There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of this assumption and show that if sub-GeV DM couples with comparable strength to both protons and electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z2q2. The result is that the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-induced ionization can dominate over electron scattering for heavy mediators and DM masses in the hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the implications for DM scenarios where the Migdal process dominates, including for XENON10, XENON100, and the recent XENON1T results on light DM scattering.
We present an analysis of morphological, kinematic, and spectral asymmetries in observations of atomic neutral hydrogen (H I) gas from the Local Volume H I Survey (LVHIS), the VLA Imaging of Virgo in Atomic Gas (VIVA) survey, and the Hydrogen Accretion in Local Galaxies Survey. With the aim of investigating the impact of the local environment density and stellar mass on the measured H I asymmetries in future large H I surveys, we provide recommendations for the most meaningful measures of asymmetry for use in future analysis. After controlling for stellar mass, we find signs of statistically significant trends of increasing asymmetries with local density. The most significant trend we measure is for the normalized flipped spectrum residual (Aspec), with mean LVHIS and VIVA values of 0.204 ± 0.011 and 0.615 ± 0.068 at average weighted 10th nearest-neighbour galaxy number densities of log (ρ10/Mpc-3) = -1.64 and 0.88, respectively. Looking ahead to the Widefield ASKAP L-band Legacy All-sky Blind survey on the Australian Square Kilometre Array Pathfinder, we estimate that the number of detections will be sufficient to provide coverage over 5 orders of magnitude in both local density and stellar mass increasing the dynamic range and accuracy with which we can probe the effect of these properties on the asymmetry in the distribution of atomic gas in galaxies.
A complete one-loop matching calculation for real singlet scalar extensions of the Standard Model to the Standard Model effective field theory (SMEFT) of dimension- six operators is presented. We compare our analytic results obtained by using Feynman diagrams to the expressions derived in the literature by a combination of the universal one-loop effective action (UOLEA) approach and Feynman calculus. After identifying contributions that have been overlooked in the existing calculations, we find that the pure diagrammatic approach and the mixed method lead to identical results. We highlight some of the subtleties involved in computing one-loop matching corrections in SMEFT.
Aims: The goal of this study is to present the development of a machine learning based approach that utilizes phase space alone to separate the Gaia DR2 stars into two categories: those accreted onto the Milky Way from those that are in situ. Traditional selection methods that have been used to identify accreted stars typically rely on full 3D velocity, metallicity information, or both, which significantly reduces the number of classifiable stars. The approach advocated here is applicable to a much larger portion of Gaia DR2.
Methods: A method known as "transfer learning" is shown to be effective through extensive testing on a set of mock Gaia catalogs that are based on the FIRE cosmological zoom-in hydrodynamic simulations of Milky Way-mass galaxies. The machine is first trained on simulated data using only 5D kinematics as inputs and is then further trained on a cross-matched Gaia/RAVE data set, which improves sensitivity to properties of the real Milky Way.
Results: The result is a catalog that identifies ∼767 000 accreted stars within Gaia DR2. This catalog can yield empirical insights into the merger history of the Milky Way and could be used to infer properties of the dark matter distribution.
New Physics can manifest itself in kinematic distributions of particle decays. The parameter space defining the shape of such distributions can be large which is chalenging for both theoretical and experimental studies. Using clustering algorithms, the parameter space can however be dissected into subsets (clusters) which correspond to similar kinematic distributions. Clusters can then be represented by benchmark points, which allow for less involved studies and a concise presentation of the results. We demonstrate this concept using the Python package ClusterKinG, an easy to use framework for the clustering of distributions that particularly aims to make these techniques more accessible in a High Energy Physics context. As an example we consider B ¯→D(∗)τ-ν¯τ distributions and discuss various clustering methods and possible implications for future experimental analyses.
We study the Schrödinger-Poisson (SP) method in the context of cosmological large-scale structure formation in an expanding background. In the limit ℏ→0, the SP technique can be viewed as an effective method to sample the phase space distribution of cold dark matter that remains valid on non-linear scales. We present results for the 2D and 3D matter correlation function and power spectrum at length scales corresponding to the baryon acoustic oscillation (BAO) peak. We discuss systematic effects of the SP method applied to cold dark matter and explore how they depend on the simulation parameters. In particular, we identify a combination of simulation parameters that controls the scale-independent loss of power observed at low redshifts, and discuss the scale relevant to this effect.
