift (XRT and UVOT), and several other instruments that cover the optical and radio bands to complement the IXPE pointings. We characterized the dynamics of the broadband emission around the X-ray polarization measurements through its multiband fractional variability and correlations, and compared changes observed in the polarization degree to changes seen in the broadband emission using a multi-zone leptonic scenario.
Results: During the IXPE pointings, the VHE state is close to the average behavior, with a 0.2-1 TeV flux of 20%-50% of the emission of the Crab Nebula. Additionally, it shows low variability and a hint of correlation between VHE γ-rays and X-rays. Despite the average VHE activity, an extreme X-ray behavior is measured for the first two IXPE pointings, taken in March 2022 (MJD 59646 to 59648 and MJD 59665 to 59667), with a synchrotron peak frequency > 1 keV. For the third IXPE pointing, in July 2022 (MJD 59769 to 59772), the synchrotron peak shifts toward lower energies and the optical/X-ray polarization degrees drop. All three IXPE epochs show an atypically low Compton dominance in the γ-rays. The X-ray polarization is systematically higher than at lower energies, suggesting an energy stratification of the jet. While during the IXPE epochs the polarization angles in the X-ray, optical, and radio bands align well, we find a clear discrepancy in the optical and radio polarization angles in the middle of the campaign. Such results further support the hypothesis of an energy-stratified jet. We modeled broadband spectra taken simultaneous to the IXPE pointings, assuming a compact zone that dominates in the X-rays and the VHE band, and an extended zone stretching farther downstream in the jet that dominates the emission at lower energies. NuSTAR data allow us to precisely constrain the synchrotron peak and therefore the underlying electron distribution. The change between the different states observed in the three IXPE pointings can be explained by a change in the magnetization and/or the emission region size, which directly connects the shift in the synchrotron peak to lower energies with the drop in the polarization degree.

The MWL data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/685/A117


(1702)Chemical evolution of the Galactic bulge with different stellar populations
  • M. Molero,
  • F. Matteucci,
  • E. Spitoni,
  • A. Rojas-Arriagada,
  • R. M. Rich
abstract + abstract -

The metallicity distribution function (MDF) of the Galactic bulge features a multi-peak shape, with a metal-poor peak at [Fe/H]=-0.3 dex and a metal-rich peak at [Fe/H]=+0.3 dex. This bimodality is also seen in [alpha/Fe] versus [Fe/H] ratios, indicating different stellar populations in the bulge. We aim to replicate the observed MDF by proposing a scenario where the metal-poor bulge stars formed in situ during an intense star formation burst, while the metal-rich stars formed during a second burst and/or were accreted from the inner Galactic disk due to a growing bar. We used a chemical evolution model that tracks various chemical species with detailed nucleosynthesis, focusing on Fe production from both Type Ia supernovae and massive stars, including rotating massive stars with varying velocities. Our model also accounts for gas infall, outflow, and the effect of stellar migration. Results are compared to 13,000 stars from the SDSS/APOGEE survey within 3.5 kpc of the Galactic center. Our model successfully reproduces the double-peak shape of the bulge MDF and the alpha-element abundance trends relative to Fe by assuming (i) a multi-burst star formation history with a 250 Myr quenching of the first burst and (ii) stellar migration from the inner disk due to a growing bar. We estimate that about 40% of the bulge-bar's stellar mass originates from the inner disk. Nucleosynthesis models that assume either no rotation for massive stars or a rotational velocity distribution favoring slow rotation at high metallicities best match the observed MDF and [alpha/Fe] and [Ce/Fe] versus [Fe/H] abundance patterns.


(1701)Population Synthesis Models Indicate a Need for Early and Ubiquitous Disk Substructures
  • Luca Delussu,
  • Tilman Birnstiel,
  • Anna Miotello,
  • Paola Pinilla,
  • Giovanni Rosotti
  • +1
abstract + abstract -

Large mm surveys of star forming regions enable the study of entire populations of planet-forming disks and reveal correlations between their observable properties. Population studies of disks have shown that the correlation between disk size and millimeter flux could be explained either through disks with strong substructure, or alternatively by the effects of radial inward drift of growing dust particles. This study aims to constrain the parameters and initial conditions of planet-forming disks and address the question of the need for the presence of substructures in disks and, if needed, their predicted characteristics, based on the large samples of disk sizes, millimeter fluxes, and spectral indices available. We performed a population synthesis of the continuum emission of disks, exploiting a two-population model (two-pop-py), considering the influence of viscous evolution, dust growth, fragmentation, and transport varying the initial conditions of the disk and substructure to find the best match to the observed distributions. We show that the observed distributions of spectral indices, sizes, and luminosities together can be best reproduced by disks with significant substructure, namely a perturbation strong enough to be able to trap particles, and that is formed early in the evolution of the disk, that is within 0.4Myr. Agreement is reached by relatively high initial disk masses ($10^{-2.3}M_{\star}\leqslant M_{disk}\leqslant10^{-0.5}M_{\star}$) and moderate levels of turbulence ($10^{-3.5}\leqslant\alpha\leqslant 10^{-2.5}$). Other disk parameters play a weaker role. Only opacities with high absorption efficiency can reproduce the observed spectral indices. Our results extend to the whole population that substructure is likely ubiquitous, so far assessed only in individual disks and implies that most "smooth" disks hide unresolved substructure.


(1700)JWST Photometric Time-delay and Magnification Measurements for the Triply Imaged Type Ia "SN H0pe" at z = 1.78
  • J. D. R. Pierel,
  • B. L. Frye,
  • M. Pascale,
  • G. B. Caminha,
  • W. Chen
  • +58
  • S. Dhawan,
  • D. Gilman,
  • M. Grayling,
  • S. Huber,
  • P. Kelly,
  • S. Thorp,
  • N. Arendse,
  • S. Birrer,
  • M. Bronikowski,
  • R. Cañameras,
  • D. Coe,
  • S. H. Cohen,
  • C. J. Conselice,
  • S. P. Driver,
  • J. C. J. DŚilva,
  • M. Engesser,
  • N. Foo,
  • C. Gall,
  • N. Garuda,
  • C. Grillo,
  • N. A. Grogin,
  • J. Henderson,
  • J. Hjorth,
  • R. A. Jansen,
  • J. Johansson,
  • P. S. Kamieneski,
  • A. M. Koekemoer,
  • C. Larison,
  • M. A. Marshall,
  • L. A. Moustakas,
  • M. Nonino,
  • R. Ortiz,
  • T. Petrushevska,
  • N. Pirzkal,
  • A. Robotham,
  • R. E. Ryan,
  • S. Schuldt,
  • L. G. Strolger,
  • J. Summers,
  • S. H. Suyu,
  • T. Treu,
  • C. N. A. Willmer,
  • R. A. Windhorst,
  • H. Yan,
  • A. Zitrin,
  • A. Acebron,
  • S. Chakrabarti,
  • D. A. Coulter,
  • O. D. Fox,
  • X. Huang,
  • S. W. Jha,
  • G. Li,
  • P. A. Mazzali,
  • A. K. Meena,
  • I. Pérez-Fournon,
  • F. Poidevin,
  • A. Rest,
  • A. G. Riess
  • (less)
The Astrophysical Journal (05/2024) doi:10.3847/1538-4357/ad3c43
abstract + abstract -

Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H 0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located at z = 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for an H 0 inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δt ab = <inline-formula> <tex-math> $-{116.6}_{-9.3}^{+10.8}$ </tex-math> </inline-formula> observer-frame days and Δt cb = <inline-formula> <tex-math> $-{48.6}_{-4.0}^{+3.6}$ </tex-math> </inline-formula> observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution for H 0 assuming 70 km s‑1 Mpc‑1. We also constrain the absolute magnification of each image to μ a = <inline-formula> <tex-math> ${4.3}_{-1.8}^{+1.6}$ </tex-math> </inline-formula>, μ b = <inline-formula> <tex-math> ${7.6}_{-2.6}^{+3.6}$ </tex-math> </inline-formula>, μ c = <inline-formula> <tex-math> ${6.4}_{-1.5}^{+1.6}$ </tex-math> </inline-formula> by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.


(1699)Block Encodings of Discrete Subgroups on Quantum Computer
  • Henry Lamm,
  • Ying-Ying Li,
  • Jing Shu,
  • Yi-Lin Wang,
  • Bin Xu
abstract + abstract -

We introduce a block encoding method for mapping discrete subgroups to qubits on a quantum computer. This method is applicable to general discrete groups, including crystal-like subgroups such as $\mathbb{BI}$ of $SU(2)$ and $\mathbb{V}$ of $SU(3)$. We detail the construction of primitive gates -- the inversion gate, the group multiplication gate, the trace gate, and the group Fourier gate -- utilizing this encoding method for $\mathbb{BT}$ and for the first time $\mathbb{BI}$ group. We also provide resource estimations to extract the gluon viscosity. The inversion gates for $\mathbb{BT}$ and $\mathbb{BI}$ are benchmarked on the $\texttt{Baiwang}$ quantum computer with estimated fidelities of $40^{+5}_{-4}\%$ and $4^{+5}_{-3}\%$ respectively.


(1698)Active droplets through enzyme-free, dynamic phosphorylation
  • Simone M. Poprawa,
  • Michele Stasi,
  • Brigitte A. K. Kriebisch,
  • Monika Wenisch,
  • Judit Sastre
  • +1
Nature Communications (05/2024) doi:10.1038/s41467-024-48571-z
abstract + abstract -

Life continuously transduces energy to perform critical functions using energy stored in reactive molecules like ATP or NADH. ATP dynamically phosphorylates active sites on proteins and thereby regulates their function. Inspired by such machinery, regulating supramolecular functions using energy stored in reactive molecules has gained traction. Enzyme-free, synthetic systems that use dynamic phosphorylation to regulate supramolecular processes have not yet been reported, to our knowledge. Here, we show an enzyme-free reaction cycle that consumes the phosphorylating agent monoamidophosphate by transiently phosphorylating histidine and histidine-containing peptides. The phosphorylated species are labile and deactivate through hydrolysis. The cycle exhibits versatility and tunability, allowing for the dynamic phosphorylation of multiple precursors with a tunable half-life. Notably, we show the resulting phosphorylated products can regulate the peptide's phase separation, leading to active droplets that require the continuous conversion of fuel to sustain. The reaction cycle will be valuable as a model for biological phosphorylation but can also offer insights into protocell formation.


(1697)Stellar Variability and Distance Indicators in the Near-infrared in Nearby Galaxies. I. RR Lyrae and Anomalous Cepheids in Draco Dwarf Spheroidal
  • Anupam Bhardwaj,
  • Marina Rejkuba,
  • Chow-Choong Ngeow,
  • Marcella Marconi,
  • Vincenzo Ripepi
  • +2
  • Abhinna Sundar Samantaray,
  • Harinder P. Singh
  • (less)
The Astronomical Journal (05/2024) doi:10.3847/1538-3881/ad38b6
abstract + abstract -

The Draco Dwarf spheroidal (dSph) galaxy is one of the nearest and the most dark-matter-dominated satellites of the Milky Way. We obtained multiepoch near-infrared (NIR, JHK s ) observations of the central region of Draco dSph covering a sky area of ∼21' × 21' using the WIRCam instrument at the 3.6 m Canada–France–Hawaii Telescope. Homogeneous JHK s time-series photometry for 212 RR Lyrae (173 fundamental-mode, 24 first-overtone, and 15 mixed-mode variables) and five Anomalous Cepheids in Draco dSph are presented and used to derive their period–luminosity relations at NIR wavelengths for the first-time. The small scatter of ∼0.05 mag in these empirical relations for RR Lyrae stars is consistent with those in globular clusters and suggests a very small metallicity spread, up to ∼0.2 dex, among these centrally located variables. Based on empirically calibrated NIR period–luminosity–metallicity relations for RR Lyrae in globular clusters, we determined a distance modulus to Draco dSph of μ RRL = 19.557 ± 0.026 mag. The calibrated K s -band period–luminosity relations for Anomalous Cepheids in the Draco dSph and the Large Magellanic Cloud exhibit statistically consistent slopes but systematically different zero points, hinting at possible metallicity dependence of ∼ ‑ 0.3 mag dex‑1. Finally, the apparent magnitudes of the tip of the red-giant branch in I and J bands also agree well with their absolute calibrations with the adopted RR Lyrae distance to Draco. Our recommended ∼1.5% precise RR Lyrae distance, D Draco = 81.55 ± 0.98(statistical) ± 1.17(systematic) kpc, is the most accurate and precise distance to Draco dSph galaxy.


(1696)Five-parton scattering in QCD at two loops
  • Bakul Agarwal,
  • Federico Buccioni,
  • Federica Devoto,
  • Giulio Gambuti,
  • Andreas von Manteuffel
  • +1
Physical Review D (05/2024) doi:10.1103/PhysRevD.109.094025
abstract + abstract -

We compute all helicity amplitudes for the scattering of five partons in two-loop QCD in all the relevant flavor configurations, retaining all contributing color structures. We employ tensor projection to obtain helicity amplitudes in the 't Hooft-Veltman scheme starting from a set of primitive amplitudes. Our analytic results are expressed in terms of massless pentagon functions, and are easy to evaluate numerically. These amplitudes provide important input to investigations of soft-collinear factorization and to studies of the high-energy limit.


(1695)A Bayesian approach to strong lens finding in the era of wide-area surveys
  • Philip Holloway,
  • Philip J. Marshall,
  • Aprajita Verma,
  • Anupreeta More,
  • Raoul Cañameras
  • +3
  • Anton T. Jaelani,
  • Yuichiro Ishida,
  • Kenneth C. Wong
  • (less)
Monthly Notices of the Royal Astronomical Society (05/2024) doi:10.1093/mnras/stae875
abstract + abstract -

The arrival of the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST), Euclid-Wide and Roman wide-area sensitive surveys will herald a new era in strong lens science in which the number of strong lenses known is expected to rise from $\mathcal {O}(10^3)$ to $\mathcal {O}(10^5)$. However, current lens-finding methods still require time-consuming follow-up visual inspection by strong lens experts to remove false positives which is only set to increase with these surveys. In this work, we demonstrate a range of methods to produce calibrated probabilities to help determine the veracity of any given lens candidate. To do this we use the classifications from citizen science and multiple neural networks for galaxies selected from the Hyper Suprime-Cam survey. Our methodology is not restricted to particular classifier types and could be applied to any strong lens classifier which produces quantitative scores. Using these calibrated probabilities, we generate an ensemble classifier, combining citizen science, and neural network lens finders. We find such an ensemble can provide improved classification over the individual classifiers. We find a false-positive rate of 10-3 can be achieved with a completeness of 46 per cent, compared to 34 per cent for the best individual classifier. Given the large number of galaxy-galaxy strong lenses anticipated in LSST, such improvement would still produce significant numbers of false positives, in which case using calibrated probabilities will be essential for population analysis of large populations of lenses and to help prioritize candidates for follow-up.


(1694)First observation of single photons in a CRESST detector and new dark matter exclusion limits
  • CRESST Collaboration,
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento
  • +54
  • A. Bertolini,
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Garai,
  • V. M. Ghete,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • S. Kuckuk,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • B. Mauri,
  • L. Meyer,
  • V. Mokina,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • V. Wagner,
  • V. Zema
  • (less)
abstract + abstract -

The main goal of the CRESST-III experiment is the direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors. In this work we present the results of a Silicon-On-Sapphire (SOS) detector with a mass of 0.6$\,$g and an energy threshold of (6.7$\, \pm \,$0.2)$\,$eV with a baseline energy resolution of (1.0$\, \pm \,$0.2)$\,$eV. This allowed for a calibration via the detection of single luminescence photons in the eV-range, which could be observed in CRESST for the first time. We present new exclusion limits on the spin-independent and spin-dependent dark matter-nucleon cross section that extend to dark matter particle masses of less than 100$\,$MeV/c$^{2}$.


(1693)Development of a Bi-solvent Liquid Scintillator with Slow Light Emission
  • Hans Th. J. Steiger,
  • Matthias Raphael Stock,
  • Manuel Böhles,
  • Sarah Braun,
  • Edward J. Callaghan
  • +12
  • David Dörflinger,
  • Ulrike Fahrendholz,
  • Jonas Firsching,
  • Elias Fischer,
  • Tanner Kaptanoglu,
  • Lennard Kayser,
  • Meishu Lu,
  • Lothar Oberauer,
  • Gabriel D. Orebi Gann,
  • Korbinian Stangler,
  • Michael Wurm,
  • Dorina Zundel
  • (less)
abstract + abstract -

One of the most promising approaches for the next generation of neutrino experiments is the realization of large hybrid Cherenkov/scintillation detectors made possible by recent innovations in photodetection technology and liquid scintillator chemistry. The development of a potentially suitable future detector liquid with particularly slow light emission is discussed in the present publication. This cocktail is compared with respect to its fundamental characteristics (scintillation efficiency, transparency, and time profile of light emission) with liquid scintillators currently used in large-scale neutrino detectors. In addition, the optimization of the admixture of wavelength shifters for a scintillator with particularly high light emission is presented. Furthermore, the pulse-shape discrimination capabilities of the novel medium was studied using a pulsed particle accelerator driven neutron source. Beyond that, purification methods based on column chromatography and fractional vacuum distillation for the co-solvent DIN (Diisopropylnaphthalene) are discussed.


(1692)The missing quasar image in the gravitationally lensed quasar HE0230−2130: Implications for the cored lens mass distribution and dark satellites
  • S. Ertl,
  • S. Schuldt,
  • S. H. Suyu,
  • P. L. Schechter,
  • A. Halkola
  • +1
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202347689
abstract + abstract -

Strongly lensed systems with peculiar configurations allow us to probe the local properties of the deflecting lens mass while simultaneously testing general profile assumptions. The quasar HE0230−2130 is lensed by two galaxies at similar redshifts (Δz ∼ 0.003) into four observed images. Using modeled quasar positions from fitting the brightness of the quasar images in ground-based imaging data from the Magellan telescope, we find that lens-mass models where each of these two galaxies is parametrized with a singular power-law (PL) profile predict five quasar images. One of the predicted images is unobserved despite it being distinctively offset from the lensing galaxies and likely bright enough to be observable. This missing image gives rise to new opportunities to study the mass distribution of these galaxies. To interpret the quad configuration of the system, we tested 12 different profile assumptions with the aim of obtaining lens-mass models that correctly predict only four observed images. We tested the effects of adopting: cored profiles for the lensing galaxies; external shear; and additional profiles to represent a dark matter clump. We find that half of our model classes can produce the correct image multiplicity. By comparing the Bayesian evidence of different model parametrizations, we favor two model classes: (i) one that incorporates two singular PL profiles for the lensing galaxies and a cored isothermal sphere in the region of the previously predicted fifth image (rNIS profile), and (ii) one with a bigger lensing galaxy parametrized by a singular PL profile and the smaller galaxy by a cored PL profile with external shear. We estimated the mass of the rNIS clump for each candidate model of our final Markov chain Monte Carlo sample, and find that only 2% are in the range of 106 M ≤ MrNIS ≤ 109 M, which is the predicted mass range of dark matter subhalos in cold dark matter simulations, or the mass of dark-matter-dominated and low-surface-brightness galaxies. We therefore favor the models with a cored mass distribution for the lens galaxy close to the predicted fifth image. Our study further demonstrates that lensed quasar images are sensitive to the dark matter structure in the gravitational lens. We are able to describe this exotic lensing configuration with relatively simple models, which demonstrates the power of strong lensing for studying galaxies and lens substructure.