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low-viscosity disk by performing global 2D high-resolution hydrodynamical simulations. Within the vortex, due to its higher gas surface density and steeper pressure gradients, dust coagulation, fragmentation, and drift (to the vortex center) are all quite efficient, producing dust particles ranging from 1 μm to ∼1.0 cm, as well as an overall high dust-to-gas ratio (above unity). In addition, the dust size distribution is quite nonuniform inside the vortex, with the mass-weighted average dust size at the vortex center (∼4.0 mm) being a factor of ∼10 larger than other vortex regions. Both large (∼millimeter) and small (tens of microns) particles contribute strongly to affect the gas motion within the vortex. As such, we find that the inclusion of dust coagulation has a significant impact on the vortex lifetime and the typical vortex lifetime is about 1000 orbits. After the initial gaseous vortex is destroyed, the dust spreads into a ring with a few remaining smaller gaseous vortices with a high dust concentration and a large maximum size (∼millimeter). At late time, the synthetic dust continuum images for the coagulation case show as a ring inlaid with several hot spots at the 1.33 mm band, while only distinct hot spots remain at 7.0 mm.
We carry out a comprehensive analysis of the full set of B¯q→D(∗)q form factors for spectator quarks q=u,d,s within the framework of the Heavy-Quark Expansion (HQE) to order O(αs,1/mb,1/m2c). In addition to the available lattice QCD calculations we make use of two new sets of theoretical constraints: we produce for the first time numerical predictions for the full set of B¯s→D(∗)s form factors using Light-Cone Sum Rules with Bs-meson distribution amplitudes. Furthermore, we reassess the QCD three-point sum rule results for the Isgur-Wise functions entering all our form factors for both q=u,d and q=s spectator quarks. These additional constraints allow us to go beyond the commonly used assumption of SU(3)F symmetry for the B¯s→D(∗)s form factors, especially in the unitarity constraints which we impose throughout our analysis. We find the coefficients of the IW functions emerging at O(1/m2c) to be consistent with the naive O(1) expectation, indicating a good convergence of the HQE. While we do not find significant SU(3) breaking, the explicit treatment of q=s as compared to a simple symmetry assumption renders the unitarity constraints more effective. We find that the (pseudo)scalar bounds are saturated to a large degree, which affects our theory predictions. We analyze the phenomenological consequences of our improved form factors by extracting |Vcb| from B¯→D(∗)ℓν decays and producing theoretical predictions for the lepton-flavour universality ratios R(D), R(D∗), R(Ds) and R(D∗s), as well as the τ- and D∗q polarization fractions for the B¯q→D(∗)qτν modes.
Context. Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. While the usual picture of a hot corino explains their presence as resulting from the heating of the inner envelope by the nascent protostar, shocks in the outflow, disk wind, the presence of a flared disk, or the interaction region between envelope and disk at the centrifugal barrier have also been claimed to enhance the abundance of COMs.
Aims: Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis.
Methods: We use the CALYPSO survey performed with the Plateau de Bure Interferometer of the Institut de Radioastronomie Millimétrique to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. We derive the column densities of the detected molecules under the local thermodynamic equilibrium approximation and search for correlations between their abundances and with various source properties.
Results: Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. All sources with a luminosity higher than 4 L⊙ have at least one detected COM whereas no COM emission is detected in sources with internal luminosity lower than 2 L⊙, likely because of a lack of sensitivity. Internal luminosity is found to be the source parameter impacting the COM chemical composition of the sources the most, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarios, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link.
Conclusions: The CALYPSO survey has revealed a chemical differentiation in multiple systems that is markedly different from the case of the prototypical binary IRAS 16293-2422. This raises the question of whether all low-mass protostars go through a phase showing COM emission. A larger sample of young protostars and a more accurate determination of their internal luminosity will be necessary to make further progress. Searching for correlations between the COM emission and the jet/outflow properties of the sources may also be promising.
Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
The CALYPSO calibrated visibility tables and maps are publicly available at http://www.iram-institute.org/EN/content-page-317-7-158-240-317-0.html
We predict magnitudes for young planets embedded in transition discs, still affected by extinction due to material in the disc. We focus on Jupiter-sized planets at a late stage of their formation, when the planet has carved a deep gap in the gas and dust distributions and the disc starts to being transparent to the planet flux in the infrared (IR). Column densities are estimated by means of three-dimensional hydrodynamical models, performed for several planet masses. Expected magnitudes are obtained by using typical extinction properties of the disc material and evolutionary models of giant planets. For the simulated cases located at 5.2 au in a disc with a local unperturbed surface density of 127 g cm^{-2}, a 1MJ planet is highly extinct in the J, H, and Kbands, with predicted absolute magnitudes ≥ 50 mag. In the L and Mbands, extinction decreases, with planet magnitudes between 25 and 35 mag. In the Nband, due to the silicate feature on the dust opacities, the expected magnitude increases to ∼40 mag. For a 2MJ planet, the magnitudes in the J, H, and Kbands are above 22 mag, while for the L, M, and Nbands, the planet magnitudes are between 15 and 20 mag. For the 5MJ planet, extinction does not play a role in any IR band, due to its ability to open deep gaps. Contrast curves are derived for the transition discs in CQ Tau, PDS 70, HL Tau, TW Hya, and HD 163296. Planet mass upper limits are estimated for the known gaps in the last two systems.
We present the novel algorithmically regularized integration method MSTAR for high-accuracy (|ΔE/E| ≳ 10-14) integrations of N-body systems using minimum spanning tree coordinates. The twofold parallelization of the O(N_part^2) force loops and the substep divisions of the extrapolation method allow for a parallel scaling up to NCPU = 0.2 × Npart. The efficient parallel scaling of MSTAR makes the accurate integration of much larger particle numbers possible compared to the traditional algorithmic regularization chain (AR-CHAIN) methods, e.g. Npart = 5000 particles on 400 CPUs for 1 Gyr in a few weeks of wall-clock time. We present applications of MSTAR on few particle systems, studying the Kozai mechanism and N-body systems like star clusters with up to Npart = 104 particles. Combined with a tree or fast multipole-based integrator, the high performance of MSTAR removes a major computational bottleneck in simulations with regularized subsystems. It will enable the next-generation galactic-scale simulations with up to 109 stellar particles (e.g. m_\star = 100 M_⊙ for an M_\star = 10^{11} M_⊙ galaxy), including accurate collisional dynamics in the vicinity of nuclear supermassive black holes.
We present a statistical analysis of the optical properties of an X-ray-selected Type 1 active galactic nucleus (AGN) sample, using high signal-to-noise ratio (S/N>20) spectra of the counterparts of the ROSAT/2RXS sources in the footprint of the SDSS-IV/SPIDERS (Spectroscopic IDentification of eROSITA Sources) programme. The final sample contains 2100 sources. It significantly extends the redshift and luminosity ranges (z ∼ 0.01-0.80 and L_{0.1-2.4 keV} ∼ 2.0 × 10^{41}-1.0 × 10^{46} erg s^{-1}) used so far in this kind of analysis. By means of a principal component analysis, we derive eigenvector (EV) 1 and 2 in an eleven-dimensional optical and X-ray parameter space, which are consistent with previous results. The validity of the correlations of the Eddington ratio L/LEdd with EV1 and the black hole mass with EV2 is strongly confirmed. These results imply that L/LEdd and black hole mass are related to the diversity of the optical properties of Type 1 AGNs. Investigating the relation of the width and asymmetry of H β and the relative strength of the iron emission r_{Fe II}, we show that our analysis supports the presence of a distinct kinematic region: the very broad line region. Furthermore, comparing sources with a red-asymmetric broad H β emission line to sources for which it is blue asymmetric, we find an intriguing difference in the correlation of the Fe II and the continuum emission strengths. We show that this contrasting behaviour is consistent with a flattened, stratified model of the broad-line region, in which the Fe II-emitting region is shielded from the central source.
The inner parsec of our Galaxy contains tens of Wolf-Rayet stars whose powerful outflows are constantly interacting while filling the region with hot, diffuse plasma. Theoretical models have shown that, in some cases, the collision of stellar winds can generate cold, dense material in the form of clumps. However, their formation process and properties are not well understood yet. In this work, we present, for the first time, a statistical study of the clump formation process in unstable wind collisions. We study systems with dense outflows (∼ 10^{-5} M_{⊙ } yr^{-1}), wind speeds of 500-1500 km s^{-1}, and stellar separations of ∼20-200 au. We develop three-dimensional high-resolution hydrodynamical simulations of stellar wind collisions with the adaptive-mesh refinement grid-based code RAMSES. We aim at characterizing the initial properties of clumps that form through hydrodynamic instabilities, mostly via the non-linear thin-shell instability (NTSI). Our results confirm that more massive clumps are formed in systems whose winds are close to the transition between the radiative and adiabatic regimes. Increasing either the wind speed or the degree of asymmetry increases the dispersion of the clump mass and ejection speed distributions. Nevertheless, the most massive clumps are very light (∼10-3-10^{-2} M_{\oplus }), about three orders of magnitude less massive than theoretical upper limits. Applying these results to the Galactic Centre, we find that clumps formed through the NTSI should not be heavy enough either to affect the thermodynamic state of the region or to survive for long enough to fall on to the central supermassive black hole.
It has been speculated for a long time that neutrinos from a supernova (SN) may undergo fast flavor conversions near the collapsed stellar core. We perform a detailed study of this intriguing possibility, for the first time analyzing two time-dependent state-of-the-art three-dimensional (3D) SN models of 9 M⊙ and 20 M⊙ from recent papers of Glas et al. Both models were computed with multidimensional three-flavor neutrino transport based on a two-moment solver, and both exhibit the presence of the so-called lepton-number emission self-sustained asymmetry (LESA). The transport solution does not provide the angular distributions of the flavor-dependent neutrino fluxes, which are crucial to track the fast flavor instability. To overcome this limitation, we use a recently proposed approach based on the angular moments of the energy-integrated electron lepton-number distribution up to second order, i.e., angle-energy integrals of the difference between νe and ν¯e phase-space distributions multiplied by corresponding powers of the unit vector of the neutrino velocity. With this method we find the possibility of fast neutrino flavor instability at radii smaller than ∼20 km , which is well interior to the neutrinosphere where neutrinos are still in the diffusive and near-equilibrium regime. Our results confirm recent observations in a two-dimensional (2D) (axisymmetric) SN model and in 2D and 3D models with a fixed matter background, which were computed with Boltzmann neutrino transport. However, the flavor unstable locations are not isolated points as discussed previously, but thin skins surrounding volumes where ν¯e are more abundant than νe. These volumes grow with time and appear first in the convective layer of the proto-neutron star (PNS), where a decreasing electron fraction and high temperatures favor the occurrence of regions with negative neutrino chemical potential. Since the electron fraction remains higher in the LESA dipole direction, where convective lepton-number transport out from the nonconvective PNS core slows down the deleptonization, flavor unstable conditions become more widespread in the opposite hemisphere. This interesting phenomenon deserves further investigation, since its impact on SN modeling and possible consequences for SN dynamics and neutrino observations are presently unclear.