(1691)Tracing the rise of supermassive black holes. A panchromatic search for faint, unobscured quasars at z ≳ 6 with COSMOS-Web and other surveys
  • Irham T. Andika,
  • Knud Jahnke,
  • Masafusa Onoue,
  • John D. Silverman,
  • Itsna K. Fitriana
  • +18
  • Angela Bongiorno,
  • Malte Brinch,
  • Caitlin M. Casey,
  • Andreas Faisst,
  • Steven Gillman,
  • Ghassem Gozaliasl,
  • Christopher C. Hayward,
  • Michaela Hirschmann,
  • Dale Kocevski,
  • Anton M. Koekemoer,
  • Vasily Kokorev,
  • Erini Lambrides,
  • Minju M. Lee,
  • Robert Michael Rich,
  • Benny Trakhtenbrot,
  • Claudia Megan Urry,
  • Stephen M. Wilkins,
  • Aswin P. Vijayan
  • (less)
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202349025
abstract + abstract -

We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of Lbol = 1043-1046 erg s−1, residing in the reionization epoch within the redshift range of 6 ≲ z ≲ 8. These candidates were selected by harnessing the rich multiband datasets provided by the emerging JWST-driven extragalactic surveys, focusing on COSMOS-Web, as well as JADES, UNCOVER, CEERS, and PRIMER. Our search strategy includes two stages: applying stringent photometric cuts to catalog-level data and detailed spectral energy distribution fitting. These techniques effectively isolate the quasar candidates while mitigating contamination from low-redshift interlopers, such as brown dwarfs and nearby galaxies. The selected candidates indicate physical traits compatible with low-luminosity active galactic nuclei, likely hosting ≈105-107 M supermassive black holes (SMBHs) living in galaxies with stellar masses of ≈108-1010 M. The SMBHs selected in this study, on average, exhibit an elevated mass compared to their hosts, with the mass ratio distribution slightly higher than those of galaxies in the local Universe. As with other high-z studies, this is at least in part due to the selection method for these quasars. An extensive Monte Carlo analysis provides compelling evidence that heavy black hole seeds from the direct collapse scenario appear to be the preferred pathway to mature this specific subset of SMBHs by z ≈ 7. Notably, most of the selected candidates might have emerged from seeds with masses of ∼105 M, assuming a thin disk accretion with an average Eddington ratio of fEdd = 0.6 ± 0.3 and a radiative efficiency of ϵ = 0.2 ± 0.1. This work underscores the significance of further spectroscopic observations, as the quasar candidates presented here offer exceptional opportunities to delve into the nature of the earliest galaxies and SMBHs that formed during cosmic infancy.

FITS files and full Table B.1 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/685/A25


(1690)Interacting supernovae from wide massive binary systems
  • A. Ercolino,
  • H. Jin,
  • N. Langer,
  • L. Dessart
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202347646
abstract + abstract -

Context. The features in the light curves and spectra of many Type I and Type II supernovae (SNe) can be understood by assuming an interaction of the SN ejecta with circumstellar matter (CSM) surrounding the progenitor star. This suggests that many massive stars may undergo various degrees of envelope stripping shortly before exploding, and may therefore produce a considerable diversity in their pre-explosion CSM properties.
Aims: We explore a generic set of about 100 detailed massive binary evolution models in order to characterize the amount of envelope stripping and the expected CSM configurations.
Methods: Our binary models were computed with the MESA stellar evolution code, considering an initial primary star mass of 12.6 M and secondaries with initial masses of between ∼12 M and ∼1.3 M, and focus on initial orbital periods above ∼500 d. We compute these models up to the time of iron core collapse in the primary.
Results: Our models exhibit varying degrees of stripping due to mass transfer, resulting in SN progenitor models ranging from fully stripped helium stars to stars that have not been stripped at all. We find that Roche lobe overflow often leads to incomplete stripping of the mass donor, resulting in a large variety of pre-SN envelope masses. In many of our models, the red supergiant (RSG) donor stars undergo core collapse during Roche lobe overflow, with mass transfer and therefore system mass-loss rates of up to 0.01 M yr−1 at that time. The corresponding CSM densities are similar to those inferred for Type IIn SNe, such as <ASTROBJ>SN 1998S</ASTROBJ>. In other cases, the mass transfer becomes unstable, leading to a common-envelope phase at such late time that the mass donor explodes before the common envelope is fully ejected or the system has merged. We argue that this may cause significant pre-SN variability, as witnessed for example in <ASTROBJ>SN 2020tlf</ASTROBJ>. Other models suggest a common-envelope ejection just centuries before core collapse, which may lead to the strongest interactions, as observed in superluminous Type IIn SNe, such as <ASTROBJ>SN 1994W</ASTROBJ> and <ASTROBJ>SN 2006gy</ASTROBJ>.
Conclusions: Wide massive binaries exhibit properties that may not only explain the diverse envelope stripping inferred in Type Ib, IIb, IIL, and IIP SNe, but also offer a natural framework to understand a broad range of hydrogen-rich interacting SNe. On the other hand, the flash features observed in many Type IIP SNe, such as <ASTROBJ>SN 2013fs</ASTROBJ>, may indicate that RSG atmospheres are more extended than currently assumed; this could enhance the parameter space for wide binary interaction.


(1689)Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic Shower Simulations
  • Max Aehle,
  • Mihály Novák,
  • Vassil Vassilev,
  • Nicolas R. Gauger,
  • Lukas Heinrich
  • +2
abstract + abstract -

Among the well-known methods to approximate derivatives of expectancies computed by Monte-Carlo simulations, averages of pathwise derivatives are often the easiest one to apply. Computing them via algorithmic differentiation typically does not require major manual analysis and rewriting of the code, even for very complex programs like simulations of particle-detector interactions in high-energy physics. However, the pathwise derivative estimator can be biased if there are discontinuities in the program, which may diminish its value for applications. This work integrates algorithmic differentiation into the electromagnetic shower simulation code HepEmShow based on G4HepEm, allowing us to study how well pathwise derivatives approximate derivatives of energy depositions in a sampling calorimeter with respect to parameters of the beam and geometry. We found that when multiple scattering is disabled in the simulation, means of pathwise derivatives converge quickly to their expected values, and these are close to the actual derivatives of the energy deposition. Additionally, we demonstrate the applicability of this novel gradient estimator for stochastic gradient-based optimization in a model example.


(1688)FAUST. XIV. Probing the Flared Disk in L1527 with Sulfur-bearing Molecules
  • Ziwei E. Zhang,
  • Nami Sakai,
  • Satoshi Ohashi,
  • Nadia M. Murillo,
  • Claire J. Chandler
  • +19
  • Brian Svoboda,
  • Cecilia Ceccarelli,
  • Claudio Codella,
  • Luca Cacciapuoti,
  • Ross O'Donoghue,
  • Serena Viti,
  • Yuri Aikawa,
  • Eleonora Bianchi,
  • Paola Caselli,
  • Steven Charnley,
  • Tomoyuki Hanawa,
  • Izaskun Jímenez-Serra,
  • Hauyu Baobab Liu,
  • Laurent Loinard,
  • Yoko Oya,
  • Linda Podio,
  • Giovanni Sabatini,
  • Charlotte Vastel,
  • Satoshi Yamamoto
  • (less)
The Astrophysical Journal (05/2024) doi:10.3847/1538-4357/ad3921
abstract + abstract -

IRAS04368+2557 in L1527 is a Class 0/I protostar with a clear disk-envelope system revealed by previous Atacama Large Millimeter/submillimeter Array (ALMA) observations. In this paper, we discuss the flared structure of this source with observed sulfur-bearing molecules included in the FAUST ALMA large program. The analyses of molecular distributions and kinematics have shown that CS, SO, and OCS trace different regions of the disk-envelope system. To evaluate the temperature across the disk, we derive rotation temperature with the two observed SO lines. The temperature profile shows a clear, flared "butterfly" structure with the higher temperature being ∼50 K and the central lower temperature region (<30 K) coinciding with the continuum peak, suggesting dynamically originated heating rather than radiation heating from the central protostar. Other physical properties, including column densities, are also estimated and further used to demonstrate the vertical structure of the disk-envelope system. The "warped" disk structure of L1527 is confirmed with our analyses, showing that sulfur-bearing molecules are not only effective material probes but also sufficient for structural studies of protostellar systems.


(1687)How non-thermal pressure impacts the modelling of star formation in galaxy formation simulations
  • Eirini Batziou,
  • Ulrich P. Steinwandel,
  • Klaus Dolag,
  • Milena Valentini
abstract + abstract -

In cosmological simulations of large-scale structure star formation and feedback in galaxies are modelled by so-called sub-grid models, that represent a physically motivated approximation of processes occurring below the resolution limit. However, when additional physical processes are considered in these simulations, for instance, magnetic fields or cosmic rays, they are often not consistently coupled within the descriptions of the underlying sub-grid star formation models. Here, we present a careful study on how one of the most commonly used sub-grid models for star formation in current large-scale cosmological simulations can be modified to self consistently include the effects of non-thermal components (e.g., magnetic fields) within the fluid. We demonstrate that our new modelling approach, that includes the magnetic pressure as an additional regulation on star formation, can reproduce global properties of the magnetic field within galaxies in a setup of an isolated Milky Way-like galaxy simulation, but is also successful in reproducing local properties such as the anti-correlation between the local magnetic field strength with the local star formation rate as observed in galaxies (i.e. NGC 1097). This reveals how crucial a consistent treatment of different physical processes is within cosmological simulations and gives guidance for future simulations.


(1686)Disentangling new physics in $K\rightarrow\pi\bar{\nu}\nu$ and $B\rightarrow K(K^*)\bar{\nu}\nu$ observables
  • Andrzej J. Buras,
  • Julia Harz,
  • Martin A. Mojahed
abstract + abstract -

We investigate the possibility of disentangling different new physics contributions to the rare meson decays $K\rightarrow\pi+\displaystyle{\not}E$ and $B\rightarrow K(K^*)+\displaystyle{\not}E$ through kinematic distributions in the missing energy $\displaystyle{\not}E$. We employ dimension-$6$ operators within the Low-Energy Effective Field Theory (LEFT), identifying the invisible part of the final state as either active or sterile neutrinos. Special emphasis is given to lepton-number violating (LNV) operators with scalar and tensor currents. We show analytically that contributions from scalar, vector, and tensor quark currents can be uniquely determined from experimental data of kinematic distributions. In addition, we present new correlations of branching ratios for $K$ and $B$-decays involving scalar and tensor currents. As there could a priori also be new invisible particles in the final states, we include dark-sector operators giving rise to two dark scalars, fermions, or vectors in the final state. In this context, we present new calculations of the inclusive decay rate $B\rightarrow X_s+\displaystyle{\not}E$ for dark operators. We show that careful measurements of kinematic distributions make it theoretically possible to disentangle the contribution from LEFT operators from most of the dark-sector operators, even when multiple operators are contributing. We revisit sum rules for vector currents in LEFT and show that the latter are also satisfied in some new dark-physics scenarios that could mimic LEFT. Finally, we point out that an excess in rare meson decays consistent with a LNV hypothesis would point towards highly flavor non-democratic physics in the UV, and could put high-scale leptogenesis under tension.


(1685)Star clusters forming in a low-metallicity starburst - rapid self-enrichment by (very) massive stars
  • Natalia Lahén,
  • Thorsten Naab,
  • Dorottya Szécsi
Monthly Notices of the Royal Astronomical Society (05/2024) doi:10.1093/mnras/stae904
abstract + abstract -

Stellar winds of massive ($\gtrsim 9\, \mathrm{M_\odot }$) and very massive ($\gtrsim 100\, \mathrm{M_\odot }$) stars may play an important role in the metal-enrichment during the formation of star clusters. With novel high-resolution hydrodynamical GRIFFIN-project simulations, we investigate the rapid recycling of stellar wind-material during the formation of massive star clusters up to $M_\mathrm{cluster}\sim 2\times 10^5\, \mathrm{M_\odot }$ in a low-metallicity dwarf galaxy starburst. The simulation realizes new stars from a stellar initial mass function (IMF) between $0.08$ and $\sim 400\, \mathrm{M_\odot }$ and follows stellar winds, radiation and supernova-feedback of single massive stars with evolution tracks. Star clusters form on time-scales less than ~5 Myr, and their supernova-material is very inefficiently recycled. Stellar wind-material, however, is trapped in massive clusters resulting in the formation of stars self-enriched in Na, Al, and N within only a few Myr. Wind-enriched (second population, 2P) stars can be centrally concentrated in the most massive clusters ($\gtrsim 10^4\, \mathrm{M_\odot }$) and the locked wind-material increases approximately as $M_\mathrm{cluster}^{2}$. These trends resemble the characteristics of observed 2P stars in globular clusters (GCs). We fit scaling relations to the lognormal distributed wind-mass fractions and extrapolate to possible GC progenitors of $M_\mathrm{cluster}=10^7\, \mathrm{M_\odot }$ to investigate whether a dominant 2P could form. This can only happen if the IMF is well-sampled, single massive stars produce at least a factor of a few more enriched winds, for example, through a top-heavy IMF, and a significant fraction of the first population (unenriched) stars is lost during cluster evolution.


(1684)The impact of stellar population synthesis choices on forward-modelling-based redshift distribution estimates
  • Luca Tortorelli,
  • Jamie McCullough,
  • Daniel Gruen
abstract + abstract -

The forward-modelling of galaxy surveys has recently gathered interest as one of the primary methods to achieve the precision on the estimate of the redshift distributions required by stage IV surveys. One of the key aspects of forward-modelling is the connection between the physical properties of galaxies and their intrinsic spectral energy distributions (SEDs), achieved through stellar population synthesis (SPS) codes, e.g. FSPS. However, SPS requires many detailed assumptions about the galaxy constituents, for which the model choice or parameters are currently uncertain. In this work, we perform a sensitivity study of the impact that the SED modelling choices variations have on the mean and scatter of the tomographic galaxy redshift distributions. We use the Prospector-$\beta$ model and its SPS parameters to build observed magnitudes of a fiducial sample of galaxies. We then build new samples by varying one SED modelling choice at a time. We model the colour-redshift relation of these galaxy samples using the KiDS-VIKING remapped version (McCullough et al. 2023) of the Masters et al. (2015) SOM. We place galaxies in the SOM cells according to the simulated galaxy colours. We then build color-selected tomographic bins and compare each variant's binned redshift distributions against the estimates obtained for the fiducial model. We find that the SED components related to the IMF, AGN, gas physics, and attenuation law substantially bias the mean and the scatter of the tomographic redshift distributions with respect to those estimated with the fiducial model. For the uncertainty of these choices currently present in the literature, and regardless of any stellar mass function based reweighting strategy applied, the bias in the mean and the scatter of the tomographic redshift distributions is larger than the precision requirements set by Stage IV galaxy surveys, e.g. LSST and Euclid.


RU-D
(1683)Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): The SPHERE view of the Orion star-forming region
  • P. -G. Valegård,
  • C. Ginski,
  • A. Derkink,
  • A. Garufi,
  • C. Dominik
  • +15
  • Á. Ribas,
  • J. P. Williams,
  • M. Benisty,
  • T. Birnstiel,
  • S. Facchini,
  • G. Columba,
  • M. Hogerheijde,
  • R. G. van Holstein,
  • J. Huang,
  • M. Kenworthy,
  • C. F. Manara,
  • P. Pinilla,
  • Ch. Rab,
  • R. Sulaiman,
  • A. Zurlo
  • (less)
Astronomy and Astrophysics (05/2024) doi:10.1051/0004-6361/202347452
abstract + abstract -

Context. Resolved observations at near-infrared (near-IR) and millimeter wavelengths have revealed a diverse population of planet-forming disks. In particular, near-IR scattered light observations usually target close-by, low-mass star-forming regions. However, disk evolution in high-mass star-forming regions is likely affected by the different environment. Orion is the closest high-mass star-forming region, enabling resolved observations to be undertaken in the near-IR.
Aims: We seek to examine planet-forming disks, in scattered light, within the high-mass star-forming region of Orion in order to study the impact of the environment in a higher-mass star-forming region on disk evolution.
Methods: We present SPHERE/IRDIS H-band data for a sample of 23 stars in the Orion star-forming region observed within the DESTINYS (Disk Evolution Study Through Imaging of Nearby Young Stars) program. We used polarization differential imaging in order to detect scattered light from circumstellar dust. From the scattered light observations we characterized the disk orientation, radius, and contrast. We analysed the disks in the context of the stellar parameters and the environment of the Orion star-forming region. We used ancillary X-shooter spectroscopic observations to characterize the central stars in the systems. We furthermore used a combination of new and archival ALMA mm-continuum photometry to characterize the dust masses present in the circumstellar disks.
Results: Within our sample, we detect extended circumstellar disks in ten of 23 systems. Of these, three are exceptionally extended (V351 Ori, V599 Ori, and V1012 Ori) and show scattered light asymmetries that may indicate perturbations by embedded planets or (in the case of V599 Ori) by an outer stellar companion. Our high-resolution imaging observations are also sensitive to close (sub)stellar companions and we detect nine such objects in our sample, of which six were previously unknown. We find in particular a possible substellar companion (either a very low-mass star or a high-mass brown dwarf) 137 au from the star RY Ori. We find a strong anticorrelation between disk detection and multiplicity, with only two of our ten disk detections located in stellar multiple systems. We also find a correlation between scattered light contrast and the millimeter flux. This trend is not captured by previous studies of a more diversified sample and is due to the absence of extended, self-shadowed disks in our Orion sample. Conversely, we do not find significant correlations between the scattered light contrast of the disks and the stellar mass or age. We investigate the radial extent of the disks and compare this to the estimated far-ultraviolet (FUV) field strength at the system location. While we do not find a direct correlation, we notice that no extended disks are detected above an FUV field strength of ~300 G0.


(1682)An Empirical Calibration of the Tip of the Red Giant Branch Distance Method in the Near Infrared. I. Hubble Space Telescope WFC3/IR F110W and F160W Filters
  • Max J. B. Newman,
  • Kristen B. W. McQuinn,
  • Evan D. Skillman,
  • Martha L. Boyer,
  • Roger E. Cohen
  • +2
  • Andrew E. Dolphin,
  • O. Grace Telford
  • (less)
The Astrophysical Journal (05/2024) doi:10.3847/1538-4357/ad306d
abstract + abstract -

The tip of the red giant branch (TRGB) based distance method in the I band is one of the most efficient and precise techniques for measuring distances to nearby galaxies (D ≲ 15 Mpc). The TRGB in the near-infrared (NIR) is 1–2 mag brighter relative to the I band, and has the potential to expand the range over which distance measurements to nearby galaxies are feasible. Using Hubble Space Telescope (HST) imaging of 12 fields in eight nearby galaxies, we determine color-based corrections and zero-points of the TRGB in the Wide Field Camera 3 IR (WFC3/IR) F110W and F160W filters. First, we measure TRGB distances in the I band equivalent Advanced Camera System (ACS) F814W filter from resolved stellar populations with the HST. The TRGB in the ACS F814W filter is used for our distance anchor and to place the WFC3/IR magnitudes on an absolute scale. We then determine the color dependence (a proxy for metallicity/age) and zero-point of the NIR TRGB from photometry of WFC3/IR fields that overlap with the ACS fields. The new calibration is accurate to ∼1% in distance relative to the F814W TRGB. Validating the accuracy of the calibrations, we find that the distance modulus for each field using the NIR TRGB calibration agrees with the distance modulus of the same field as determined from the F814W TRGB. This is a JWST preparatory program, and the work done here will directly inform our approach to calibrating the TRGB in JWST NIRCam and NIRISS photometric filters.


(1681)Comparing bulge RR Lyrae stars with bulge giants -- Insight from 3D kinematics
  • J. Olivares Carvajal,
  • M. Zoccali,
  • M. De Leo,
  • R. Contreras Ramos,
  • C. Quezada
  • +4
  • Á. Rojas-Arriagada,
  • E. Valenti,
  • R. Albarracín,
  • Á. Valenzuela Navarro
  • (less)
abstract + abstract -

The structure and kinematics of the old component of the Galactic bulge are still a matter of debate. The bulk of the bulge as traced by red clump stars includes two main components, which are usually identified as the metal-rich and metal-poor components. They have different shapes, kinematics, mean metallicities, and alpha-element abundances. It is our current understanding that they are associated with a bar and a spheroid, respectively. On the other hand, RR Lyrae variables trace the oldest population of the bulge. While it would be natural to think that they follow the structure and kinematics of the metal-poor component, the data analysed in the literature show conflicting results. We aim to derive a rotation curve for bulge RR Lyrae stars in order to determine that the old component traced by these stars is distinct from the two main components observed in the Galactic bulge. This paper combines APOGEE-2S spectra with OGLE-IV light curves, near-IR photometry, and proper motions from the VISTA Variables in the Vía Láctea survey for 4197 RR Lyrae stars. Six-dimensional phase-space coordinates were used to calculate orbits within an updated Galactic potential and to isolate the stars. The stars that stay confined within the bulge represent 57% of our sample. Our results show that bulge RR Lyrae variables rotate more slowly than metal-rich red clump stars and have a lower velocity dispersion. Their kinematics is compatible with them being the low-metallicity tail of the metal-poor component. We confirm that a rather large fraction of halo RR Lyrae stars pass by the bulge within their orbits, increasing the velocity dispersion. A proper orbital analysis is therefore critical to isolate bona fide bulge variables. Finally, bulge RR Lyrae seem to trace a spheroidal component, although the current data do now allow us to reach a firm conclusion about the spatial distribution.


(1680)Confronting sparse Gaia DR3 photometry with TESS for a sample of about 60,000 hot massive non-radial pulsators
  • Daniel Hey,
  • Conny Aerts
abstract + abstract -

The Gaia mission has delivered hundreds of thousands of variable star light curves in multiple wavelengths. Recent work demonstrates that these light curves can be used to identify (non-)radial pulsations in the OBAF-type stars, despite the irregular cadence and low light curve precision of order a few mmag. With the considerably more precise TESS photometry, we revisit these candidate pulsators to conclusively ascertain the nature of their variability. We seek to re-classify the Gaia light curves with the first two years of TESS photometry for a sample of 58,970 p- and g- mode pulsators, encompassing gamma Dor, delta Scuti, SPB, and beta Cep variables. We also supply four new catalogues containing the confirmed pulsators, along with their dominant and secondary pulsation frequencies, the number of independent mode frequencies, and a ranking according to their usefulness for future asteroseismic ensemble analysis. We find that the Gaia photometry is exceptionally accurate for detecting the dominant and secondary frequencies, reaching approximately 80% accuracy in frequency for p- and g-mode pulsators. The majority of Gaia classifications are consistent with the classifications from the TESS data, illustrating the power of the low-cadence Gaia photometry for pulsation studies. We find that the sample of g-mode pulsators forms a continuous group of variable stars along the main sequence across B, A, and F spectral types, implying that the mode excitation mechanisms for all these pulsators need to be updated with improved physics. Finally, we provide a rank-ordered table of pulsators according to their asteroseismic potential for follow-up studies. Our catalogue offers a major increase in the number of confirmed gravity-mode pulsators with an identified dominant mode suitable for follow-up TESS ensemble asteroseismology of such stars.


(1679)Simple fits for the neutrino luminosities from protoneutron star cooling
  • Giuseppe Lucente,
  • Malte Heinlein,
  • H. -Thomas Janka,
  • Alessandro Mirizzi
abstract + abstract -

We propose a simple fit function, $L_{\nu_i}(t) = C\, t^{-\alpha}\, e^{-(t/\tau)^{n}}$, to parametrize the luminosities of neutrinos and antineutrinos of all flavors during the protoneutron star (PNS) cooling phase at post-bounce times $t \gtrsim 1$ s. This fit is based on results from a set of neutrino-hydrodynamics simulations of core-collapse supernovae in spherical symmetry. The simulations were performed with an energy-dependent transport for six neutrino species and took into account the effects of convection and muons in the dense and hot PNS interior. We provide values of the fit parameters $C$, $\alpha$, $\tau$, and $n$ for different neutron star masses and equations of state as well as correlations between these fit parameters. Our functional description is useful for analytic supernova modeling, for characterizing the neutrino light curves in large underground neutrino detectors, and as a tool to extract information from measured signals on the mass and equation of state of the PNS and on secondary signal components on top of the PNS's neutrino emission.


(1678)Development, Characterization and Production of a novel Water-based Liquid Scintillator based on the Surfactant TRITON X-100
  • Hans Th. J. Steiger,
  • Manuel Böhles,
  • Matthias Raphael Stock,
  • Michael Wurm,
  • David Dörflinger
  • +5
  • Ulrike Fahrendholz,
  • Anastasia Mpoukouvalas,
  • Lothar Oberauer,
  • Andreas Steiger,
  • Dorina Zundel
  • (less)
abstract + abstract -

Water-based Liquid Scintillator (WbLS) is a novel detector medium for particle physics experiments. Applications range from the use as hybrid Cherenkov/scintillation target in low-energy and accelerator neutrino experiments to large-volume neutron vetoes for dark matter detectors. Here, we present a novel WbLS featuring new components (the surfactant Triton-X and vitamin C for long-term stability), a new production recipe, and a thorough characterization of its properties. Moreover, based on neutron scattering data we are able to demonstrate that the pulse shape discrimination capabilities of this particular LS are comparable to fully-organic LAB based scintillators.


CN-2
RU-C
(1677)Acyl phosphates as chemically fueled building blocks for self-sustaining protocells
  • Oleksii Zozulia ,
  • Kriebisch Kriebisch,
  • Brigitte Kriebisch,
  • Héctor Soria Carrera,
  • Kingu Rici Ryadi
  • +2
abstract + abstract -

Lipids can spontaneously assemble into vesicle-forming membranes. Such vesicles serve as compartments for even the simplest living systems. Vesicles have been extensively studied for constructing synthetic cells or as models for protocells—the cells hypothesized to have existed before life. These compartments exist almost always close to equilibrium. Life, however, exists out of equilibrium. In this work, we studied vesicle-based compartments regulated by a non-equilibrium chemical reaction network that converts activating agents. Specifically, we use activating agents to condense carboxylates and phosphate esters into acylphosphate-based lipids that form vesicles. These vesicles can only be sustained when condensing agents are present, and without them, they decay. We demonstrate that the chemical reaction network can operate on prebiotic activating agents, opening the door to prebiotically plausible, self-sustainable protocells that compete for resources. In future work, such protocells should be endowed with a genotype, for example, based on self-replicating RNA structures that affect the protocell behavior to enable Darwinian evolution in a prebiotically plausible chemical system.


(1676)The first spatio-spectral Bayesian imaging of SN1006 in X-rays
  • M. Westerkamp,
  • V. Eberle,
  • M. Guardiani,
  • P. Frank,
  • L. Scheel-Platz
  • +4
  • P. Arras,
  • J. Knollmüller,
  • J. Stadler,
  • T. Enßlin
  • (less)
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202347750
abstract + abstract -

Supernovae (SNs) are an important source of energy in the interstellar medium. Young remnants of supernovae (SNRs) exhibit peak emission in the X-ray region, making them interesting objects for X-ray observations. In particular, the supernova remnant SN1006 is of great interest due to its historical record, proximity, and brightness. Thus, it has been studied with a number of X-ray telescopes. Improving X-ray imaging of this and other remnants is an important but challenging task, as it often requires multiple observations with different instrument responses to image the entire object. Here, we use Chandra observations to demonstrate the capabilities of Bayesian image reconstruction using information field theory (IFT). Our objective is to reconstruct denoised, deconvolved, and spatio-spectral resolved images from X-ray observations and to decompose the emission into different morphologies, namely, diffuse and point-like. Further, we aim to fuse data from different detectors and pointings into a mosaic and quantify the uncertainty of our result. By utilizing prior knowledge on the spatial and spectral correlation structure of the diffuse emission and point sources, this method allows for the effective decomposition of the signal into these two components. In order to accelerate the imaging process, we introduced a multi-step approach, in which the spatial reconstruction obtained for a single energy range is used to derive an informed starting point for the full spatio-spectral reconstruction. We applied this method to 11 Chandra observations of SN1006 from 2008 and 2012, providing a detailed, denoised, and decomposed view of the remnant. In particular, the separated view of the diffuse emission ought to provide new insights into the complex, small-scale structures in the center of the remnant and at the shock front profiles. For example, our analysis reveals sharp X-ray flux increases by up to two orders of magnitude at the shock fronts of SN1006.


(1675)Tidal disruption events and dark matter scatterings with neutrinos and photons
  • Motoko Fujiwara,
  • Gonzalo Herrera
Physics Letters B (04/2024) doi:10.1016/j.physletb.2024.138573
abstract + abstract -

Stars can be tidally disrupted when passing near a black hole, and the debris can induce a flux of high-energy neutrinos. It has been discussed that there are hints in IceCube data of high-energy neutrinos produced in Tidal Disruption Events. The emitting region of neutrinos and photons in these astrophysical events is likely to be located in the vicinity of the central black hole, where the dark matter density might be significantly larger than in the outer regions of the galaxy. We explore the potential attenuation of the emitted neutrino and photon fluxes due to interactions with dark matter particles around the supermassive black hole of the host galaxies of AT2019dsg, AT2019fdr and AT2019aalc, and study the implications for some well-motivated models of dark matter-neutrino and dark matter-photon interactions. Furthermore, we discuss the complementarity of our constraints with values of the dark matter-neutrino scattering cross section proven to alleviate some cosmological tensions.


(1674)Small Magellanic Cloud Cepheids Observed with the Hubble Space Telescope Provide a New Anchor for the SH0ES Distance Ladder
  • Louise Breuval,
  • Adam G. Riess,
  • Stefano Casertano,
  • Wenlong Yuan,
  • Lucas M. Macri
  • +5
  • Martino Romaniello,
  • Yukei S. Murakami,
  • Daniel Scolnic,
  • Gagandeep S. Anand,
  • Igor Soszyński
  • (less)
abstract + abstract -

We present photometric measurements of 88 Cepheid variables in the core of the Small Magellanic Cloud (SMC), the first sample obtained with the Hubble Space Telescope (HST) and Wide Field Camera 3, in the same homogeneous photometric system as past measurements of all Cepheids on the SH0ES distance ladder. We limit the sample to the inner core and model the geometry to reduce errors in prior studies due to the non-trivial depth of this Cloud. Without crowding present in ground-based studies, we obtain an unprecedentedly low dispersion of 0.102 mag for a Period-Luminosity relation in the SMC, approaching the width of the Cepheid instability strip. The new geometric distance to 15 late-type detached eclipsing binaries in the SMC offers a rare opportunity to improve the foundation of the distance ladder, increasing the number of calibrating galaxies from three to four. With the SMC as the only anchor, we find H$_0\!=\!74.1 \pm 2.1$ km s$^{-1}$ Mpc$^{-1}$. Combining these four geometric distances with our HST photometry of SMC Cepheids, we obtain H$_0\!=\!73.17 \pm 0.86$ km s$^{-1}$ Mpc$^{-1}$. By including the SMC in the distance ladder, we also double the range where the metallicity ([Fe/H]) dependence of the Cepheid Period-Luminosity relation can be calibrated, and we find $\gamma = -0.22 \pm 0.05$ mag dex$^{-1}$. Our local measurement of H$_0$ based on Cepheids and Type Ia supernovae shows a 5.8$\sigma$ tension with the value inferred from the CMB assuming a $\Lambda$CDM cosmology, reinforcing the possibility of physics beyond $\Lambda$CDM.


(1673)SN 2024ggi in NGC 3621: Rising Ionization in a Nearby, CSM-Interacting Type II Supernova
  • W. V. Jacobson-Galán,
  • K. W. Davis,
  • C. D. Kilpatrick,
  • L. Dessart,
  • R. Margutti
  • +26
  • R. Chornock,
  • R. J. Foley,
  • P. Arunachalam,
  • K. Auchettl,
  • C. R. Bom,
  • R. Cartier,
  • D. A. Coulter,
  • G. Dimitriadis,
  • D. Dickinson,
  • M. R. Drout,
  • A. T. Gagliano,
  • C. Gall,
  • B. Garretson,
  • L. Izzo,
  • D. O. Jones,
  • N. LeBaron,
  • H. -Y. Miao,
  • D. Milisavljevic,
  • Y. -C. Pan,
  • A. Rest,
  • C. Rojas-Bravo,
  • A. Santos,
  • H. Sears,
  • B. M. Subrayan,
  • K. Taggart,
  • S. Tinyanont
  • (less)
abstract + abstract -

We present UV/optical/NIR observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time ("flash") spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of H I, He I, C III, and N III with a narrow core and broad, symmetric wings (i.e., IIn-like) arising from the photoionized, optically-thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout. By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of He II, C IV, N IV/V and O V became visible. This phenomenon is temporally consistent with a blueward shift in the UV/optical colors, both likely the result of shock breakout in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale of $t_{\rm IIn} = 3.8 \pm 1.6$ days at which time a reduction in CSM density allows the detection of Doppler broadened features from the fastest SN material. SN 2024ggi has peak UV/optical absolute magnitudes of $M_{\rm w2} = -18.7$ mag and $M_{\rm g} = -18.1$ mag that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium (nLTE) radiative-transfer simulations suggests a progenitor mass-loss rate of $\dot{M} = 10^{-2}$M$_{\odot}$ yr$^{-1}$ ($v_w$ = 50 km/s), confined to a distance of $r < 5\times 10^{14}$ cm. Assuming a wind velocity of $v_w$ = 50 km/s, the progenitor star underwent an enhanced mass-loss episode in the last ~3 years before explosion.


IDSL
RU-E
(1672)Heat flows enrich prebiotic building blocks and enhance their reactivity
  • Thomas Matreux,
  • Paula Aikkila,
  • Bettina Scheu,
  • Dieter Braun,
  • Christof B. Mast
abstract + abstract -

The emergence of biopolymer building blocks is a crucial step during the origins of life. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine, in which the selective purification of trimetaphosphate (TMP) increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


CN-4
MIAPbP
(1671)Towards early-type eclipsing binaries as extragalactic milestones: III. Physical properties of the O-type eclipsing binary OGLE LMC-ECL-21568 in a quadruple system
  • Mónica Taormina,
  • R. -P. Kudritzki,
  • B. Pilecki,
  • G. Pietrzyński,
  • I. B. Thompson
  • +6
  • J. Puls,
  • M. Górski,
  • B. Zgirski,
  • D. Graczyk,
  • W. Gieren,
  • G. Hajdu
  • (less)
arXiv e-prints (04/2024) e-Print:2404.02970
abstract + abstract -

We present the results from a complex study of an eclipsing O-type binary (Aa+Ab) with the orbital period $P_{A}=3.2254367$ days, that forms part of a higher-order multiple system in a configuration (A+B)+C. We derived masses of the Aa+Ab binary $M_{1}= 19.02 \pm 0.12 \,M_\odot$, $M_{2}= 17.50 \pm 0.13 \,M_\odot$, radii $R_{1}= 7.70 \pm 0.05 \,R_\odot$, $R_{2}= 6.64 \pm 0.06 \,R_\odot$, and temperatures $T_1 = 34250 \pm 500 $ K, $T_2 = 33750 \pm 500 $ K. From the analysis of radial velocities, we found a spectroscopic orbit of A in the outer A+B system with $P_{A+B}=195.8$ days ($P_{A+B}/P_{A}\approx 61$). In the O-C analysis, we confirmed this orbit and found another component orbiting the A+B system with $P_{AB+C}=2550$ days ($P_{AB+C}\,/P_{A+B}\approx 13$). From the total mass of the inner binary and its outer orbit, we estimated the mass of the third object, $M_B \gtrsim 10.7 M_\odot$. From the light-travel time effect fit to the O-C data, we obtained the limit for the mass of the fourth component, $M_C \gtrsim 7.3 M_\odot$. These extra components contribute to about 20% to 30% (increasing with wavelength) of the total system light. From the comparison of model spectra with the multiband photometry, we derived a distance modulus of 18.59 $\pm$ 0.06 mag, a reddening of 0.16 $\pm$ 0.02 mag, and an $R_V$ of $3.2$. This work is part of our ongoing project, which aims to calibrate the surface brightness-color relation for early-type stars.


(1670)Lensed Type Ia Supernova "Encore" at z=2: The First Instance of Two Multiply-Imaged Supernovae in the Same Host Galaxy
  • J. D. R. Pierel,
  • A. B. Newman,
  • S. Dhawan,
  • M. Gu,
  • B. A. Joshi
  • +58
  • T. Li,
  • S. Schuldt,
  • L. G. Strolger,
  • S. H. Suyu,
  • G. B. Caminha,
  • S. H. Cohen,
  • J. M. Diego,
  • J. C. J. Dsilva,
  • S. Ertl,
  • B. L. Frye,
  • G. Granata,
  • C. Grillo,
  • A. M. Koekemoer,
  • J. Li,
  • A. Robotham,
  • J. Summers,
  • T. Treu,
  • R. A. Windhorst,
  • A. Zitrin,
  • S. Agarwal,
  • A. Agrawal,
  • N. Arendse,
  • S. Belli,
  • C. Burns,
  • R. Cañameras,
  • S. Chakrabarti,
  • W. Chen,
  • T. E. Collett,
  • D. A. Coulter,
  • R. S. Ellis,
  • M. Engesser,
  • N. Foo,
  • O. D. Fox,
  • C. Gall,
  • N. Garuda,
  • S. Gezari,
  • S. Gomez,
  • K. Glazebrook,
  • J. Hjorth,
  • X. Huang,
  • S. W. Jha,
  • P. S. Kamieneski,
  • P. Kelly,
  • C. Larison,
  • L. A. Moustakas,
  • M. Pascale,
  • I. Pérez-Fournon,
  • T. Petrushevska,
  • F. Poidevin,
  • A. Rest,
  • M. Shahbandeh,
  • A. J. Shajib,
  • M. Siebert,
  • C. Storfer,
  • M. Talbot,
  • Q. Wang,
  • T. Wevers,
  • Y. Zenati
  • (less)
abstract + abstract -

A bright ($m_{\rm F150W,AB}$=24 mag), $z=1.95$ supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply-imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called "Requiem", and therefore the new SN is named "Encore". This makes the MACS J0138.0$-$2155 cluster the first known system to produce more than one multiply-imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a $\sim10$ year window to be $\approx3\%$. These observations have the potential to yield a Hubble Constant ($H_0$) measurement with $\sim10\%$ precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of $\sim2030$, providing an unprecedented baseline for time-delay cosmography.


(1669)DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento,
  • A. Bertolini
  • +53
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Garai,
  • V. M. Ghete,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • S. Kuckuk,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • B. Mauri,
  • L. Meyer,
  • V. Mokina,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • V. Wagner,
  • V. Zema
  • (less)
abstract + abstract -

In recent times, the sensitivity of low-mass direct dark matter searches has been limited by unknown low energy backgrounds close to the energy threshold of the experiments known as the low energy excess (LEE). The CRESST experiment utilises advanced cryogenic detectors constructed with different types of crystals equipped with Transition Edge Sensors (TESs) to measure signals of nuclear recoils induced by the scattering of dark matter particles in the detector. In CRESST, this low energy background manifests itself as a steeply rising population of events below 200 eV. A novel detector design named doubleTES using two identical TESs on the target crystal was studied to investigate the hypothesis that the events are sensor-related. We present the first results from two such modules, demonstrating their ability to differentiate between events originating from the crystal's bulk and those occurring in the sensor or in its close proximity.


(1668)A novel strategy to prove chiral symmetry breaking in QCD-like theories
  • Luca Ciambriello,
  • Roberto Contino,
  • Andrea Luzio,
  • Marcello Romano,
  • Ling-Xiao Xu
arXiv e-prints (04/2024) e-Print:2404.02967
abstract + abstract -

We demonstrate that chiral symmetry breaking occurs in the confining phase of QCD-like theories with $N_c$ colors and $N_f$ flavors. Our proof is based on a novel strategy, called `downlifting', by which solutions of the 't Hooft anomaly matching and persistent mass conditions for a theory with $N_f-1$ flavors are constructed from those of a theory with $N_f$ flavors, while $N_c$ is fixed. By induction, chiral symmetry breaking is proven for any $N_f\geq p_{min}$, where $p_{min}$ is the smallest prime factor of $N_c$. The proof can be extended to $N_f <p_{min}$ under the additional assumption on the absence of phase transitions when quark masses are sent to infinity. Our results do not rely on ad-hoc assumptions on the spectrum of massless bound states.