The forthcoming generation of galaxy redshift surveys will sample the large-scale structure of the Universe over unprecedented volumes with high-density tracers. This advancement will make robust measurements of three-point clustering statistics possible. In preparation for this improvement, we investigate how several methodological choices can influence inferences based on the bispectrum about galaxy bias and shot noise. We first measure the real-space bispectrum of dark-matter haloes extracted from 298 N-body simulations covering a volume of approximately 1000 Gpc3. We then fit a series of theoretical models based on tree-level perturbation theory to the numerical data. To achieve this, we estimate the covariance matrix of the measurement errors by using 10,000 mock catalogues generated with the PINOCCHIO code. We study how the model constraints are influenced by the binning strategy for the bispectrum configurations and by the form of the likelihood function. We also use Bayesian model-selection techniques to single out the optimal theoretical description of our data. We find that a three-parameter bias model combined with Poissonian shot noise is necessary to model the halo bispectrum up to scales of kmaxlesssim 0.08 Mpc-1, although fitting formulae that relate the bias parameters can be helpful to reduce the freedom of the model without compromising accuracy. Our data clearly disfavour local Eulerian and local Lagrangian bias models and do not require corrections to Poissonian shot noise. We anticipate that model-selection diagnostics will be particularly useful to extend the analysis to smaller scales as, in this case, the number of model parameters will grow significantly large.
Context. X-ray- and extreme ultraviolet (XEUV) driven photoevaporative winds acting on protoplanetary disks around young T Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions.
Aims: We investigate the dust entrainment in XEUV-driven photoevaporative winds and compare our results to existing magnetohydrodynamic and EUV-only models.
Methods: We used a 2D hydrodynamical gas model of a protoplanetary disk irradiated by both X-ray and EUV spectra from a central T Tauri star to trace the motion of passive Lagrangian dust grains of various sizes. The trajectories were modelled starting at the disk surface in order to investigate dust entrainment in the wind.
Results: For an X-ray luminosity of LX = 2 × 1030 erg s-1 emitted by a M* = 0.7 M⊙ star, corresponding to a wind mass-loss rate of Ṁw ≃ 2.6 × 10-8 M⊙ yr-1, we find dust entrainment for sizes a0 ≲ 11 μm (9 μm) from the inner 25 AU (120 AU). This is an enhancement over dust entrainment in less vigorous EUV-driven winds with Ṁw ≃ 10-10 M⊙ yr-1. Our numerical model also shows deviations of dust grain trajectories from the gas streamlines even for μm-sized particles. In addition, we find a correlation between the size of the entrained grains and the maximum height they reach in the outflow.
Conclusions: X-ray-driven photoevaporative winds are expected to be dust-rich if small grains are present in the disk atmosphere.
We calculate a new contribution to the axion mass that arises from gluons propagating in a 5th dimension at high energies. By uplifting the 4D instanton solution to five dimensions, the positive frequency modes of the Kaluza-Klein states generate a power-law term in the effective action that inversely grows with the instanton size. This causes 5D small instantons to enhance the axion mass in a way that does not spoil the axion solution to the strong CP problem. Moreover this enhancement can be much larger than the usual QCD contribution from large instantons, although it requires the 5D gauge theory to be near the non-perturbative limit. Thus our result suggests that the mass range of axions (or axion-like particles), which is important for ongoing experimental searches, can depend sensitively on the UV modification of QCD.
QCD exhibits complex dynamics near S-wave two-body thresholds. For light mesons, we see this in the failure of quark models to explain the f0 (500) and K0* (700) masses. For charmonium, an unexpected X (3872) state appears at the open charm threshold. In heavy-light systems, analogous threshold effects appear for the lowest JP =0+ and 1+ states in the Ds and Bs systems. Here we describe how lattice QCD can be used to understand these threshold dynamics by smoothly varying the strange-quark mass when studying the heavy-light systems. Small perturbations around the physical strange quark mass are used so to always remain near the physical QCD dynamics. This calculation is a straightforward extension of those already in the literature and can be undertaken by multiple lattice QCD collaborations with minimal computational cost.