(1667)Dianoga SIDM: galaxy cluster self-interacting dark matter simulations
  • Antonio Ragagnin,
  • Massimo Meneghetti,
  • Francesco Calura,
  • Giulia Despali,
  • Klaus Dolag
  • +3
  • Moritz S. Fischer,
  • Carlo Giocoli,
  • Lauro Moscardini
  • (less)
abstract + abstract -

This work aims at assessing the impact of DM self-interactions on the properties of galaxy clusters. In particular, the goal is to study the angular dependence of the cross section by testing rare (large angle scattering) and frequent (small angle scattering) SIDM models with velocity-dependent cross sections. We re-simulate six galaxy cluster zoom-in initial conditions with a dark matter only run and with a full-physics setup simulations that includes a self-consistent treatment of baryon physics. We test the dark matter only setup and the full physics setup with either collisionless cold dark matter, rare self-interacting dark matter, and frequent self-interacting dark matter models. We then study their matter density profiles as well as their subhalo population. Our dark matter only SIDM simlations agree with theoretical models, and when baryons are included in simulations, our SIDM models substantially increase the central density of galaxy cluster cores compared to full-physics simulations using collisionless dark matter. SIDM subhalo suppression in full-physics simulations is milder compared to the one found in dark matter only simulations, because of the cuspier baryionic potential that prevent subhalo disruption. Moreover SIDM with small-angle scattering significantly suppress a larger number of subhaloes compared to large angle scattering SIDM models. Additionally, SIDM models generate a broader range of subhalo concentration values, including a tail of more diffuse subhaloes in the outskirts of galaxy clusters and a population of more compact subhaloes in the cluster cores.


(1666)Diagnostics of 3D explosion asymmetries of stripped-envelope supernovae by nebular line profiles
  • Bart van Baal,
  • Anders Jerkstrand,
  • Annop Wongwathanarat,
  • Thomas Janka
abstract + abstract -

Understanding the explosion mechanism and hydrodynamic evolution of core-collapse supernovae is a long-standing quest in astronomy. The asymmetries caused by the explosion are encoded into the line profiles which appear in the nebular phase of the SN evolution -- with particularly clean imprints in He star explosions. Here, we carry out nine different supernova simulations of He-core progenitors, exploding them in 3D with parametrically varied neutrino luminosities using the $\texttt{Prometheus-HotB}$ code, hydrodynamically evolving the models to the homologeous phase. We then compute nebular phase spectra with the 3D NLTE spectral synthesis code $\texttt{ExTraSS}$ (EXplosive TRAnsient Spectral Simulator). We study how line widths and shifts depend on progenitor mass, explosion energy, and viewing angle. We compare the predicted line profile properties against a large set of Type Ib observations, and discuss the degree to which current neutrino-driven explosions can match observationally inferred asymmetries. With self-consistent 3D modelling -- circumventing the difficulties of representing $^{56}$Ni mixing and clumping accurately in 1D models -- we find that neither low-mass He cores exploding with high energies nor high-mass cores exploding with low energies contribute to the Type Ib SN population. Models which have line profile widths in agreement with this population give sufficiently large centroid shifts for calcium emission lines. Calcium is more strongly affected by explosion asymmetries connected to the neutron star kicks than oxygen and magnesium. Lastly, we turn to the NIR spectra from our models to investigate the potential of using this regime to look for the presence of He in the nebular phase.


CN-3
RU-C
(1665)Simulations of galaxy cluster mergers with velocity-dependent, rare, and frequent self-interactions
  • V. M. Sabarish,
  • Marcus Brüggen,
  • Kai Schmidt-Hoberg,
  • Moritz S. Fischer,
  • Felix Kahlhoefer
Monthly Notices of the Royal Astronomical Society (04/2024) doi:10.1093/mnras/stae664
abstract + abstract -

Self-interacting dark matter (SIDM) has been proposed to solve small-scale problems in $\rm {\Lambda CDM}$ cosmology. In previous work, constraints on the self-interaction cross-section of dark matter have been derived assuming that the self-interaction cross-section is independent of velocity. However, a velocity-dependent cross-section is more natural in most theories of SIDM. Using idealized N-body simulations without baryons, we study merging clusters with velocity-dependent SIDM. In addition to the usual rare scattering in the isotropic limit, we also simulate these systems with anisotropic, small-angle (frequent) scatterings. We find that the collisionless brightest cluster galaxy (BCG) has an offset from the DM peak that grows at later stages. Finally, we also extend the existing upper bounds on the velocity-independent, isotropic self-interaction cross-section to the parameter space of rare and frequent velocity-dependent self-interactions by studying the central densities of dark matter-only isolated haloes. For these upper-bound parameters, the DM-BCG offsets just after the first pericentre in the dark matter-only simulations are found to be ≲10 kpc. On the other hand, because of BCG oscillations, we speculate that the distribution of BCG offsets in a relaxed cluster is a statistically viable probe. Therefore, this motivates further studies of BCG off-centring in hydrodynamic cosmological simulations.


CN-3
RU-C
(1664)Cosmological and idealized simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions
  • Moritz S. Fischer,
  • Lenard Kasselmann,
  • Marcus Brüggen,
  • Klaus Dolag,
  • Felix Kahlhoefer
  • +3
  • Antonio Ragagnin,
  • Andrew Robertson,
  • Kai Schmidt-Hoberg
  • (less)
Monthly Notices of the Royal Astronomical Society (04/2024) doi:10.1093/mnras/stae699
abstract + abstract -

Dark matter self-interactions may have the capability to solve or at least mitigate small-scale problems of the cosmological standard model, Lambda cold dark matter. There are a variety of self-interacting dark matter models that lead to distinguishable astrophysical predictions and hence varying success in explaining observations. Studies of dark matter (DM) density cores on various mass scales suggest a velocity-dependent scattering cross-section. In this work, we investigate how a velocity dependence alters the evolution of the DM distribution for frequent DM scatterings and compare to the velocity-independent case. We demonstrate that these cases are qualitatively different using a test problem. Moreover, we study the evolution of the density profile of idealized DM haloes and find that a velocity dependence can lead to larger core sizes and different time-scales of core formation and core collapse. In cosmological simulations, we investigate the effect of velocity-dependent self-interaction on haloes and satellites in the mass range of ≈1011-$10^{14} \, \mathrm{M_\odot }$. We study the abundance of satellites, density, and shape profiles and try to infer qualitative differences between velocity-dependent and velocity-independent scatterings as well as between frequent and rare self-interactions. We find that a strongly velocity-dependent cross-section can significantly amplify the diversity of rotation curves, independent of the angular dependence of the differential cross-section. We further find that the abundance of satellites in general depends on both the velocity dependence and the scattering angle, although the latter is less important for strongly velocity-dependent cross-sections.


(1663)Galaxy shapes in Magneticum. I. Connecting stellar and dark matter shapes to dynamical and morphological galaxy properties and the large-scale structure
  • Lucas M. Valenzuela,
  • Rhea-Silvia Remus,
  • Klaus Dolag,
  • Benjamin A. Seidel
abstract + abstract -

Despite being a fundamental property of galaxies that dictates the form of the potential, the 3D shape is intrinsically difficult to determine from observations. The improving quality of triaxial modeling methods in recent years has made it possible to measure these shapes more accurately. This study provides a comprehensive understanding of the stellar and dark matter (DM) shapes of galaxies and the connections between them as well as with other galaxy properties. Using the hydrodynamical cosmological simulation Magneticum Box4, we computed the stellar and DM shapes of galaxies at different radii. We determined their morphologies, their projected morphological and kinematic parameters, and their fractions of in-situ formed stars. The DM follows the stellar component in shape and orientation at $3R_{1/2}$, indicating that DM is heavily influenced by the baryonic potential in the inner parts of the halo. The outer DM halo is independent of the inner properties such as morphology, however, and is more closely related to the large-scale anisotropy of the gas inflow. The stellar shapes of galaxies are correlated with morphology: ellipticals feature more spherical and prolate shapes than disk galaxies. Galaxies with more rotational support are flatter, and the stellar shapes are connected to the mass distribution. In particular, more extended elliptical galaxies have larger triaxialities. Finally, the shapes can be used to constrain the in-situ fraction of stars when combined with the stellar mass. The found relations show that shapes depend on the details of the accretion history. The similarities between the inner DM and stellar shapes signal the importance of baryonic matter for DM in galaxies and will help improve dynamical models in the future. At large radii the DM shape is completely decoupled from the central galaxy and is coupled more to the large-scale inflow.


(1662)Data availability and requirements relevant for the Ariel space mission and other exoplanet atmosphere applications
  • Katy L. Chubb,
  • Séverine Robert,
  • Clara Sousa-Silva,
  • Sergei N. Yurchenko,
  • Nicole F. Allard
  • +50
  • Vincent Boudon,
  • Jeanna Buldyreva,
  • Benjamin Bultel,
  • Athena Coustenis,
  • Aleksandra Foltynowicz,
  • Iouli E. Gordon,
  • Robert J. Hargreaves,
  • Christiane Helling,
  • Christian Hill,
  • Helgi Rafn Hrodmarsson,
  • Tijs Karman,
  • Helena Lecoq-Molinos,
  • Alessandra Migliorini,
  • Michaël Rey,
  • Cyril Richard,
  • Ibrahim Sadiek,
  • Frédéric Schmidt,
  • Andrei Sokolov,
  • Stefania Stefani,
  • Jonathan Tennyson,
  • Olivia Venot,
  • Sam O. M. Wright,
  • Rosa Arenales-Lope,
  • Joanna K. Barstow,
  • Andrea Bocchieri,
  • Nathalie Carrasco,
  • Dwaipayan Dubey,
  • Oleg Egorov,
  • Antonio García Muñoz,
  • Ehsan,
  • Gharib-Nezhad,
  • Leonardos Gkouvelis,
  • Fabian Grübel,
  • Patrick Gerard Joseph Irwin,
  • Antonín Knížek,
  • David A. Lewis,
  • Matt G. Lodge,
  • Sushuang Ma,
  • Zita Martins,
  • Karan Molaverdikhani,
  • Giuseppe Morello,
  • Andrei Nikitin,
  • Emilie Panek,
  • Miriam Rengel,
  • Giovanna Rinaldi,
  • Jack W. Skinner,
  • Giovanna Tinetti,
  • Tim A. van Kempen,
  • Jingxuan Yang,
  • Tiziano Zingales
  • (less)
abstract + abstract -

The goal of this white paper is to provide a snapshot of the data availability and data needs primarily for the Ariel space mission, but also for related atmospheric studies of exoplanets and brown dwarfs. It covers the following data-related topics: molecular and atomic line lists, line profiles, computed cross-sections and opacities, collision-induced absorption and other continuum data, optical properties of aerosols and surfaces, atmospheric chemistry, UV photodissociation and photoabsorption cross-sections, and standards in the description and format of such data. These data aspects are discussed by addressing the following questions for each topic, based on the experience of the "data-provider" and "data-user" communities: (1) what are the types and sources of currently available data, (2) what work is currently in progress, and (3) what are the current and anticipated data needs. We present a GitHub platform for Ariel-related data, with the goal to provide a go-to place for both data-users and data-providers, for the users to make requests for their data needs and for the data-providers to link to their available data. Our aim throughout the paper is to provide practical information on existing sources of data whether in databases, theoretical, or literature sources.


MIAPbP
(1661)Stellar Variability and Distance Indicators in the Near-infrared in Nearby Galaxies. I. RR Lyrae and Anomalous Cepheids in Draco dwarf spheroidal
  • Anupam Bhardwaj,
  • Marina Rejkuba,
  • Chow-Choong Ngeow,
  • Marcella Marconi,
  • Vincenzo Ripepi
  • +2
  • Abhinna Sundar Samantaray,
  • Harinder P. Singh
  • (less)
abstract + abstract -

Draco dwarf Spheroidal galaxy (dSph) is one of the nearest and the most dark matter dominated satellites of the Milky Way. We obtained multi-epoch near-infrared (NIR, $JHK_s$) observations of the central region of Draco dSph covering a sky area of $\sim 21'\times21'$ using the WIRCam instrument at the 3.6-m Canada-France-Hawaii Telescope. Homogeneous $JHK_s$ time-series photometry for 212 RR Lyrae (173 fundamental-mode, 24 first-overtone, and 15 mixed-mode variables) and 5 Anomalous Cepheids in Draco dSph is presented and used to derive their period-luminosity relations at NIR wavelengths for the first-time. The small scatter of $\sim 0.05$~mag in these empirical relations for RR Lyrae stars is consistent with those in globular clusters and suggests a very small metallicity spread, up to $\sim0.2$~dex, among these centrally located variables. Based on empirically calibrated NIR period-luminosity-metallicity relations for RR Lyrae in globular clusters, we determined a distance modulus to Draco dSph of $\mu_\textrm{RRL} = 19.557 \pm 0.026$ mag. The calibrated $K_s$-band period-luminosity relations for Anomalous Cepheids in the Draco dSph and the Large Magellanic Cloud exhibit statistically consistent slopes but systematically different zero-points, hinting at possible metallicity dependence of $\sim-0.3$ mag~dex$^{-1}$. Finally, the apparent magnitudes of the tip of the red giant branch in $I$ and $J$ bands also agree well with their absolute calibrations with the adopted RR Lyrae distance to Draco. Our recommended $\sim1.5\%$ precise RR Lyrae distance, $D_\textrm{Draco} = 81.55 \pm 0.98 \textrm{(statistical)} \pm 1.17 \textrm{(systematic)}$~kpc, is the most accurate and precise distance to Draco dSph galaxy.


LRSM
(1660)Position-dependent light yield in short, coated SCSF-78 scintillating fibers
  • Martin J. Losekamm,
  • Stephan Paul,
  • Thomas Pöschl
Radiation Measurements (04/2024) doi:10.1016/j.radmeas.2024.107116
abstract + abstract -

In fibers made from organic plastic scintillators, a combination of extrinsic and intrinsic effects results in the attenuation of light and thus in a position-dependent light yield. The trapping of photons can further be affected if fibers are coated with or wrapped in a light-absorbing or reflecting material to suppress optical cross-talk. These effects have frequently been studied for long (> 0.5 m) fibers, yet little data is available for shorter ones. We experimentally studied the position-dependent light yield of single-cladded Kuraray SCSF-78 fibers with lengths of < 10 cm and tested the effect of different cross-talk-preventing materials. Contrary to the often acceptable simplification that light is transmitted in the fiber core alone, we found that photons trapped by the protective cladding significantly contribute to the light transmission in short fibers. In this paper, we perform an in-depth characterization of the position-dependent light yield of fibers sputter-coated with aluminum and wrapped in aluminum foil using a double-exponential attenuation function. Finally, we compare our findings to a simple photon transport model.

 


(1659)Detecting unresolved lensed SNe Ia in LSST using blended light curves
  • Satadru Bag,
  • Simon Huber,
  • Sherry H. Suyu,
  • Nikki Arendse,
  • Irham Taufik Andika
  • +8
  • Raoul Canameras,
  • Alex Kim,
  • Eric Linder,
  • Kushal Lodha,
  • Alejandra Melo,
  • Anupreeta More,
  • Stefan Schuldt,
  • Arman Shafieloo
  • (less)
abstract + abstract -

Strong-gravitationally lensed supernovae (LSNe) are promising probes for providing absolute distance measurements using gravitational lens time delays. Spatially unresolved LSNe offer an opportunity to enhance the sample size for precision cosmology. We predict that there will be approximately $3$ times more unresolved than resolved LSNe Ia in the Legacy Survey of Space and Time (LSST) by the Rubin Observatory. In this article, we explore the feasibility of detecting unresolved LSNe Ia from the shape of the observed blended light curves using deep learning techniques, and we find that $\sim 30\%$ can be detected with a simple 1D CNN using well-sampled $rizy$-band light curves (with a false-positive rate of $\sim 3\%$). Even when the light curve is well-observed in only a single band among $r$, $i$, and $z$, detection is still possible with false-positive rates ranging from $\sim 4-7\%$, depending on the band. Furthermore, we demonstrate that these unresolved cases can be detected at an early stage using light curves up to $\sim20$ days from the first observation, with well-controlled false-positive rates, providing ample opportunities for triggering follow-up observations. Additionally, we demonstrate the feasibility of time-delay estimations using solely LSST-like data of unresolved light curves, particularly for doubles, when excluding systems with low time delay and magnification ratio. However, the abundance of such systems among those unresolved in LSST poses a significant challenge. This approach holds potential utility for upcoming wide-field surveys, and overall results could significantly improve with enhanced cadence and depth in the future surveys.


CN-4
RU-C
(1658)1991T-Like Type Ia Supernovae as an Extension of the Normal Population
  • John T. O'Brien,
  • Wolfgang E. Kerzendorf,
  • Andrew Fullard,
  • Rüdiger Pakmor,
  • Johannes Buchner
  • +5
  • Christian Vogl,
  • Nutan Chen,
  • Patrick van der Smagt,
  • Marc Williamson,
  • Jaladh Singhal
  • (less)
The Astrophysical Journal (04/2024) doi:10.3847/1538-4357/ad2358
abstract + abstract -

Type Ia supernovae (SNe) remain poorly understood despite decades of investigation. Massive computationally intensive hydrodynamic simulations have been developed and run to model an ever-growing number of proposed progenitor channels. Further complicating the matter, a large number of subtypes of Type Ia SNe have been identified in recent decades. Due to the massive computational load required, inference of the internal structure of Type Ia SNe ejecta directly from observations using simulations has previously been computationally intractable. However, deep-learning emulators for radiation transport simulations have alleviated such barriers. We perform abundance tomography on 40 Type Ia SNe from optical spectra using the radiative transfer code TARDIS accelerated by the probabilistic DALEK deep-learning emulator. We apply a parametric model of potential outer ejecta structures to comparatively investigate abundance distributions and internal ionization fractions of intermediate-mass elements (IMEs) between normal and 1991T-like Type Ia SNe in the early phases. Our inference shows that the outer ejecta of 1991T-like Type Ia SNe is underabundant in the typical intermediate mass elements that heavily contribute to the spectral line formation seen in normal Type Ia SNe at early times. Additionally, we find that the IMEs present in 1991T-like Type Ia SNe are highly ionized compared to those in the normal Type Ia population. Finally, we conclude that the transition between normal and 1991T-like Type Ia SNe appears to be continuous observationally and that the observed differences come out of a combination of both abundance and ionization fractions in these SNe populations.


(1657)Observed kinematics of the Milky Way nuclear stellar disk region
  • M. Zoccali,
  • A. Rojas-Arriagada,
  • E. Valenti,
  • R. Contreras Ramos,
  • A. Valenzuela-Navarro
  • +1
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202347923
abstract + abstract -

Context. The nuclear region of the Milky Way, within approximately −1° < l < +1° and −0.3° < b < +0.3° (i.e., |l|< 150 pc, |b|< 45 pc), is believed to host a nuclear stellar disk, co-spatial with the gaseous central molecular zone. Previous kinematical studies detected faster rotation for the stars belonging to the nuclear stellar disk, compared to the surrounding regions.
Aims: We analyze the rotation velocity of stars at the nuclear stellar disk, and compare them with its analog in a few control fields just outside this region. We limit our analysis to stars in the red clump of the color magnitude diagram, in order to be able to relate their mean de-reddened luminosity with distance along the line of sight.
Methods: We used a proper motion catalog, obtained from point spread function photometry on VISTA variables in the Vía Láctea images, to construct maps of the transverse velocity for these stars. We complemented our analysis with radial velocities from the 17th data release of the APOGEE survey.
Results: We find that the main difference between the nuclear stellar disk region and its surroundings is that at the former we see only stars moving eastward, which we believe are located in front of the Galactic center. On the contrary, in every other direction, we see the brightest red clump stars moving eastward, and the faintest ones moving westward, as expected for a rotating disk. We interpret these observations as being produced by the central molecular zone, hiding stars behind itself. What we observe is compatible with being produced by just the absence of the component at the back, without requiring the presence of a cold, fast rotating disk. This component is also not clearly detected in the newest release of the APOGEE catalog. In other words, we find no clear signature of the nuclear stellar disk as a distinct kinematical component.
Conclusions: This work highlights the need for nearby control fields when attempting to characterize the properties of the nuclear stellar disk, as the different systematics affecting this region, compared to nearby ones, might introduce spurious results. Deep, wide field and high resolution photometry of the inner 4 deg of the Milky Way is needed in order to understand the structure and kinematics of this very unique region of our Galaxy.

Full Table 1 is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A214

Based on observations taken within the ESO VISTA Public Survey VVV, Program ID 179.B-2002.


CN-5
RU-D
(1656)A JWST Survey of the Supernova Remnant Cassiopeia A
  • Dan Milisavljevic,
  • Tea Temim,
  • Ilse De Looze,
  • Danielle Dickinson,
  • J. Martin Laming
  • +42
  • Robert Fesen,
  • John C. Raymond,
  • Richard G. Arendt,
  • Jacco Vink,
  • Bettina Posselt,
  • George G. Pavlov,
  • Ori D. Fox,
  • Ethan Pinarski,
  • Bhagya Subrayan,
  • Judy Schmidt,
  • William P. Blair,
  • Armin Rest,
  • Daniel Patnaude,
  • Bon-Chul Koo,
  • Jeonghee Rho,
  • Salvatore Orlando,
  • Hans-Thomas Janka,
  • Moira Andrews,
  • Michael J. Barlow,
  • Adam Burrows,
  • Roger Chevalier,
  • Geoffrey Clayton,
  • Claes Fransson,
  • Christopher Fryer,
  • Haley L. Gomez,
  • Florian Kirchschlager,
  • Jae-Joon Lee,
  • Mikako Matsuura,
  • Maria Niculescu-Duvaz,
  • Justin D. R. Pierel,
  • Paul P. Plucinsky,
  • Felix D. Priestley,
  • Aravind P. Ravi,
  • Nina S. Sartorio,
  • Franziska Schmidt,
  • Melissa Shahbandeh,
  • Patrick Slane,
  • Nathan Smith,
  • Niharika Sravan,
  • Kathryn Weil,
  • Roger Wesson,
  • J. Craig Wheeler
  • (less)
The Astrophysical Journal (04/2024) doi:10.3847/2041-8213/ad324b
abstract + abstract -

We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor's oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant's interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1' reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A's center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.


(1655)The Physalis system: Discovery of ORC-like radio shells around a massive pair of interacting early-type galaxies with offset X-ray emission
  • Bärbel S. Koribalski,
  • Ildar Khabibullin,
  • Klaus Dolag,
  • Eugene Churazov,
  • Ray P. Norris
  • +5
  • Ettore Carretti,
  • Andrew M. Hopkins,
  • Tessa Vernstrom,
  • Stanislav S. Shabala,
  • Nikhel Gupta
  • (less)
abstract + abstract -

We present the discovery of large radio shells around a massive pair of interacting galaxies and extended diffuse X-ray emission within the shells. The radio data were obtained with the Australian Square Kilometer Array Pathfinder (ASKAP) in two frequency bands centred at 944 MHz and 1.4 GHz, respectively, while the X-ray data are from the XMM-Newton observatory. The host galaxy pair, which consists of the early-type galaxies ESO 184-G042 and LEDA 418116, is part of a loose group at a distance of only 75 Mpc (redshift z = 0.017). The observed outer radio shells (diameter ~ 145 kpc) and ridge-like central emission of the system, ASKAP J1914-5433 (Physalis), are likely associated with merger shocks during the formation of the central galaxy (ESO 184-G042) and resemble the new class of odd radio circles (ORCs). This is supported by the brightest X-ray emission found offset from the centre of the Physalis system, instead centered at the less massive galaxy, LEDA 418116. The host galaxy pair is embedded in an irregular envelope of diffuse light, highlighting on-going interactions. We complement our combined radio and X-ray study with high-resolution simulations of the circumgalactic medium (CGM) around galaxy mergers from the Magneticum project to analyse the evolutionary state of the Physalis system. We argue that ORCs / radio shells could be produced by a combination of energy release from the central AGN and subsequent lightening up in radio emission by merger shocks traveling through the CGM of these systems.


(1654)Simulating nearby disc galaxies on the main star formation sequence I. Bar formation and the building of the central gas reservoir
  • Pierrick Verwilghen,
  • Eric Emsellem,
  • Florent Renaud,
  • Milena Valentini,
  • Jiayi Sun
  • +12
  • Sarah Jeffreson,
  • Ralf S. Klessen,
  • Mattia C. Sormani,
  • Ashley. T. Barnes,
  • Klaus Dolag,
  • Kathryn Grasha,
  • Fu-Heng Liang,
  • Sharon Meidt,
  • Justus Neumann,
  • Miguel Querejeta,
  • Eva Schinnerer,
  • Thomas G. Williams
  • (less)
abstract + abstract -

Past studies have long emphasised the key role played by galactic stellar bars in the context of disc secular evolution, via the redistribution of gas and stars, the triggering of star formation, and the formation of prominent structures such as rings and central mass concentrations. However, the exact physical processes acting on those structures, as well as the timescales associated with the building and consumption of central gas reservoirs are still not well understood. We are building a suite of hydro-dynamical RAMSES simulations of isolated, low-redshift galaxies that mimic the properties of the PHANGS sample. The initial conditions of the models reproduce the observed stellar mass, disc scale length, or gas fraction, and this paper presents a first subset of these models. Most of our simulated galaxies develop a prominent bar structure, which itself triggers central gas fuelling and the building of an over-density with a typical scale of 100-1000 pc. We confirm that if the host galaxy features an ellipsoidal component, the formation of the bar and gas fuelling are delayed. We show that most of our simulations follow a common time evolution, when accounting for mass scaling and the bar formation time. In our simulations, the stellar mass of $10^{10}$~M$_{\odot}$ seems to mark a change in the phases describing the time evolution of the bar and its impact on the interstellar medium. In massive discs (M$_{\star} \geq 10^{10}$~M$_{\odot}$), we observe the formation of a central gas reservoir with star formation mostly occurring within a restricted starburst region, leading to a gas depletion phase. Lower-mass systems (M$_{\star} < 10^{10}$~M$_{\odot}$) do not exhibit such a depletion phase, and show a more homogeneous spread of star-forming regions along the bar structure, and do not appear to host inner bar-driven discs or rings.


CN-8
RU-E
(1653)Design Principles for Fast and Efficient Self-Assembly Processes
  • Florian M. Gartner,
  • Erwin Frey
Physical Review X (04/2024) doi:10.1103/PhysRevX.14.021004
abstract + abstract -

Self-assembly is a fundamental concept in biology and of significant interest to nanotechnology. Significant progress has been made in characterizing and controlling the properties of the resulting structures, both experimentally and theoretically. However, much less is known about kinetic constraints and determinants of dynamical properties like time efficiency, although these constraints can become severe limiting factors of self-assembly processes. Here, we investigate how the time efficiency and other dynamical properties of reversible self-assembly depend on the morphology (shape) of the building blocks for systems in which the binding energy between the constituents is large. As paradigmatic examples, we stochastically simulate the self-assembly of constituents with triangular, square, and hexagonal morphology into two-dimensional structures of a specified size. We find that the constituents' morphology critically determines the assembly time and how it scales with the size of the target structure. Our analysis reveals three key structural parameters defined by the morphology: the nucleation size and attachment order, which describe the effective order of the chemical reactions by which clusters nucleate and grow, respectively, and the growth exponent, which determines how the growth rate of an emerging structure scales with its size. Using this characterization, we formulate an effective theory of the self-assembly kinetics, which we show exhibits an inherent scale invariance. This allows us to identify general scaling laws that describe the minimal assembly time as a function of the size of the target structure. We show how these insights on the kinetics of self-assembly processes can be used to design assembly schemes that could significantly increase the time efficiency and robustness of artificial self-assembly processes.


(1652)Hot New Early Dark Energy bridging cosmic gaps: Supercooled phase transition reconciles (stepped) dark radiation solutions to the Hubble tension with BBN
  • Mathias Garny,
  • Florian Niedermann,
  • Henrique Rubira,
  • Martin S. Sloth
abstract + abstract -

We propose a simple model that can alleviate the $H_0$ tension while remaining consistent with big bang nucleosynthesis (BBN). It is based on a dark sector described by a standard Lagrangian featuring a $SU(N)$ gauge symmetry with $N\geq3$ and a massive scalar field with a quartic coupling. The scalar acts as dark Higgs leading to spontaneous symmetry breaking $SU(N)\to SU(N\!-\!1)$ via a first-order phase transition à la Coleman-Weinberg. This set-up naturally realizes previously proposed scenarios featuring strongly interacting dark radiation (SIDR) with a mass threshold within hot new early dark energy (NEDE). For a wide range of reasonable model parameters, the phase transition occurs between the BBN and recombination epochs and releases a sufficient amount of latent heat such that the model easily respects bounds on extra radiation during BBN while featuring a sufficient SIDR density around recombination for increasing the value of $H_0$ inferred from the cosmic microwave background. Our model can be summarized as a natural mechanism providing two successive increases in the effective number of relativistic degrees of freedom after BBN but before recombination $\Delta N_\mathrm{BBN} \to \Delta N_\mathrm{NEDE} \to \Delta N_\mathrm{IR}$ alleviating the Hubble tension. The first step is related to the phase transition and the second to the dark Higgs becoming non-relativistic. This set-up predicts further signatures, including a stochastic gravitational wave background and features in the matter power spectrum that can be searched for with future pulsar timing and Lyman-$\alpha$ forest measurements.


(1651)Cracking the Relation between Mass and 1P Star Fraction of Globular Clusters. I. Present-day Cluster Masses as a First Tool
  • Geneviève Parmentier
The Astrophysical Journal (04/2024) doi:10.3847/1538-4357/ad27db
abstract + abstract -

The phenomenon of multiple stellar populations is exacerbated in massive globular clusters, with the fraction of first-population (1P) stars a decreasing function of the cluster present-day mass. We decipher this relation in far greater detail than has been done so far. We assume (i) a fixed stellar mass threshold for the formation of second-population (2P) stars, (ii) a power-law scaling ${F}_{1{\rm{P}}}\propto {m}_{\mathrm{ecl}}^{-1}$ between the mass m ecl of newly formed clusters and their 1P star fraction F 1P, and (iii) a constant F 1P over time. The F 1P(m ecl) relation is then evolved up to an age of 12 Gyr for tidal field strengths representative of the entire Galactic halo. The 12 Gyr old model tracks cover the present-day distribution of Galactic globular clusters in the (mass, F 1P) space extremely well. The distribution is curtailed on its top right side by the scarcity of clusters at large Galactocentric distances and on its bottom left side by the initial scarcity of very high-mass clusters and dynamical friction. Given their distinct dissolution rates, "inner" and "outer" model clusters are offset from each other, as observed. The locus of Magellanic Clouds clusters in the (mass, F 1P) space is as expected for intermediate-age clusters evolving in a gentle tidal field. Given the assumed constancy of F 1P, we conclude that 2P stars do not necessarily form centrally concentrated. We infer a minimum mass of 4 · 105 M for multiple-population clusters at secular evolution onset. This high-mass threshold severely limits the number of 2P stars lost from evolving clusters, thereby fitting the low 2P star fraction of the Galactic halo field.


(1650)The Nature of X-Rays from Young Stellar Objects in the Orion Nebula Cluster -- A Chandra HETGS Legacy Project
  • Norbert S. Schulz,
  • David P. Huenemoerder,
  • David A. Principe,
  • Marc Gagne,
  • Hans Moritz Günther
  • +8
  • Joel Kastner,
  • Joy Nichols,
  • Andrew Pollock,
  • Thomas Preibisch,
  • Paola Testa,
  • Fabio Reale,
  • Fabio Favata,
  • Claude R. Canizares
  • (less)
abstract + abstract -

The Orion Nebula Cluster (ONC) is the closest site of very young ($\sim$ 1 Myrs) massive star formation. The ONC hosts more than 1600 young and X-ray bright stars with masses ranging from $\sim$ 0.1 to 35 $M_\odot$. The Chandra HETGS Orion Legacy Project observed the ONC with the Chandra high energy transmission grating spectrometer (HETGS) for $2.1\,$Ms. We describe the spectral extraction and cleaning processes necessary to separate overlapping spectra. We obtained 36 high resolution spectra which includes a high brilliance X-ray spectrum of $\theta^1$ Ori C with over 100 highly significant X-ray lines. The lines show Doppler broadening between 300 and $400\;\mathrm{km}\;\mathrm{s}^{-1}$. Higher spectral diffraction orders allow us to resolve line components of high Z He-like triplets in $\theta^1$ Ori C with unprecedented spectral resolution. Long term light curves spanning $\sim$20 years show all stars to be highly variable, including the massive stars. Spectral fitting with thermal coronal emission line models reveals that most sources show column densities of up to a few times $10^{22}\,$cm$^{-2}$ and high coronal temperatures of 10 to 90 MK. We observe a bifurcation of the high temperature component where some stars show a high component of 40 MK, while others show above 60 MK indicating heavy flaring activity. Some lines are resolved with Doppler broadening above our threshold of $\sim200\;\mathrm{km}\;\mathrm{s}^{-1}$, up to $500\;\mathrm{km}\;\mathrm{s}^{-1}$. This data set represents the largest collection of HETGS high resolution X-ray spectra from young pre-MS stars in a single star-forming region to date.


RU-A
(1649)Cosmological correlators in massless ϕ<SUP>4</SUP>-theory and the method of regions
  • Martin Beneke,
  • Patrick Hager,
  • Andrea F. Sanfilippo
Journal of High Energy Physics (04/2024) doi:10.1007/JHEP04(2024)006
abstract + abstract -

The calculation of loop corrections to the correlation functions of quantum fields during inflation or in the de Sitter background presents greater challenges than in flat space due to the more complicated form of the mode functions. While in flat space highly sophisticated approaches to Feynman integrals exist, similar tools still remain to be developed for cosmological correlators. However, usually only their late-time limit is of interest. We introduce the method-of-region expansion for cosmological correlators as a tool to extract the late-time limit, and illustrate it with several examples for the interacting, massless, minimally coupled scalar field in de Sitter space. In particular, we consider the in-in correlator «ϕ2(η, q)ϕ(η, k1)ϕ(η, k2)», whose region structure is relevant to anomalous dimensions and matching coefficients in Soft de Sitter effective theory.


CN-6
(1648)First characterization of the emission behavior of Mrk 421 from radio to very high-energy gamma rays with simultaneous X-ray polarization measurements
  • S. Abe,
  • J. Abhir,
  • V. A. Acciari,
  • I. Agudo,
  • T. Aniello
  • +249
  • S. Ansoldi,
  • L. A. Antonelli,
  • A. Arbet-Engels,
  • C. Arcaro,
  • M. Artero,
  • K. Asano,
  • A. Babić,
  • A. Baquero,
  • U. Barres de Almeida,
  • J. A. Barrio,
  • I. Batković,
  • J. Baxter,
  • J. Becerra González,
  • W. Bednarek,
  • E. Bernardini,
  • J. Bernete,
  • A. Berti,
  • J. Besenrieder,
  • C. Bigongiari,
  • A. Biland,
  • O. Blanch,
  • G. Bonnoli,
  • Ž. Bošnjak,
  • I. Burelli,
  • G. Busetto,
  • A. Campoy-Ordaz,
  • A. Carosi,
  • R. Carosi,
  • M. Carretero-Castrillo,
  • A. J. Castro-Tirado,
  • G. Ceribella,
  • Y. Chai,
  • A. Cifuentes,
  • S. Cikota,
  • E. Colombo,
  • J. L. Contreras,
  • J. Cortina,
  • S. Covino,
  • F. D'Ammando,
  • G. D'Amico,
  • V. D'Elia,
  • P. Da Vela,
  • F. Dazzi,
  • A. De Angelis,
  • B. De Lotto,
  • R. de Menezes,
  • A. Del Popolo,
  • J. Delgado,
  • C. Delgado Mendez,
  • F. Di Pierro,
  • L. Di Venere,
  • D. Dominis Prester,
  • A. Donini,
  • D. Dorner,
  • M. Doro,
  • D. Elsaesser,
  • G. Emery,
  • J. Escudero,
  • L. Fariña,
  • A. Fattorini,
  • L. Foffano,
  • L. Font,
  • S. Fröse,
  • S. Fukami,
  • Y. Fukazawa,
  • R. J. García López,
  • M. Garczarczyk,
  • S. Gasparyan,
  • M. Gaug,
  • J. G. Giesbrecht Paiva,
  • N. Giglietto,
  • F. Giordano,
  • P. Gliwny,
  • N. Godinović,
  • T. Gradetzke,
  • R. Grau,
  • D. Green,
  • J. G. Green,
  • P. Günther,
  • D. Hadasch,
  • A. Hahn,
  • T. Hassan,
  • L. Heckmann,
  • J. Herrera,
  • D. Hrupec,
  • M. Hütten,
  • R. Imazawa,
  • T. Inada,
  • K. Ishio,
  • I. Jiménez Martínez,
  • J. Jormanainen,
  • D. Kerszberg,
  • G. W. Kluge,
  • Y. Kobayashi,
  • P. M. Kouch,
  • H. Kubo,
  • J. Kushida,
  • M. Láinez Lezáun,
  • A. Lamastra,
  • F. Leone,
  • E. Lindfors,
  • L. Linhoff,
  • S. Lombardi,
  • F. Longo,
  • R. López-Coto,
  • M. López-Moya,
  • A. López-Oramas,
  • S. Loporchio,
  • A. Lorini,
  • B. Machado de Oliveira Fraga,
  • P. Majumdar,
  • M. Makariev,
  • G. Maneva,
  • N. Mang,
  • M. Manganaro,
  • S. Mangano,
  • K. Mannheim,
  • M. Mariotti,
  • M. Martínez,
  • M. Martínez-Chicharro,
  • A. Mas-Aguilar,
  • D. Mazin,
  • S. Menchiari,
  • S. Mender,
  • D. Miceli,
  • T. Miener,
  • J. M. Miranda,
  • R. Mirzoyan,
  • M. Molero González,
  • E. Molina,
  • H. A. Mondal,
  • A. Moralejo,
  • D. Morcuende,
  • T. Nakamori,
  • C. Nanci,
  • L. Nava,
  • V. Neustroev,
  • L. Nickel,
  • M. Nievas Rosillo,
  • C. Nigro,
  • L. Nikolić,
  • K. Nilsson,
  • K. Nishijima,
  • T. Njoh Ekoume,
  • K. Noda,
  • S. Nozaki,
  • Y. Ohtani,
  • A. Okumura,
  • J. Otero-Santos,
  • S. Paiano,
  • M. Palatiello,
  • D. Paneque,
  • R. Paoletti,
  • J. M. Paredes,
  • D. Pavlović,
  • M. Peresano,
  • M. Persic,
  • M. Pihet,
  • G. Pirola,
  • F. Podobnik,
  • P. G. Prada Moroni,
  • E. Prandini,
  • G. Principe,
  • C. Priyadarshi,
  • W. Rhode,
  • M. Ribó,
  • J. Rico,
  • C. Righi,
  • N. Sahakyan,
  • T. Saito,
  • K. Satalecka,
  • F. G. Saturni,
  • B. Schleicher,
  • K. Schmidt,
  • F. Schmuckermaier,
  • J. L. Schubert,
  • T. Schweizer,
  • A. Sciaccaluga,
  • J. Sitarek,
  • V. Sliusar,
  • D. Sobczynska,
  • A. Stamerra,
  • J. Strišković,
  • D. Strom,
  • M. Strzys,
  • Y. Suda,
  • S. Suutarinen,
  • H. Tajima,
  • M. Takahashi,
  • R. Takeishi,
  • F. Tavecchio,
  • P. Temnikov,
  • K. Terauchi,
  • T. Terzić,
  • M. Teshima,
  • L. Tosti,
  • S. Truzzi,
  • A. Tutone,
  • S. Ubach,
  • J. van Scherpenberg,
  • M. Vazquez Acosta,
  • S. Ventura,
  • I. Viale,
  • C. F. Vigorito,
  • V. Vitale,
  • I. Vovk,
  • R. Walter,
  • M. Will,
  • C. Wunderlich,
  • T. Yamamoto,
  • I. Liodakis,
  • S. G. Jorstad,
  • L. Di Gesu,
  • I. Donnarumma,
  • D. E. Kim,
  • A. P. Marscher,
  • R. Middei,
  • M. Perri,
  • S. Puccetti,
  • F. Verrecchia,
  • C. Leto,
  • I. De La Calle Pérez,
  • E. Jiménez-Bailón,
  • D. Blinov,
  • I. G. Bourbah,
  • S. Kiehlmann,
  • E. Kontopodis,
  • N. Mandarakas,
  • R. Skalidis,
  • A. Vervelaki,
  • F. J. Aceituno,
  • B. Agís-González,
  • A. Sota,
  • M. Sasada,
  • Y. Fukazawa,
  • K. S. Kawabata,
  • M. Uemura,
  • T. Mizuno,
  • H. Akitaya,
  • C. Casadio,
  • I. Myserlis,
  • A. Sievers,
  • A. Lähteenmäki,
  • I. Syrjärinne,
  • M. Tornikoski,
  • Q. Salomé,
  • M. Gurwell,
  • G. K. Keating,
  • R. Rao
  • (less)
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202347988
abstract + abstract -


Aims: We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE.
Methods: The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC, Fermi-LAT, NuSTAR, XMM-Newton, Swift, and several optical and radio telescopes to complement IXPE data.
Results: During the IXPE exposures, the measured 0.2-1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σ significance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2-5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, the Swift-XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation, NuSTAR data reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales.