Inelastic dark matter and strongly interacting dark matter are poorly constrained by direct detection experiments since they both require the scattering event to deliver energy from the nucleus into the dark matter in order to have observable effects. We propose to test these scenarios by searching for the collisional deexcitation of metastable nuclear isomers by the dark matter particles. The longevity of these isomers is related to a strong suppression of γ - and β -transitions, typically inhibited by a large difference in the angular momentum for the nuclear transition. The collisional deexcitation by dark matter is possible since heavy dark matter particles can have a momentum exchange with the nucleus comparable to the inverse nuclear size, hence lifting tremendous angular momentum suppression of the nuclear transition. This deexcitation can be observed either by searching for the direct effects of the decaying isomer, or through the rescattering or decay of excited dark matter states in a nearby conventional dark matter detector setup. Existing nuclear isomer sources such as naturally occurring Tam180 , Bam137 produced in decaying Cesium in nuclear waste, Lum177 from medical waste, and Hfm178 from the Department of Energy storage can be combined with current dark matter detector technology to search for this class of dark matter.
We construct an emulator for the halo mass function over group and cluster mass scales for a range of cosmologies, including the effects of dynamical dark energy and massive neutrinos. The emulator is based on the recently completed Mira-Titan Universe suite of cosmological N-body simulations. The main set of simulations spans 111 cosmological models with 2.1 Gpc boxes. We extract halo catalogs in the redshift range z = [0.0, 2.0] and for masses . The emulator covers an eight-dimensional hypercube spanned by {, , , σ 8, h, n s , w 0, w a }; spatial flatness is assumed. We obtain smooth halo mass functions by fitting piecewise second-order polynomials to the halo catalogs and employ Gaussian process regression to construct the emulator while keeping track of the statistical noise in the input halo catalogs and uncertainties in the regression process. For redshifts z ≲ 1, the typical emulator precision is better than 2% for and <10% for . For comparison, fitting functions using the traditional universal form for the halo mass function can be biased at up to 30% at for z = 0. Our emulator is publicly available at github.com/SebastianBocquet/MiraTitanHMFemulator.
Bimetric theory describes a massless and a massive spin-2 field with fully non-linear (self-)interactions. It has a rich phenomenology and has been successfully tested with several data sets. However, the observational constraints have not been combined in a consistent framework, yet. We propose a parametrization of bimetric solutions in terms of the effective cosmological constant Λ and the mass mFP of the spin-2 field as well as its coupling strength to ordinary matter &baralpha;. This simplifies choosing priors in statistical analysis and allows to directly constrain these parameters with observational data not only from local systems but also from cosmology. By identifying the physical vacuum of bimetric theory these parameters are uniquely determined. We work out the new parametrization for various submodels and present the implied consistency constraints on the physical parameter space. As an application we derive observational constraints from SN1a on the physical parameters. We find that a large portion of the physical parameter space is in perfect agreement with current supernova data including self-accelerating models with a heavy spin-2 field.
Type Ic supernovae (SNe Ic) are a sub-class of core-collapse SNe that exhibit no helium or hydrogen lines in their spectra. Their progenitors are thought to be bare carbon-oxygen cores formed during the evolution of massive stars that are stripped of their hydrogen and helium envelopes sometime before collapse. SNe Ic present a range of luminosities and spectral properties, from luminous GRB-SNe with broad-lined spectra to less luminous events with narrow-line spectra. Modelling SNe Ic reveals a wide range of both kinetic energies, ejecta masses, and 56Ni masses. To explore this diversity and how it comes about, light curves and spectra are computed from the ejecta following the explosion of an initially 22 M⊙ progenitor that was artificially stripped of its hydrogen and helium shells, producing a bare CO core of ∼5 M⊙, resulting in an ejected mass of ∼4 M⊙, which is an average value for SNe Ic. Four different explosion energies are used that cover a range of observed SNe. Finally, 56Ni and other elements are artificially mixed in the ejecta using two approximations to determine how element distribution affects light curves and spectra. The combination of different explosion energy and degree of mixing produces spectra that roughly replicate the distribution of near-peak spectroscopic features of SNe Ic. High explosion energies combined with extensive mixing can produce red, broad-lined spectra, while minimal mixing and a lower explosion energy produce bluer, narrow-lined spectra.
We consider a scenario where the dark sector includes two Feebly Interacting Massive Particles (FIMPs), with couplings to the Standard Model particles that allow their production in the Early Universe via thermal freeze-in. These couplings generically lead to the decay of the heavier dark matter component into the lighter, possibly leading to observable signals of the otherwise elusive FIMPs. Concretely, we argue that the loop induced decay ψ2→ψ1γ for fermionic FIMPs, or phi2→phi1γγ for scalar FIMPs, could have detectable rates for model parameters compatible with the observed dark matter abundance.