All data shown in Figs. 1, 2, 5, 7, and 8 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A127


(1647)Detection of Fe and Ti on the dayside of the ultrahot Jupiter MASCARA-1b with CARMENES
  • B. Guo,
  • F. Yan,
  • L. Nortmann,
  • D. Cont,
  • A. Reiners
  • +18
  • E. Pallé,
  • D. Shulyak,
  • K. Molaverdikhani,
  • Th. Henning,
  • G. Chen,
  • M. Stangret,
  • S. Czesla,
  • F. Lesjak,
  • M. López-Puertas,
  • I. Ribas,
  • A. Quirrenbach,
  • J. A. Caballero,
  • P. J. Amado,
  • M. Blazek,
  • D. Montes,
  • J. C. Morales,
  • E. Nagel,
  • M. R. Zapatero Osorio
  • (less)
abstract + abstract -

Ultrahot Jupiters are a type of gaseous exoplanet that orbit extremely close to their host star, resulting in significantly high equilibrium temperatures. In recent years, high-resolution emission spectroscopy has been broadly employed in observing the atmospheres of ultrahot Jupiters. We used the CARMENES spectrograph to observe the high-resolution spectra of the dayside hemisphere of MASCARA-1b in both visible and near-infrared. Through cross-correlation analysis, we detected signals of \ion{Fe}{i} and \ion{Ti}{i}. Based on these detections, we conducted an atmospheric retrieval and discovered the presence of a strong inversion layer in the planet's atmosphere. The retrieved Ti and Fe abundances are broadly consistent with solar abundances. In particular, we obtained a relative abundance of [Ti/Fe] as $-1.0 \pm 0.8$ under the free retrieval and $-0.4^{+0.5}_{-0.8}$ under the chemical equilibrium retrieval, suggesting the absence of significant titanium depletion on this planet. Furthermore, we considered the influence of planetary rotation on spectral line profiles. The resulting equatorial rotation speed was determined to be $4.4^{+1.6}_{-2.0}\,\mathrm{km\,s^{-1}}$, which agrees with the rotation speed induced by tidal locking.


(1646)Mixing is easy: New insights for cosmochemical evolution from pre-stellar core collapse
  • Asmita Bhandare,
  • Benoît Commerçon,
  • Guillaume Laibe,
  • Mario Flock,
  • Rolf Kuiper
  • +3
  • Thomas Henning,
  • Andrea Mignone,
  • Gabriel-Dominique Marleau
  • (less)
abstract + abstract -

Signposts of early planet formation are ubiquitous in substructured young discs. Dense, hot and high-pressure regions formed during gravitational collapse process, integral to star formation, facilitate dynamical mixing of dust within the protostellar disc. This provides an incentive to constrain the role of gas-dust interaction and resolve zones of dust concentration during star-disc formation. We explore if thermal and dynamical conditions developed during disc formation can generate gas flows that efficiently mix and transport well-coupled gas and dust components. We simulated the collapse of dusty molecular cloud cores with the hydrodynamics code PLUTO augmented with radiation transport and self-gravity. We used a 2D axisymmetric geometry and follow the azimuthal component of velocity. Dust was treated as Lagrangian particles that are subject to drag from the gas, whose motion is computed on a Eulerian grid. We considered 1, 10 and 100 micron-sized neutral spherical dust. Importantly, the equation of state accurately includes molecular hydrogen dissociation. We focus on molecular cloud core masses of 1 and 3 Msun and explore effects of initial rotation rates and cloud core sizes. Our study underlines mechanisms for early transport of dust from inner hot disc regions via the occurrence of meridional flows and outflow. The vortical flow fosters dynamical mixing and retention of dust while thermal pressure driven outflow replenishes dust in the outer disc. Young dynamical precursors to planet-forming discs exhibit regions with complex hydrodynamical gas features and high-temperature structures. These can play a crucial role in concentrating dust for subsequent growth into protoplanets. Dust transport, especially, from sub-au scales surrounding the protostar to outer relatively cooler parts, offers an efficient pathway for thermal reprocessing during pre-stellar core collapse. [Abridged]


(1645)Vortex Effects in Merging Black Holes and Saturons
  • Gia Dvali,
  • Oleg Kaikov,
  • Florian Kühnel,
  • Juan Sebastián Valbuena-Bermúdez,
  • Michael Zantedeschi
Physical Review Letters (04/2024) doi:10.1103/PhysRevLett.132.151402
abstract + abstract -

Vorticity has recently been suggested to be a property of highly spinning black holes. The connection between vorticity and limiting spin represents a universal feature shared by objects of maximal microstate entropy, so-called saturons. Using Q -ball-like saturons as a laboratory for black holes, we study the collision of two such objects and find that vorticity can have a large impact on the emitted radiation as well as on the charge and angular momentum of the final configuration. As black holes belong to the class of saturons, we expect that the formation of vortices can cause similar effects in black hole mergers, leading to macroscopic deviations in gravitational radiation. This could leave unique signatures detectable with upcoming gravitational-wave searches, which can thereby serve as a portal to macroscopic quantum effects in black holes.


(1644)CRIRES$^+$ transmission spectroscopy of WASP-127b. Detection of the resolved signatures of a supersonic equatorial jet and cool poles in a hot planet
  • L. Nortmann,
  • F. Lesjak,
  • F. Yan,
  • D. Cont,
  • S. Czesla
  • +12
  • A. Lavail,
  • A. D. Rains,
  • E. Nagel,
  • L. Boldt-Christmas,
  • A. Hatzes,
  • A. Reiners,
  • N. Piskunov,
  • O. Kochukhov,
  • U. Heiter,
  • D. Shulyak,
  • M. Rengel,
  • U. Seemann
  • (less)
abstract + abstract -

General circulation models of gas giant exoplanets predict equatorial jets that drive inhomogeneities across the planetary atmosphere. We studied the transmission spectrum of the hot Jupiter WASP-127b during one transit in the K band with CRIRES+. Telluric and stellar signals were removed from the data using SYSREM and the planetary signal was investigated using the cross-correlation (CCF) technique. After detecting a spectral signal indicative of atmospheric inhomogeneities, we employed a Bayesian retrieval framework with a 2D modelling approach tailored to address this scenario. We detected strong signals of H$_2$O and CO, which exhibited not one but two distinct CCF peaks. The double peaked signal can be explained by a supersonic equatorial jet and muted signals at the poles, with the two peaks representing the signals from the planet's morning and evening terminators, respectively. We calculated an equatorial jet velocity of $7.7\pm0.2$km/s from our retrieved overall equatorial velocity and the planet's tidally locked rotation, and derive distinct atmospheric properties for the two terminators as well as the polar region. The evening terminator is found to be hotter than the morning terminator by $175^{+116}_{-133}$K and the muted signals from the poles can be explained by significantly lower temperatures or a high cloud deck. Our retrieval yields a solar C/O ratio and metallicity and challenges previous studies of WASP-127b's atmosphere. The presence of a double peaked signal highlights the importance of accounting for planetary 3D structure during interpretation of atmospheric signals. The measured supersonic jet velocity and the lack of signal from the polar regions, representing a detection of latitudinal inhomogeneity in a spatially unresolved target, showcases the power of high-resolution transmission spectroscopy for the characterization of global circulation in exoplanets.


(1643)New basis for Hamiltonian SU(2) simulations
  • Irian D'Andrea,
  • Christian W. Bauer,
  • Dorota M. Grabowska,
  • Marat Freytsis
Physical Review D (04/2024) doi:10.1103/PhysRevD.109.074501
abstract + abstract -

Due to rapidly improving quantum computing hardware, Hamiltonian simulations of relativistic lattice field theories have seen a resurgence of attention. This computational tool requires turning the formally infinite-dimensional Hilbert space of the full theory into a finite-dimensional one. For gauge theories, a widely used basis for the Hilbert space relies on the representations induced by the underlying gauge group, with a truncation that keeps only a set of the lowest dimensional representations. This works well at large bare gauge coupling, but becomes less efficient at small coupling, which is required for the continuum limit of the lattice theory. In this work, we develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge. In particular, we show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved, which allows for this basis to be used at all values of the coupling. Little prior knowledge is assumed, so this may also be used as an introduction to the subject of Hamiltonian formulations of lattice gauge theories.


(1642)Cepheids as distance indicators and stellar tracers
  • G. Bono,
  • V. F. Braga,
  • A. Pietrinferni
Astronomy and Astrophysics Review (04/2024) doi:10.1007/s00159-024-00153-0
abstract + abstract -

We review the phenomenology of classical Cepheids (CCs), Anomalous Cepheids (ACs) and type II Cepheids (TIICs) in the Milky Way (MW) and in the Magellanic Clouds (MCs). We also examine the Hertzsprung progression in different stellar systems by using the shape of I-band light curves (Fourier parameters) and observables based on the difference in magnitude and in phase between the bump and the minimum in luminosity. The distribution of Cepheids in optical and in optical-near infrared (NIR) color-magnitude diagrams is investigated to constrain the topology of the instability strip. The use of Cepheids as tracers of young (CCs), intermediate (ACs) and old (TIICs) stellar populations are brought forward by the comparison between observations (MCs) and cluster isochrones covering a broad range in stellar ages and in chemical compositions. The different diagnostics adopted to estimate individual distances (period-luminosity, period-Wesenheit, period-luminosity-color relations) are reviewed together with pros and cons in the use of fundamental and overtones, optical and NIR photometric bands, and reddening free pseudo magnitudes (Wesenheit). We also discuss the use of CCs as stellar tracers and the radial gradients among the different groups of elements (iron, α , neutron-capture) together with their age-dependence. Finally, we briefly outline the role that near-future space and ground-based facilities will play in the astrophysical and cosmological use of Cepheids.


(1641)Spatial segregation of massive clusters in a simulation of colliding dwarf galaxies
  • Bruce G. Elmegreen,
  • Natalia Lahen
abstract + abstract -

The collective properties of star clusters are investigated using a simulation of the collision between two dwarf galaxies. The characteristic power law of the cluster mass function, N(M), with a slope dlog N/dlog M ~ -1, is present from cluster birth and remains throughout the simulation. The maximum mass of a young cluster scales with the star formation rate (SFR). The relative average minimum separation, R(M)= N(M)^{1/p}D_min(M)/D(M_low), for average minimum distance D_min(M) between clusters of mass M, and for lowest mass, M_low, measured in projection (p=2) or three dimensions (p=3), has a negative slope, dlog R/dlog M ~ -0.2, for all masses and ages. This agrees with observations of R(M) in low-mass galaxies studied previously. Like the slope of N(M), R}(M) is apparently a property of cluster birth for dwarf galaxies that does not depend on SFR or time. The negative slope for R(M) implies that more massive clusters are centrally concentrated relative to lower mass clusters throughout the entire mass range. Cluster growth through coalescence is also investigated. The ratio of the kinetic to potential energy of all near-neighbor clusters is generally large, but a tail of low values in the distribution of this ratio suggests that a fraction of the clusters merge, ~8% by number throughout the ~300 Myr of the simulation and up to 60% by mass for young clusters in their first 10 Myr, scaling with the SFR above a certain threshold.


(1640)General non-linear fragmentation with discontinuous Galerkin methods
  • Maxime Lombart,
  • Charles-Edouard Bréhier,
  • Mark Hutchison,
  • Yueh-Ning Lee
abstract + abstract -

Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation algorithms employed in astrophysics are dominated by the numerical over-diffusion problem -- particularly in 3D hydrodynamic simulations where the discrete resolution of the mass density distribution tends to be highly limited. With this in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy of 0.1 -1% is reached with 20 dust bins spanning a mass range of 9 orders of magnitude.


(1639)Statistical relations between spectropolarimetric observables and the polar strength of the stellar dipolar magnetic field
  • O. Kochukhov
abstract + abstract -

Global magnetic fields of early-type stars are commonly characterised by the mean longitudinal magnetic field $\langle B_{\rm z} \rangle$ and the mean field modulus $\langle B \rangle$, derived from the circular polarisation and intensity spectra, respectively. Observational studies often report a root mean square (rms) of $\langle B_{\rm z} \rangle$ and an average value of $\langle B \rangle$. In this work, I used numerical simulations to establish statistical relationships between these cumulative magnetic observables and the polar strength, $B_{\rm d}$, of a dipolar magnetic field. I show that in the limit of many measurements randomly distributed in rotational phase, $\langle B_{\rm z} \rangle_{\rm rms}$=$0.179^{+0.031}_{-0.043}$$B_{\rm d}$ and $\langle B \rangle_{\rm avg}$=$0.691^{+0.020}_{-0.023}$$B_{\rm d}$. The same values can be recovered with only three measurements, provided that the observations are distributed uniformly in the rotational phase. These conversion factors are suitable for ensemble analyses of large stellar samples, where each target is covered by a small number of magnetic measurements.


(1638)A Calabi-Yau-to-Curve Correspondence for Feynman Integrals
  • Hans Jockers,
  • Sören Kotlewski,
  • Pyry Kuusela,
  • Andrew J. McLeod,
  • Sebastian Pögel
  • +3
  • Maik Sarve,
  • Xing Wang,
  • Stefan Weinzierl
  • (less)
abstract + abstract -

It has long been known that the maximal cut of the equal-mass four-loop banana integral is a period of a family of Calabi-Yau threefolds that depends on the kinematic variable $z=m^2/p^2$. We show that it can also be interpreted as a period of a family of genus-two curves. We do this by introducing a general Calabi-Yau-to-curve correspondence, which in this case locally relates the original period of the family of Calabi-Yau threefolds to a period of a family of genus-two curves that varies holomorphically with the kinematic variable $z$. In addition to working out the concrete details of this correspondence for the equal-mass four-loop banana integral, we outline when we expect a correspondence of this type to hold.


(1637)Breakdown of Hawking Evaporation opens new Mass Window for Primordial Black Holes as Dark Matter Candidate
  • Valentin Thoss,
  • Andreas Burkert,
  • Kazunori Kohri
Monthly Notices of the Royal Astronomical Society (04/2024) doi:10.1093/mnras/stae1098
abstract + abstract -

The energy injection through Hawking evaporation has been used to put strong constraints on primordial black holes as a dark matter candidate at masses below 1017 g. However, Hawking's semiclassical approximation breaks down at latest after half-decay. Beyond this point, the evaporation could be significantly suppressed as was shown in recent work. In this study, we review existing cosmological and astrophysical bounds on primordial black holes taking this effect into account. We show that the constraints disappear completely for a reasonable range of parameters, which opens a new window below 1010 g for light primordial black holes as a dark matter candidate.


(1636)Informed Total-Error-Minimizing Priors: Interpretable cosmological parameter constraints despite complex nuisance effects
  • Bernardita Ried Guachalla,
  • Dylan Britt,
  • Daniel Gruen,
  • Oliver Friedrich
abstract + abstract -

While Bayesian inference techniques are standard in cosmological analyses, it is common to interpret resulting parameter constraints with a frequentist intuition. This intuition can fail, e.g. when marginalizing high-dimensional parameter spaces onto subsets of parameters, because of what has come to be known as projection effects or prior volume effects. We present the method of Informed Total-Error-Minimizing (ITEM) priors to address this. An ITEM prior is a prior distribution on a set of nuisance parameters, e.g. ones describing astrophysical or calibration systematics, intended to enforce the validity of a frequentist interpretation of the posterior constraints derived for a set of target parameters, e.g. cosmological parameters. Our method works as follows: For a set of plausible nuisance realizations, we generate target parameter posteriors using several different candidate priors for the nuisance parameters. We reject candidate priors that do not accomplish the minimum requirements of bias (of point estimates) and coverage (of confidence regions among a set of noisy realizations of the data) for the target parameters on one or more of the plausible nuisance realizations. Of the priors that survive this cut we select the ITEM prior as the one that minimizes the total error of the marginalized posteriors of the target parameters. As a proof of concept, we apply our method to the Density Split Statistics (DSS) measured in Dark Energy Survey Year 1 data. We demonstrate that the ITEM priors substantially reduce prior volume effects that otherwise arise and allow sharpened yet robust constraints on the parameters of interest.


(1635)Bounds on galaxy stochasticity from halo occupation distribution modeling
  • Dylan Britt,
  • Daniel Gruen,
  • Oliver Friedrich,
  • Sihan Yuan,
  • Bernardita Ried Guachalla
abstract + abstract -

The joint probability distribution of matter overdensity and galaxy counts in cells is a powerful probe of cosmology, and the extent to which variance in galaxy counts at fixed matter density deviates from Poisson shot noise is not fully understood. The lack of informed bounds on this stochasticity is currently the limiting factor in constraining cosmology with the galaxy-matter PDF. We investigate stochasticity in the conditional distribution of galaxy counts at fixed matter density and present a halo occupation distribution (HOD)-based approach for obtaining plausible ranges for stochasticity parameters. To probe the high-dimensional space of possible galaxy-matter connections, we derive HODs which conserve linear galaxy bias and number density to produce redMaGiC-like galaxy catalogs within the AbacusSummit suite of N-body simulations. We study the impact of individual HOD parameters and cosmology on stochasticity and perform a Monte Carlo search in HOD parameter space, subject to the constraints on bias and density. In mock catalogs generated by the selected HODs, shot noise in galaxy counts spans both sub-Poisson and super-Poisson values, ranging from 80% to 133% of Poisson variance at mean matter density. Nearly all derived HODs show a positive relationship between local matter density and stochasticity. For galaxy catalogs with higher stochasticity, quadratic galaxy bias is required for an accurate description of the conditional PDF of galaxy counts at fixed matter density. The presence of galaxy assembly bias also substantially extends the range of stochasticity in the super-Poisson direction. This HOD-based approach leverages degrees of freedom in the galaxy-halo connection to obtain informed bounds on model nuisance parameters and can be adapted to other parametrizations of stochasticity, in particular to motivate prior ranges for cosmological analyses.


(1634)Emergence of $R^4$-terms in M-theory
  • Ralph Blumenhagen,
  • Niccolò Cribiori,
  • Aleksandar Gligovic,
  • Antonia Paraskevopoulou
abstract + abstract -

It has been recently suggested that the strong Emergence Proposal is realized in equi-dimensional M-theory limits by integrating out all light towers of states with a typical mass scale not larger than the species scale, i.e. the eleventh dimensional Planck mass. Within the BPS sector, these are transverse $M2$- and $M5$-branes, that can be wrapped and particle-like, carrying Kaluza-Klein momentum along the compact directions. We provide additional evidence for this picture by revisiting and investigating further the computation of $R^4$-interactions in M-theory à la Green-Gutperle-Vanhove. A central aspect is a novel UV-regularization of Schwinger-like integrals, whose actual meaning and power we clarify by first applying it to string perturbation theory. We consider then toroidal compactifications of M-theory and provide evidence that integrating out all light towers of states via Schwinger-like integrals thus regularized yields the complete result for $R^4$-interactions. In particular, this includes terms that are tree-level, one-loop and space-time instanton corrections from the weakly coupled point of view. Finally, we comment on the conceptual difference of our approach to earlier closely related work by Kiritsis-Pioline and Obers-Pioline, leading to a correspondence between two types of constrained Eisenstein series.


(1633)The Radcliffe Wave is oscillating
  • Ralf Konietzka,
  • Alyssa A. Goodman,
  • Catherine Zucker,
  • Andreas Burkert,
  • João Alves
  • +4
  • Michael Foley,
  • Cameren Swiggum,
  • Maria Koller,
  • Núria Miret-Roig
  • (less)
abstract + abstract -

Our Sun lies within 300 parsecs of the 2.7-kiloparsecs-long sinusoidal chain of dense gas clouds known as the Radcliffe Wave1. The structure's wave-like shape was discovered using three-dimensional dust mapping, but initial kinematic searches for oscillatory motion were inconclusive2-7. Here we present evidence that the Radcliffe Wave is oscillating through the Galactic plane while also drifting radially away from the Galactic Centre. We use measurements of line-of-sight velocity8 for 12CO and three-dimensional velocities of young stellar clusters to show that the most massive star-forming regions spatially associated with the Radcliffe Wave (including Orion, Cepheus, North America and Cygnus X) move as though they are part of an oscillating wave driven by the gravitational acceleration of the Galactic potential. By treating the Radcliffe Wave as a coherently oscillating structure, we can derive its motion independently of the local Galactic mass distribution, and directly measure local properties of the Galactic potential as well as the Sun's vertical oscillation period. In addition, the measured drift of the Radcliffe Wave radially outwards from the Galactic Centre suggests that the cluster whose supernovae ultimately created today's expanding Local Bubble9 may have been born in the Radcliffe Wave.