All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life’s emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog—and proposed evolutionary predecessor—of the Wood–Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO–), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.
Context. The water snow line divides dry and icy solid material in protoplanetary disks. It has been thought to significantly affect planet formation at all stages. If dry particles break up more easily than icy ones, then the snow line causes a traffic jam because small grains drift inward at lower speeds than larger pebbles.
Aims: We aim to evaluate the effect of high dust concentrations around the snow line onto the gas dynamics.
Methods: Using numerical simulations, we modeled the global radial evolution of an axisymmetric protoplanetary disk. Our model includes particle growth, the evaporation and recondensation of water, and the back-reaction of dust onto the gas. The model takes into account the vertical distribution of dust particles.
Results: We find that the dust back-reaction can stop and even reverse the net flux of gas outside the snow line, decreasing the gas accretion rate onto the star to under 50% of its initial value. At the same time, the dust accumulates at the snow line, reaching dust-to-gas ratios of ɛ ≳ 0.8, and it delivers large amounts of water vapor towards the inner disk as the icy particles cross the snowline. However, the accumulation of dust at the snow line and the decrease in the gas accretion rate only take place if the global dust-to-gas ratio is high (ɛ0 ≳ 0.03), the viscous turbulence is low (αν ≲ 10-3), the disk is large enough (rc ≳ 100 au), and only during the early phases of the disk evolution (t ≲ 1 Myr). Otherwise the dust back-reaction fails to perturb the gas motion.
We study radial oscillations of non-rotating neutron stars (NSs) in four-dimensional general relativity. The interior of the NS was modeled within a recently proposed multicomponent realistic equation of state (EoS) with the induced surface tension (IST). In particular, we considered the IST EoS with two sets of model parameters, that both reproduce all the known properties of normal nuclear matter, give a high quality description of the proton flow constraint, hadron multiplicities created in nuclear-nuclear collisions, consistent with astrophysical observations and the observational data from the NS-NS merger. We computed the 12 lowest radial oscillation modes, their frequencies and corresponding eigenfunctions, as well as the large frequency separation for six selected fiducial NSs (with different radii and masses of 1.2, 1.5 and 1.9 solar masses) of the two distinct model sets. The calculated frequencies show their continuous growth with an increase of the NS central baryon density. Moreover, we found correlations between the behavior of the first eigenfunction calculated for the fundamental mode, the adiabatic index and the speed of sound profile, which could be used to probe the internal structure of NSs with the asteroseismology data.
We combine the NLTE spectral analysis of the detached O-type eclipsing binary OGLE-LMC-ECL-06782 with the analysis of the radial velocity curve and light curve to measure an independent distance to the Large Magellanic Cloud (LMC). In our spectral analysis we study composite spectra of the system at quadrature and use the information from radial velocity and light curve about stellar gravities, radii, and component flux ratio to derive effective temperature, reddening, extinction, and intrinsic surface brightness. We obtain a distance modulus to the LMC of m - M = 18.53 ± 0.04 mag. This value is 0.05 mag larger than the precision distance obtained recently from the analysis of a large sample of detached, long period late spectral type eclipsing binaries but agrees within the margin of the uncertainties. We also determine the surface brightnesses of the system components and find good agreement with the published surface brightness-color relationship. A comparison of the observed stellar parameters with the prediction of stellar evolution based on the MESA stellar evolution code shows reasonable agreement, but requires a reduction of the internal angular momentum transport to match the observed rotational velocities.
Origins of contemporary $B$-physics. Mesons with beauty and charm. Stable tetraquarks? Flavor and the problem of identity. Top matters. Electroweak symmetry breaking and the Higgs sector. Future instruments.
The simultaneous study of top-down and bottom-up approaches to modular flavor symmetry leads necessarily to the concept of eclectic flavor groups. These are non-trivial products of modular and traditional flavor symmetries that exhibit the phenomenon of local flavor enhancement in moduli space. We develop methods to determine the eclectic flavor groups that can be consistently associated with a given traditional flavor symmetry. Applying these methods to a large family of prominent traditional flavor symmetries, we try to identify potential candidates for realistic eclectic flavor groups and show that they are relatively rare. Model building with finite modular flavor symmetries thus appears to be much more restrictive than previously thought.
We show that for a wide range of stellar masses, from 0.3 to 20 M⊙, and for evolutionary phases from the main sequence to the beginning of the red giant stage, the stellar flux-weighted gravity, gF ≅ g/ ${T}_{\mathrm{eff}}^{4}$ , is tightly correlated with absolute bolometric magnitude ${M}_{\mathrm{bol}}$ . Such a correlation is predicted by stellar evolution theory. We confirm this relation observationally, using a sample of 445 stars with precise stellar parameters. It holds over 17 stellar magnitudes from ${M}_{\mathrm{bol}}$ = 9.0 to -8.0 mag with a scatter of 0.17 mag above ${M}_{\mathrm{bol}}$ = -3.0 and 0.29 mag below this value. We then test the relation with 2.2 million stars with 6.5 mag ≥ ${M}_{\mathrm{bol}}$ ≥ 0.5 mag, where "mass-produced" but robust $\mathrm{log}\,g$ , ${T}_{{\rm{e}}{\rm{f}}{\rm{f}}},$ and ${M}_{\mathrm{bol}}$ from LAMOST DR5 and Gaia DR2 are available. We find that the same relation holds with a scatter of ∼0.2 mag for single stars offering a simple spectroscopic distance estimate good to ∼10%.
We present a 7 minute long 4π-3D simulation of a shell merger event in a nonrotating 18.88 ${M}_{\odot }$ M ⊙ supernova progenitor before the onset of gravitational collapse. The key motivation is to capture the large-scale mixing and asymmetries in the wake of the shell merger before collapse using a self-consistent approach. The 4π geometry is crucial, as it allows us to follow the growth and evolution of convective modes on the largest possible scales. We find significant differences between the kinematic, thermodynamic, and chemical evolution of the 3D and 1D models. The 3D model shows vigorous convection leading to more efficient mixing of nuclear species. In the 3D case, the entire oxygen shell attains convective Mach numbers of ≈0.1, whereas in the 1D model, the convective velocities are much lower, and there is negligible overshooting across convective boundaries. In the 3D case, the convective eddies entrain nuclear species from the neon (and carbon) layers into the deeper part of the oxygen-burning shell, where they burn and power a violent convection phase with outflows. This is a prototypical model of a convective-reactive system. Due to the strong convection and resulting efficient mixing, the interface between the neon layer and the silicon-enriched oxygen layer disappears during the evolution, and silicon is mixed far out into the merged oxygen/neon shell. Neon entrained inward by convective downdrafts burns, resulting in lower neon mass in the 3D model compared to the 1D model at the time of collapse. In addition, the 3D model develops remarkable large-scale, large-amplitude asymmetries, which may have important implications for the impending gravitational collapse and subsequent explosion.
We consider scenarios with a heavy Z' gauge boson with flavour non-universal quark and lepton couplings with the goal to illustrate how the cancellation of gauge anomalies generated by the presence of an additional U(1)' gauge symmetry would imply correlations between FCNC processes within the quark sector, within the lepton sector and most interestingly between quark flavour and lepton flavour violating processes. To this end we present simple scenarios with only left-handed flavour-violating Z' couplings and those in which also right-handed flavour-violating couplings are present. The considered scenarios are characterized by a small number of free parameters but in contrast to gauge anomaly cancellation in the Standard Model, in which it takes place separately within each generation, in our scenarios anomaly cancellation involves simultaneously quarks and leptons of all three generations. Our models involve, beyond the ordinary quarks and leptons, three heavy right-handed neutrinos. The models with only left-handed FCNCs of Z' involve beyond gZ' and MZ' two real parameters characterizing the charges of all fermions under the U(1)' gauge symmetry and the CKM and PMNS ones in the quark and lepton sectors, respectively. The models with the right-handed FCNCs of Z' involve few additional parameters. Imposing constraints from well measured ΔF = 2 observables we identify a number of interesting correlations that involve e.g. ɛ'/ɛ, Bs,d→ μ+μ-, B → K(K*)ℓ+ℓ-, K+→π+ν ν ¯,KL→π0ν ν ¯ and purely lepton flavour violating decays like μ → eγ, μ → 3e, τ → 3μ and μ - e conversion among others. Also (g - 2)μ,e are considered. The impact of the experimental μ → eγ, μ → 3e and in particular μ - e conversion bounds on rare K and B decays is emphasized.
Aims: We investigate electron temperature (Te) and gas-phase oxygen abundance (ZTe) measurements for galaxies in the local Universe (z < 0.25). Our sample comprises spectra from a total of 264 emission-line systems, ranging from individual HII regions to whole galaxies, including 23 composite HII regions from star-forming main sequence galaxies in the MaNGA survey.
Methods: We utilise 130 of these systems with directly measurable Te(OII) to calibrate a new metallicity-dependent Te(OIII)-Te(OII) relation that provides a better representation of our varied dataset than existing relations from the literature. We also provide an alternative Te(OIII)-Te(NII) calibration. This new Te method is then used to obtain accurate ZTe estimates and form the mass - metallicity relation (MZR) for a sample of 118 local galaxies.
Results: We find that all the Te(OIII)-Te(OII) relations considered here systematically under-estimate ZTe for low-ionisation systems by up to 0.6 dex. We determine that this is due to such systems having an intrinsically higher O+ abundance than O++ abundance, rendering ZTe estimates based only on [OIII] lines inaccurate. We therefore provide an empirical correction based on strong emission lines to account for this bias when using our new Te(OIII)-Te(OIII) and Te(OIII)-Te(NII) relations. This allows for accurate metallicities (1σ = 0.08 dex) to be derived for any low-redshift system with an [OIII]λ4363 detection, regardless of its physical size or ionisation state. The MZR formed from our dataset is in very good agreement with those formed from direct measurements of metal recombination lines and blue supergiant absorption lines, in contrast to most other Te-based and strong-line-based MZRs. Our new Te method therefore provides an accurate and precise way of obtaining ZTe for a large and diverse range of star-forming systems in the local Universe.