(1632)Application of neural networks for the reconstruction of supernova neutrino energy spectra following fast neutrino flavor conversions
  • Sajad Abbar,
  • Meng-Ru Wu,
  • Zewei Xiong
Physical Review D (04/2024) doi:10.1103/PhysRevD.109.083019
abstract + abstract -

Neutrinos can undergo fast flavor conversions (FFCs) within extremely dense astrophysical environments, such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). In this study, we explore FFCs in a multienergy neutrino gas, revealing that when the FFC growth rate significantly exceeds that of the vacuum Hamiltonian, all neutrinos (regardless of energy) share a common survival probability dictated by the energy-integrated neutrino spectrum. We then employ physics-informed neural networks (PINNs) to predict the asymptotic outcomes of FFCs within such a multienergy neutrino gas. These predictions are based on the first two moments of neutrino angular distributions for each energy bin, typically available in state-of-the-art CCSN and NSM simulations. Our PINNs achieve errors as low as ≲6 % and ≲18 % for predicting the number of neutrinos in the electron channel and the relative absolute error in the neutrino moments, respectively.


(1631)Reflections on an M-theoretic Emergence Proposal
  • Ralph Blumenhagen,
  • Niccolò Cribiori,
  • Aleksandar Gligovic,
  • Antonia Paraskevopoulou
abstract + abstract -

In a pedagogical manner, we review recent developments in the investigation of the Emergence Proposal. Although it is fair to say that this idea is still at an exploratory level and a fully coherent picture has yet to be developed, we put it into perspective to previous work on the swampland program and on emergence in QG. In view of the emergent string conjecture, we argue and provide evidence that it is not the emergent string but rather the decompactification limit which is a natural candidate for the potential realization of the Emergence Proposal. This resonates in a compelling way with old ideas of emergence in M(-atrix) theory and gives rise to a number of further speculations.


RU-D
(1630)Cloud Formation by Supernova Implosion
  • Leonard E. C. Romano,
  • Manuel Behrendt,
  • Andreas Burkert
The Astrophysical Journal (04/2024) doi:10.3847/1538-4357/ad2c05
abstract + abstract -

The deposition of energy and momentum by supernova explosions has been subject to numerous studies in the past few decades. However, while there has been some work that focused on the transition from the adiabatic to the radiative stage of a supernova remnant (SNR), the late radiative stage and merging with the interstellar medium (ISM) have received little attention. Here, we use three-dimensional, hydrodynamic simulations, focusing on the evolution of SNRs during the radiative phase, considering a wide range of physical explosion parameters ( ${n}_{{\rm{H}},\mathrm{ISM}}\in \left[0.1,100\right]{\mathrm{cm}}^{-3}$ and ${E}_{\mathrm{SN}}\in \left[1,14\right]\times {10}^{51}\,\mathrm{erg}$ ). We find that the radiative phase can be subdivided in four stages: A pressure-driven snowplow phase, during which the hot overpressurized bubble gas is evacuated and pushed into the cold shell; a momentum-conserving snowplow phase that is accompanied by a broadening of the shell; an implosion phase where cold material from the back of the shell is flooding the central vacuum; and a final cloud phase, during which the imploding gas is settling as a central, compact overdensity. The launching timescale for the implosion ranges from a few 100 kyr to a few Myr, while the cloud formation timescale ranges from a few to about 10 Myr. The highly chemically enriched clouds can become massive (M cl ∼ 103–104 M ) and self-gravitating within a few Myr after their formation, providing an attractive, novel pathway for supernova-induced star and planet formation in the ISM.


(1629)A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars
  • Nora L. Strotjohann,
  • Eran O. Ofek,
  • Avishay Gal-Yam
The Astrophysical Journal (04/2024) doi:10.3847/2041-8213/ad3064
abstract + abstract -

The apparent tension between the luminosity functions of red supergiant (RSG) stars and of RSG progenitors of Type II supernovae (SNe) is often referred to as the RSG problem and it motivated some to suggest that many RSGs end their life without an SN explosion. However, the luminosity functions of RSG SN progenitors presented so far were biased to high luminosities, because the sensitivity of the search was not considered. Here, we use limiting magnitudes to calculate a bias-corrected RSG progenitor luminosity function. We find that only (36 ± 11)% of all RSG progenitors are brighter than a bolometric magnitude of ‑7 mag, a significantly smaller fraction than (56 ± 5)% quoted by Davies & Beasor. The larger uncertainty is due to the relatively small progenitor sample, while uncertainties on measured quantities such as magnitudes, bolometric corrections, extinction, or SN distances, only have a minor impact, as long as they fluctuate randomly for different objects in the sample. The bias-corrected luminosity functions of RSG SN progenitors and Type M supergiants in the Large Magellanic Cloud are consistent with each other, as also found by Davies & Beasor for the uncorrected luminosity function. The RSG progenitor luminosity function, hence, does not imply the existence of failed SNe. The presented statistical method is not limited to progenitor searches, but applies to any situation in which a measurement is done for a sample of detected objects, but the probed quantity or property can only be determined for part of the sample.


(1628)FAUST. XIII. Dusty cavity and molecular shock driven by IRS7B in the Corona Australis cluster
  • G. Sabatini,
  • L. Podio,
  • C. Codella,
  • Y. Watanabe,
  • M. De Simone
  • +52
  • E. Bianchi,
  • C. Ceccarelli,
  • C. J. Chandler,
  • N. Sakai,
  • B. Svoboda,
  • L. Testi,
  • Y. Aikawa,
  • N. Balucani,
  • M. Bouvier,
  • P. Caselli,
  • E. Caux,
  • L. Chahine,
  • S. Charnley,
  • N. Cuello,
  • F. Dulieu,
  • L. Evans,
  • D. Fedele,
  • S. Feng,
  • F. Fontani,
  • T. Hama,
  • T. Hanawa,
  • E. Herbst,
  • T. Hirota,
  • A. Isella,
  • I. Jímenez-Serra,
  • D. Johnstone,
  • B. Lefloch,
  • R. Le Gal,
  • L. Loinard,
  • H. B. Liu,
  • A. López-Sepulcre,
  • L. T. Maud,
  • M. J. Maureira,
  • F. Menard,
  • A. Miotello,
  • G. Moellenbrock,
  • H. Nomura,
  • Y. Oba,
  • S. Ohashi,
  • Y. Okoda,
  • Y. Oya,
  • J. Pineda,
  • A. Rimola,
  • T. Sakai,
  • D. Segura-Cox,
  • Y. Shirley,
  • C. Vastel,
  • S. Viti,
  • N. Watanabe,
  • Y. Zhang,
  • Z. E. Zhang,
  • S. Yamamoto
  • (less)
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202449616
abstract + abstract -

Context. The origin of the chemical diversity observed around low-mass protostars probably resides in the earliest history of these systems.
Aims: We aim to investigate the impact of protostellar feedback on the chemistry and grain growth in the circumstellar medium of multiple stellar systems.
Methods: In the context of the ALMA Large Program FAUST, we present high-resolution (50 au) observations of CH3OH, H2CO, and SiO and continuum emission at 1.3 mm and 3 mm towards the Corona Australis star cluster.
Results: Methanol emission reveals an arc-like structure at ∼1800 au from the protostellar system IRS7B along the direction perpendicular to the major axis of the disc. The arc is located at the edge of two elongated continuum structures that define a cone emerging from IRS7B. The region inside the cone is probed by H2CO, while the eastern wall of the arc shows bright emission in SiO, a typical shock tracer. Taking into account the association with a previously detected radio jet imaged with JVLA at 6 cm, the molecular arc reveals for the first time a bow shock driven by IRS7B and a two-sided dust cavity opened by the mass-loss process. For each cavity wall, we derive an average H2 column density of ∼7 × 1021 cm−2, a mass of ∼9 × 10−3 M, and a lower limit on the dust spectral index of 1.4.
Conclusions: These observations provide the first evidence of a shock and a conical dust cavity opened by the jet driven by IRS7B, with important implications for the chemical enrichment and grain growth in the envelope of Solar System analogues.


(1627)Transient fading X-ray emission detected during the optical rise of a tidal disruption event
  • A. Malyali,
  • A. Rau,
  • C. Bonnerot,
  • A. J. Goodwin,
  • Z. Liu
  • +7
  • G. E. Anderson,
  • J. Brink,
  • D. A. H. Buckley,
  • A. Merloni,
  • J. C. A. Miller-Jones,
  • I. Grotova,
  • A. Kawka
  • (less)
Monthly Notices of the Royal Astronomical Society (04/2024) doi:10.1093/mnras/stae927
abstract + abstract -

We report on the SRG/eROSITA detection of ultra-soft ($kT=47^{+5}_{-5}$ eV) X-ray emission (LX =$2.5^{+0.6}_{-0.5} \times 10^{43}$erg s -1) from the tidal disruption event (TDE) candidate AT 2022dsb ~14 days before peak optical brightness. As the optical luminosity increases after the eROSITA detection, then the 0.2-2 keV observed flux decays, decreasing by a factor of ~39 over the 19 days after the initial X-ray detection. Multi-epoch optical spectroscopic follow-up observations reveal transient broad Balmer emission lines and a broad He II 4686Å emission complex with respect to the pre-outburst spectrum. Despite the early drop in the observed X-ray flux, the He II 4686Å complex is still detected for ~40 days after the optical peak, suggesting the persistence of an obscured, hard ionising source in the system. Three outflow signatures are also detected at early times: i) blueshifted Hα emission lines in a pre-peak optical spectrum, ii) transient radio emission, and iii) blueshifted Lyα absorption lines. The joint evolution of this early-time X-ray emission, the He II 4686Å complex and these outflow signatures suggests that the X-ray emitting disc (formed promptly in this TDE) is still present after optical peak, but may have been enshrouded by optically thick debris, leading to the X-ray faintness in the months after the disruption. If the observed early-time properties in this TDE are not unique to this system, then other TDEs may also be X-ray bright at early times and become X-ray faint upon being veiled by debris launched shortly after the onset of circularisation.


(1626)Variable stars in galactic globular clusters. I. The population of RR Lyrae stars
  • Mauricio Cruz Reyes,
  • Richard I. Anderson,
  • Lucas Johansson,
  • Henryka Netzel,
  • Zoé Medaric
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202348961
abstract + abstract -

We present a comprehensive catalog of 2824 RR Lyrae stars (RRLs) residing in 115 Galactic globular clusters (GCs). Our catalog includes 1594 fundamental-mode (RRab), 824 first-overtone (RRc), and 28 double-mode (RRd) RRLs, as well as 378 RRLs of an unknown pulsation mode. We cross-matched 481 349 RRLs reported in the third Data Release (DR3) of the ESA mission Gaia and the literature to 170 known GCs. Membership probabilities were computed as the products of a position and shape-dependent prior and a likelihood was computed using parallaxes, proper motions, and, where available, radial velocities from Gaia. Membership likelihoods of RRLs were computed by comparing cluster average parameters based on known member stars and the cross-matched RRLs. We determined empirical RRL instability strip (IS) boundaries based on our catalog and detected three new cluster RRLs inside this region via their excess Gaia G-band photometric uncertainties. We find that 77% of RRLs in GCs are included in the Gaia DR3 Specific Object Study, and 82% were classified as RRLs by the Gaia DR3 classifier, with the majority of the missing sources being located at the crowded GC centers. Surprisingly, we find that 25% of cluster member stars located within the empirical IS are not RRLs and appear to be non-variable. Additionally, we find that 80% of RRab, 84% of RRc, and 100% of the RRd stars are located within theoretical IS boundaries predicted using MESA models with Z = 0.0003, M = 0.7 M, and Y = 0.290. Unexpectedly, a higher Y = 0.357 is required to fully match the location of RRc stars, and lower Y = 0.220 is needed to match the location of RRab stars. Lastly, our catalog does not exhibit an Oosterhoff dichotomy, with at least 22 GCs located inside the Oosterhoff "gap", which is close to the mode of the distribution of mean RRL periods in GCs.

Tables 1, 4, A.2 and D.1 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A173


(1625)Cepheid Metallicity in the Leavitt Law (C- MetaLL) survey: VI: Radial abundance gradients of 29 chemical species in the Milky Way Disk
  • E. Trentin,
  • G. Catanzaro,
  • V. Ripepi,
  • J. Alonso-Santiago,
  • R. Molinaro
  • +7
  • J. Storm,
  • G. De Somma,
  • M. Marconi,
  • A. Bhardwaj,
  • M. Gatto,
  • I. Musella,
  • V. Testa
  • (less)
abstract + abstract -

Classical Cepheids (DCEPs) are crucial for calibrating the extragalactic distance ladder, ultimately enabling the determination of the Hubble constant through the PL and PW relations they exhibit. Hence it's vital to understand how the PL and PW relations depend on metallicity. This is the purpose of the C-MetaLL survey within which this work is situated. DCEPs are also very important tracers of the young populations placed along the Galactic disc. We aim to enlarge the sample of DCEPs with accurate abundances from high-resolution spectroscopy. Our goal is to extend the range of measured metallicities towards the metal-poor regime to better cover the parameter space. We observed objects in a wide range of Galactocentric radii, allowing us to study in detail the abundance gradients present in the Galactic disc. We present the results of the analysis of 331 spectra obtained for 180 individual DCEPs with a variety of high-resolution spectrographs. We derived accurate atmospheric parameters, radial velocities, and abundances for up to 29 different species. The iron abundances range between 0.5 and -1 dex with a rather homogeneous distribution in metallicity. The sample presented in this paper was complemented with that already published in the context of the C-MetaLL survey, resulting in a total of 292 pulsators whose spectra have been analysed in a homogeneous way. These data were used to study the abundance gradients of the Galactic disc in a range of Galactocentric radii spanning the range 5-20 kpc. For most of the elements we found a clear negative gradient, with a slope of -0.071\pm0.003 dex kpc^-1 for [Fe/H] case. Through a qualitative fit with the Galactic spiral arms we shown how our farthest targets (R_GC>10 kpc) trace both the Outer and OSC arms. The homogeneity of the sample will be of pivotal importance for the study of the metallicity dependance of the DCEP PL relations.


(1624)The Astrochemistry Low-energy Electron Cross-Section (ALeCS) database. I. Semi-empirical electron-impact ionization cross-section calculations and ionization rates
  • Brandt A. L. Gaches,
  • Tommaso Grassi,
  • Stefan Vogt-Geisse,
  • Giulia M. Bovolenta,
  • Claire Vallance
  • +4
  • David Heathcote,
  • Marco Padovani,
  • Stefano Bovino,
  • Prasanta Gorai
  • (less)
Astronomy and Astrophysics (04/2024) doi:10.1051/0004-6361/202348293
abstract + abstract -

Context. Electron-molecule interaction is a fundamental process in radiation-driven chemistry in space, from the interstellar medium to comets. Therefore, knowledge of interaction cross sections is key. There have been a plethora of both theoretical and experimental studies of total ionization cross sections spanning from diatomics to complex organics. However, the data are often spread over many sources or are not public or readily available.
Aims: We introduce the Astrochemistry Low-energy Electron cross-section (ALeCS) database. This is a public database for electron interaction cross sections and ionization rates for molecules of astrochemical interest. In particular, we present here the first data release, comprising total ionization cross sections and ionization rates for over 200 neutral molecules.
Methods: We include optimized geometries and molecular orbital energies at various levels of quantum chemistry theory. Furthermore, for a subset of the molecules, we have calculated ionization potentials. We computed the total ionization cross sections using the binary-encounter Bethe model and screening-corrected additivity rule, and we computed ionization rates and reaction network coefficients for molecular cloud environments.
Results: We present the cross sections and reaction rates for >200 neutral molecules ranging from diatomics to complex organics, with the largest being C14H10. We find that the screening-corrected additivity rule cross sections generally significantly overestimate experimental total ionization cross sections. We demonstrate that our binary-encounter Bethe cross sections agree well with experimental data. We show that the ionization rates scale roughly linearly with the number of constituent atoms in the molecule.
Conclusions: We introduce and describe the public ALeCS database. For the initial release, we include total ionization cross sections for >200 neutral molecules and several cations and anions calculated with different levels of quantum chemistry theory, the chemical reaction rates for the ionization, and network files in the formats of the two most popular astrochemical networks: the Kinetic Database for Astrochemistry, and UMIST. The database will be continuously updated for more molecules and interactions.


(1623)Illuminating Black Hole Shadow with Dark Matter Annihilation
  • Yifan Chen,
  • Ran Ding,
  • Yuxin Liu,
  • Yosuke Mizuno,
  • Jing Shu
  • +2
abstract + abstract -

The Event Horizon Telescope (EHT) has revolutionized our ability to study black holes by providing unprecedented spatial resolution and unveiling horizon-scale details. With advancements leading to the next-generation EHT, there is potential to probe even deeper into the black hole's dark region, especially the inner shadow characterized by low-intensity foreground emissions from the jet, thanks to a significant enhancement in dynamic range by two orders of magnitude. We demonstrate how such enhanced observations could transform supermassive black holes into powerful probes for detecting annihilating dark matter, which can form a dense profile in the vicinity of supermassive black holes, by examining the morphology of the black hole image.


(1622)Indirect constraints on third generation baryon number violation
  • Martin Beneke,
  • Gael Finauri,
  • Alexey A. Petrov
abstract + abstract -

The non-observation of baryon number violation suggests that the scale of baryon-number violating interactions at zero temperature is comparable to the GUT scale. However, the pertinent measurements involve hadrons made of the first-generation quarks, such as protons and neutrons. One may therefore entertain the idea that new flavour physics breaks baryon number at a much lower scale, but only in the coupling to a third generation quark, leading to observable baryon-number violating $b$-hadron decay rates. In this paper we show that indirect constraints on the new physics scale $\Lambda_{\rm BNV}$ from the existing bounds on the proton lifetime do not allow for this possibility. For this purpose we consider the three dominant proton decay channels $p \to \ell^+ \nu_\ell \bar{\nu}$, $p \to \pi^+ \bar{\nu}$ and $p \to \pi^0 \ell^+$ mediated by a virtual bottom quark.


(1621)Bringing CERN to classrooms: Learning about ALICE with AR and LEGO
  • Atakan Çoban,
  • Aishwarya Girdhar,
  • Max Warkentin,
  • Christoph Hoyer,
  • Jochen Weller
  • +4
  • Jochen Kuhn,
  • Stephan Koenigstorfer,
  • Laura Fabbietti,
  • Sascha Mehlhase
  • (less)
The Physics Teacher (04/2024) doi:10.1119/5.0203650

(1620)Radiative corrections: from medium to high energy experiments
  • Andrei Afanasev,
  • Jan C. Bernauer,
  • Peter Blunden,
  • Johannes Blümlein,
  • Ethan W. Cline
  • +14
  • Jan M. Friedrich,
  • Franziska Hagelstein,
  • Tomáš Husek,
  • Michael Kohl,
  • Fred Myhrer,
  • Gil Paz,
  • Susan Schadmand,
  • Axel Schmidt,
  • Vladyslava Sharkovska,
  • Adrian Signer,
  • Oleksandr Tomalak,
  • Egle Tomasi-Gustafsson,
  • Yannick Ulrich,
  • Marc Vanderhaeghen
  • (less)
European Physical Journal A (04/2024) doi:10.1140/epja/s10050-024-01281-y
abstract + abstract -

Radiative corrections are crucial for modern high-precision physics experiments, and are an area of active research in the experimental and theoretical community. Here we provide an overview of the state of the field of radiative corrections with a focus on several topics: lepton-proton scattering, QED corrections in deep-inelastic scattering, and in radiative light-hadron decays. Particular emphasis is placed on the two-photon exchange, believed to be responsible for the proton form-factor discrepancy, and associated Monte-Carlo codes. We encourage the community to continue developing theoretical techniques to treat radiative corrections, and perform experimental tests of these corrections.


(1619)Interference effects in gg → H → Zγ beyond leading order
  • Federico Buccioni,
  • Federica Devoto,
  • Abdelhak Djouadi,
  • John Ellis,
  • Jérémie Quevillon
  • +1
Physics Letters B (04/2024) doi:10.1016/j.physletb.2024.138596
abstract + abstract -

The ATLAS and CMS collaborations at the LHC have recently announced evidence for the rare Higgs boson decay into a Z boson and a photon. We analyze the interference between the process <mml:math altimg="si1.svg"><mml:mi>g</mml:mi><mml:mi>g</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>H</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>Z</mml:mi><mml:mi>γ</mml:mi></mml:math> induced by loops of heavy particles, which is by far the dominant contribution to the signal, and the continuum <mml:math altimg="si11.svg"><mml:mi>g</mml:mi><mml:mi>g</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>Z</mml:mi><mml:mi>γ</mml:mi></mml:math> QCD background process mediated by light quark loops. This interference modifies the event yield, the resonance line-shape and the apparent mass of the Higgs boson. We calculate the radiative corrections to this interference beyond the leading-order approximation in perturbative QCD and find that, while differing numerically from the corresponding effects on the more studied <mml:math altimg="si3.svg"><mml:mi>g</mml:mi><mml:mi>g</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:math> signal, they are generally rather small. As such, they do not impact significantly the interpretation of the present measurements of the <mml:math altimg="si4.svg"><mml:mi>H</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>Z</mml:mi><mml:mi>γ</mml:mi></mml:math> decay mode.


CN-7
(1618)Comparing pion production in transport simulations of heavy-ion collisions at 270 A MeV under controlled conditions
  • Jun Xu,
  • Hermann Wolter,
  • Maria Colonna,
  • Mircea Dan Cozma,
  • Pawel Danielewicz
  • +19
  • Che Ming Ko,
  • Akira Ono,
  • ManYee Betty Tsang,
  • Ying-Xun Zhang,
  • Hui-Gan Cheng,
  • Natsumi Ikeno,
  • Rohit Kumar,
  • Jun Su,
  • Hua Zheng,
  • Zhen Zhang,
  • Lie-Wen Chen,
  • Zhao-Qing Feng,
  • Christoph Hartnack,
  • Arnaud Le Fèvre,
  • Bao-An Li,
  • Yasushi Nara,
  • Akira Ohnishi,
  • Feng-Shou Zhang,
  • TMEP Collaboration
  • (less)
Physical Review C (04/2024) doi:10.1103/PhysRevC.109.044609
abstract + abstract -

Within the Transport Model Evaluation Project (TMEP), we present a detailed study of the performance of different transport models in Sn+Sn collisions at 270 A MeV , which are representative reactions used to study the equation of state at suprasaturation densities. We put particular emphasis on the production of pions and Δ resonances, which have been used as probes of the nuclear symmetry energy. In this paper, we aim to understand the differences in the results of different codes for a given physics model to estimate the uncertainties of transport model studies in the intermediate energy range. Thus, we prescribe a common and rather simple physics model, and follow in detail the results of four Boltzmann-Uehling-Uhlenbeck (BUU) models and six quantum molecular dynamics (QMD) models. The nucleonic evolution of the collision and the nucleonic observables in these codes do not completely converge, but the differences among the codes can be understood as being due to several reasons: the basic differences between BUU and QMD models in the representation of the phase-space distributions, computational differences in the mean-field evaluation, and differences in the adopted strategies for the Pauli blocking in the collision integrals. For pionic observables, we find that a higher maximum density leads to an enhanced pion yield and a reduced π+ yield ratio, while a more effective Pauli blocking generally leads to a slightly suppressed pion yield and an enhanced π+ yield ratio. We specifically investigate the effect of the Coulomb force and find that it increases the total π+ yield ratio but reduces the ratio at high pion energies, although differences in its implementations do not have a dominating role in the differences among the codes. Taking into account only the results of codes that strictly follow the homework specifications, we find a convergence of the codes in the final charged-pion yield ratio to a 1 σ deviation of about 5 % . However, the uncertainty is expected to be reduced to about 1.6 % if the same or similar strategies and ingredients, i.e., an improved Pauli blocking and calculation of the nonlinear term in the mean-field potential, are similarly used in all codes. As a result of this work, we identify the sensitive aspects of a simulation with respect to pion observables, and suggest optimal procedures in some cases. This work provides benchmark calculations of heavy-ion collisions to be complemented in the future by simulations with more realistic physics models, which include the momentum-dependence of isoscalar and isovector mean-field potentials and pion in-medium effects.


(1617)The Renormalization Group for Large-Scale Structure: Origin of Galaxy Stochasticity
  • Henrique Rubira,
  • Fabian Schmidt
abstract + abstract -

The renormalization group equations for large-scale structure (RG-LSS) describe how the bias and stochastic (noise) parameters -- both of matter and biased tracers such as galaxies -- evolve as a function of the cutoff $\Lambda$ of the effective field theory. In previous work, we derived the RG-LSS equations for the bias parameters using the Wilson-Polchinski framework. Here, we extend these results to include stochastic contributions, corresponding to terms in the effective action that are higher order in the current $J$. We show that the RG equations exhibit an interesting, previously unnoticed structure at all orders in $J$, which implies that a single nonlinear bias term immediately generates all stochastic moments through RG evolution. We then derive the nonlinear RG evolution of the (leading-derivative) stochastic parameters for all $n$-point functions, and show that this evolution is controlled by a different, lower scale than the nonlinear scale. This has implications for the optimal choice of the renormalization scale when comparing the theory with data to obtain cosmological constraints.


CN-3
RU-B
(1616)Light dark matter search using a diamond cryogenic detector
  • CRESST Collaboration,
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento
  • +54
  • A. Bertolini,
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. V. Feilitzsch,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Garai,
  • V. M. Ghete,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Jeskovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • S. Kuckuk,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • B. Mauri,
  • L. Meyer,
  • V. Mokina,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
European Physical Journal C (03/2024) doi:10.1140/epjc/s10052-024-12647-3
abstract + abstract -

Diamond operated as a cryogenic calorimeter is an excellent target for direct detection of low-mass dark matter candidates. Following the realization of the first low-threshold cryogenic detector that uses diamond as absorber for astroparticle physics applications, we now present the resulting exclusion limits on the elastic spin-independent interaction cross-section of dark matter with diamond. We measured two 0.175 g CVD (Chemical Vapor Deposition) diamond samples, each instrumented with a Transition Edge Sensor made of Tungsten (W-TES). Thanks to the energy threshold of just 16.8 eV of one of the two detectors, we set exclusion limits on the elastic spin-independent interaction of dark matter particles with carbon nuclei down to dark matter masses as low as 0.122 GeV/c2. This work shows the scientific potential of cryogenic detectors made from diamond and lays the foundation for the use of this material as target for direct detection dark matter experiments.


(1615)Can the giant planets of the Solar System form via pebble accretion in a smooth protoplanetary disc?
  • Tommy Chi Ho Lau,
  • Man Hoi Lee,
  • Ramon Brasser,
  • Soko Matsumura
Astronomy and Astrophysics (03/2024) doi:10.1051/0004-6361/202347863
abstract + abstract -

Context. Prevailing N-body planet formation models typically start with lunar-mass embryos and show a general trend of rapid migration of massive planetary cores to the inner Solar System in the absence of a migration trap. This setup cannot capture the evolution from a planetesimal to embryo, which is crucial to the final architecture of the system.
Aims: We aim to model planet formation with planet migration starting with planetesimals of ~10−6−10−4 M and reproduce the giant planets of the Solar System.
Methods: We simulated a population of 1000-5000 planetesimals in a smooth protoplanetary disc, which was evolved under the effects of their mutual gravity, pebble accretion, gas accretion, and planet migration, employing the parallelized N-body code SyMBAp.
Results: We find that the dynamical interactions among growing planetesimals are vigorous and can halt pebble accretion for excited bodies. While a set of results without planet migration produces one to two gas giants and one to two ice giants beyond 6 au, massive planetary cores readily move to the inner Solar System once planet migration is in effect.
Conclusions: Dynamical heating is important in a planetesimal disc and the reduced pebble encounter time should be considered in similar models. Planet migration remains a challenge to form cold giant planets in a smooth protoplanetary disc, which suggests an alternative mechanism is required to stop them at wide orbits.


(1614)One loop QCD corrections to gg → t/line{t }H at O≤ft({ɛ }<SUP>2</SUP>\right)
  • Federico Buccioni,
  • Philipp Alexander Kreer,
  • Xiao Liu,
  • Lorenzo Tancredi
Journal of High Energy Physics (03/2024) doi:10.1007/JHEP03(2024)093
abstract + abstract -

We compute the one-loop corrections to gg → $t\overline{t }H$ up to order $O\left({ɛ }2\right)$ in the dimensional-regularization parameter. We apply the projector method to compute polarized amplitudes, which generalize massless helicity amplitudes to the massive case. We employ a semi-numerical strategy to evaluate the scattering amplitudes. We express the form factors through scalar integrals analytically, and obtain separately integration by parts reduction identities in compact form. We integrate numerically the corresponding master integrals with an enhanced implementation of the Auxiliary Mass Flow algorithm. Using a numerical fit method, we concatenate the analytic and the numeric results to obtain fast and reliable evaluation of the scattering amplitude. This approach improves numerical stability and evaluation time. Our results are implemented in the Mathematica package TTH.


IDSL
RU-E
(1613)High-Fidelity RNA Copying via 2′,3′-Cyclic Phosphate Ligation
  • Adriana Calaça Serrão,
  • Sreekar Wunnava,
  • Avinash V. Dass,
  • Lennard Ufer,
  • Philipp Schwintek
  • +2
  • Christof B. Mast,
  • and Dieter Braun
  • (less)
J. Am. Chem. Soc. (03/2024) doi:10.1021/jacs.3c10813
abstract + abstract -

Templated ligation offers an efficient approach to replicate long strands in an RNA world. The 2′,3′-cyclic phosphate (>P) is a prebiotically available activation that also forms during RNA hydrolysis. Using gel electrophoresis and high-performance liquid chromatography, we found that the templated ligation of RNA with >P proceeds in simple low-salt aqueous solutions with 1 mM MgCl2 under alkaline pH ranging from 9 to 11 and temperatures from −20 to 25 °C. No additional catalysts were required. In contrast to previous reports, we found an increase in the number of canonical linkages to 50%. The reaction proceeds in a sequence-specific manner, with an experimentally determined ligation fidelity of 82% at the 3′ end and 91% at the 5′ end of the ligation site. With splinted oligomers, five ligations created a 96-mer strand, demonstrating a pathway for the ribozyme assembly. Due to the low salt requirements, the ligation conditions will be compatible with strand separation. Templated ligation mediated by 2′,3′-cyclic phosphate in alkaline conditions therefore offers a performant replication and elongation reaction for RNA on early Earth.


CN-5
PhD Thesis
(1612)On simulations of cosmic rays in the large-scale structure of the universe
  • Ludwig Böss - Advisor: Harald Lesch
Thesis (03/2024) doi:10.5282/edoc.33280
abstract + abstract -

Cosmic rays (CRs) in the shape of relativistic protons and electrons are the source of non-thermal radiation in a plethora of astrophysical systems. Their emission provides insights into the strength and structure of magnetic fields, cosmic shock waves, and non-thermal pressure components in the interstellar or intergalactic medium. In the large-scale structure of the Universe CR electrons are the likely source of synchrotron emission from Radio Halos, Radio Relics, and AGN jets. CR protons on the other hand should be detectable via diffuse gamma-rays from their interaction with the thermal background gas, however, this emission has not yet been found. Estimating the gamma-ray emission from this process is required to study the non-thermal pressure support in clusters, as well as finding observational windows for potential detection of Dark Matter interaction. Simulations of the Large-Scale Structure of the Universe, the so-called Cosmic Web, give insights into the origin and evolution of the largest gravitationally bound structures in the Universe. Even state-of-the-art simulations of cosmological structure formation lack the resolution to simulate the effect cosmic rays have on their environment from first principles. We therefore require a careful sub-grid description of cosmic ray physics that can be included in such simulations to model the effect cosmic rays may have on the evolution of cosmic structure.

 


(1611)Numerical challenges for energy conservation in N-body simulations of collapsing self-interacting dark matter haloes
  • Moritz S. Fischer,
  • Klaus Dolag,
  • Hai-Bo Yu
abstract + abstract -

Dark matter (DM) haloes can be subject to gravothermal collapse if DM is not collisionless but has strong self-interactions. When the scattering can efficiently transfer heat from the centre to the outskirts, the central region of the halo collapses and reaches densities much higher than those for collisionless DM. This phenomenon is potentially observable in studies of strong lensing. Current theoretical efforts are motivated by observations of surprisingly dense substructures. A comparison with them requires accurate predictions. One method to obtain such predictions is to use N-body simulations. The collapsed haloes are extreme systems that pose severe challenges to state-of-the-art codes used to model self-interacting dark matter (SIDM). We investigate the root of such problems with a focus on energy non-conservation. We run N-body simulations with and without DM self-interactions of an isolated DM-only halo and change numerical parameters relevant to the accuracy of the simulation. We find that not only the numerical scheme for the DM self-interactions can lead to energy non-conservation but also the modelling of gravitational interaction and the time integration are problematic. The issues we found are: (a) particles changing their time step in a non-time-reversible manner; (b) the asymmetry in the tree-based gravitational force evaluation; (c) SIDM velocity kicks break the symplectic nature and time symmetry. Tuning the parameters of the simulation to achieve a high accuracy allows for conserving energy not only at early stages of the evolution but also at late ones. However, the cost of the simulations becomes prohibitively large. Some problems making the simulations of the gravothermal collapse phase inaccurate, can be overcome by choosing appropriate numerical schemes. However, others remain challenging. Our findings motivate further work on addressing these challenges.


(1610)A nearby polluted white dwarf with a 6.2 h spin period
  • J. Farihi,
  • A. Robert,
  • N. Walters
Monthly Notices of the Royal Astronomical Society (03/2024) doi:10.1093/mnrasl/slae014
abstract + abstract -

This letter reports the first detection of a periodic light curve whose modulation is unambiguously due to rotation in a polluted white dwarf. TESS observations of WD 2138-332, at a distance of 16.1 pc, reveal a 0.39 per cent amplitude modulation with a 6.19 h period. While this rotation is relatively rapid for isolated white dwarfs, it falls within the range of spin periods common to those with detectable magnetic fields, where WD 2138-332 is notably both metal-rich and weakly magnetic. Within the local 20 pc volume of white dwarfs, multisector TESS data find no significant periodicities among the remaining 16 polluted objects (five of which are also magnetic), whereas six of 23 magnetic and metal-free targets have light curves consistent with rotation periods between 0.7 and 35 h (three of which are new discoveries). This indicates the variable light curve of WD 2138-332 is primarily a result of magnetism, as opposed to an inhomogeneous distribution of metals. From 13 magnetic and metallic degenerates with acceptable TESS data, a single detection of periodicity suggests that polluted white dwarfs are not rotating as rapidly as their magnetic counterparts, and planet ingestion is thus unlikely to be a significant channel for rapid rotation.


(1609)Final Moments II: Observational Properties and Physical Modeling of CSM-Interacting Type II Supernovae
  • W. V. Jacobson-Galán,
  • L. Dessart,
  • K. W. Davis,
  • C. D. Kilpatrick,
  • R. Margutti
  • +50
  • R. J. Foley,
  • R. Chornock,
  • G. Terreran,
  • D. Hiramatsu,
  • M. Newsome,
  • E. Padilla Gonzalez,
  • C. Pellegrino,
  • D. A. Howell,
  • A. V. Filippenko,
  • J. P. Anderson,
  • C. R. Angus,
  • K. Auchettl,
  • K. A. Bostroem,
  • T. G. Brink,
  • R. Cartier,
  • D. A. Coulter,
  • T. de Boer,
  • M. R. Drout,
  • N. Earl,
  • K. Ertini,
  • J. R. Farah,
  • D. Farias,
  • C. Gall,
  • H. Gao,
  • M. A. Gerlach,
  • F. Guo,
  • A. Haynie,
  • G. Hosseinzadeh,
  • A. L. Ibik,
  • S. W. Jha,
  • D. O. Jones,
  • D. Langeroodi,
  • N LeBaron,
  • E. A. Magnier,
  • A. L. Piro,
  • S. I. Raimundo,
  • A. Rest,
  • S. Rest,
  • R. Michael Rich,
  • C. Rojas-Bravo,
  • H. Sears,
  • K. Taggart,
  • V. A. Villar,
  • R. J. Wainscoat,
  • X-F. Wang,
  • A. R. Wasserman,
  • S. Yan,
  • Y. Yang,
  • J. Zhang,
  • W. Zheng
  • (less)
abstract + abstract -

We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early-time ($\delta t < 2$ days) spectra show transient, narrow emission lines from shock ionization of confined ($r < 10^{15}$ cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of HI, He I/II, C III/IV, and N III/IV/V from the CSM persist on a characteristic timescale ($t_{\rm IIn}$) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early-time IIn-like features in addition to 35 "comparison" SNe with no evidence of early-time IIn-like features, all with ultraviolet observations. The total sample consists of 50 unpublished objects with 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and both $t_{\rm IIn}$ and the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through matching of peak multiband absolute magnitudes, rise times, $t_{\rm IIn}$ and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium (nLTE) radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: $t_{\rm IIn} \approx 3.8[\dot{M}/(0.01 \textrm{M}_{\odot} \textrm{yr}^{-1})]$ days.


(1608)Discovery of Magnetically Guided Metal Accretion onto a Polluted White Dwarf
  • Stefano Bagnulo,
  • Jay Farihi,
  • John D. Landstreet,
  • Colin P. Folsom
The Astrophysical Journal (03/2024) doi:10.3847/2041-8213/ad2619
abstract + abstract -

Dynamically active planetary systems orbit a significant fraction of white dwarf stars. These stars often exhibit surface metals accreted from debris disks, which are detected through infrared excess or transiting structures. However, the full journey of a planetesimal from star-grazing orbit to final dissolution in the host star is poorly understood. Here, we report the discovery that the cool metal-polluted star WD 0816–310 has cannibalized heavy elements from a planetary body similar in size to Vesta, and where accretion and horizontal mixing processes have clearly been controlled by the stellar magnetic field. Our observations unveil periodic and synchronized variations in metal line strength and magnetic field intensity, implying a correlation between the local surface density of metals and the magnetic field structure. Specifically, the data point to a likely persistent concentration of metals near a magnetic pole. These findings demonstrate that magnetic fields may play a fundamental role in the final stages of exoplanetary bodies that are recycled into their white dwarf hosts.


(1607)Bar-driven Gas Dynamics of M31
  • Zi-Xuan Feng,
  • Zhi Li,
  • Juntai Shen,
  • Ortwin Gerhard,
  • R. P. Saglia
  • +3
  • Matias Blaña,
  • Hui Li,
  • Yingjie Jing
  • (less)
The Astrophysical Journal (03/2024) doi:10.3847/1538-4357/ad13ee
abstract + abstract -

The large-scale gaseous shocks in the bulge of M31 can be naturally explained by a rotating stellar bar. We use gas dynamical models to provide an independent measurement of the bar pattern speed in M31. The gravitational potentials of our simulations are from a set of made-to-measure models constrained by stellar photometry and kinematics. If the inclination of the gas disk is fixed at i = 77°, we find that a low pattern speed of 16–20 km s‑1 kpc‑1 is needed to match the observed position and amplitude of the shock features, as shock positions are too close to the bar major axis in high Ω b models. The pattern speed can increase to 20–30 km s‑1 kpc‑1 if the inner gas disk has a slightly smaller inclination angle compared with the outer one. Including subgrid physics such as star formation and stellar feedback has minor effects on the shock amplitude, and does not change the shock position significantly. If the inner gas disk is allowed to follow a varying inclination similar to the H I and ionized gas observations, the gas models with a pattern speed of 38 km s‑1 kpc‑1, which is consistent with stellar-dynamical models, can match both the shock features and the central gas features.