Cosmic voids are biased tracers of the large-scale structure of the universe. Separate universe simulations (SUS) enable accurate measurements of this biasing relation by implementing the peak-background split (PBS). In this work, we apply the SUS technique to measure the void bias parameters. We confirm that the PBS argument works well for underdense tracers. The response of the void size distribution depends on the void radius. For voids larger (smaller) than the size at the peak of the distribution, the void abundance responds negatively (positively) to a long wavelength mode. The linear bias from the SUS is in good agreement with the cross power spectrum measurement on large scales. Using the SUS, we have detected the quadratic void bias for the first time in simulations. We find that b2 is negative when the magnitude of b1 is small, and that it becomes positive and increases rapidly when $| {b}_{1}| $ increases. We compare the results from voids identified in the halo density field with those from the dark matter distribution, and find that the results are qualitatively similar, but the biases generally shift to the larger voids sizes.
We present a real-space renormalization group transformation with continuous scale change to calculate the continuous renormalization group β function in nonperturbative lattice simulations. Our method is motivated by the connection between Wilsonian renormalization group and the gradient flow transformation. It does not rely on the perturbative definition of the renormalized coupling and is also valid at nonperturbative fixed points. Although our method requires an additional extrapolation compared to traditional step scaling calculations, it has several advantages which compensates for this extra step even when applied in the vicinity of the perturbative fixed point. We illustrate our approach by calculating the β function of 2-flavor QCD and show that lattice predictions from individual lattice ensembles, even without the required continuum and finite volume extrapolations, can be very close to the result of the full analysis. Thus our method provides a nonperturbative framework and intuitive understanding into the structure of strongly coupled systems, in addition to being complementary to existing lattice determinations.
We analyze the prospects of probing the C P -odd i κ ∼t ¯γ 5th interaction at the LHC and its projected upgrades, the high-luminosity and high-energy LHC, directly using associated on-shell Higgs boson and top quark or top quark pair production. To this end we first construct a C P -odd observable based on top quark polarization in Wb → th scattering with optimal linear sensitivity to κ ∼. For the corresponding hadronic process pp → thj we present a method of extracting the phase-space dependent weight function that allows to retain close to optimal sensitivity to κ ∼. We project future sensitivity to the signal in pp → t(→ ℓ
In this paper, we extend the collinear superspace formalism to include the full range of N = 1 supersymmetric interactions. Building on the effective field theory rules developed in a companion paper — Navigating Collinear Superspace [1] — we construct collinear superspace Lagrangians for theories with non-trivial F- and D-term auxiliary fields. For (massless) Wess-Zumino models, the key ingredient is a novel type of Grassmann-valued supermultiplet whose lowest component is a (non-propagating) fermionic degree of freedom. For gauge theories coupled to charged chiral matter, the key ingredient is a novel type of vector superfield whose lowest component is a non-propagating gauge potential. This unique vector superfield is used to construct a gauge-covariant derivative; while such an object does not appear in the standard full superspace formalism, it is crucial for modeling gauge interactions when the theory is expres sed on a collinear slice. This brings us full circle, by showing that all types of N = 1 theories in four dimensions can beconstructed in collinear superspace from purely infrared considerations. We speculate that supersymmetric theories with N > 1 could also be implemented using similar collinear superspace constructions.
We recently introduced in [9] a boundary-to-bound dictionary between gravitational scattering data and observables for bound states of non-spinning bodies. In this paper, we elaborate further on this holographic map. We start by deriving the following — remarkably simple — formula relating the periastron advance to the scattering angle: ΔΦ (" separators=",J E )=χ (" separators=",J E )+χ (" separators=",-J E ), via analytic continuation in angular momentum and binding energy. Using explicit expressions from [9], we confirm its validity to all orders in the Post-Minkowskian (PM) expansion. Furthermore, we reconstruct the radial action for the bound state directly from the knowledge of the scattering angle. The radial action enables us to write compact expressions for dynamical invariants in terms of the deflection angle to all PM orders, which can also be written as a function of the PM-expanded amplitude. As an example, we reproduce our result in [9] for the periastron advance, and compute the radial and azimuthal frequencies and redshift variable to two-loops. Agreement is found in the overlap between PM and Post-Newtonian (PN) schemes. Last but not least, we initiate the study of our dictionary including spin. We demonstrate that the same relation between deflection angle and periastron advance applies for aligned-spin contributions, with J the (canonical) total angular momentum. Explicit checks are performed to display perfect agreement using state-of-the-art PN results in the literature. Using the map between test- and two-body dynamics, we also compute the periastron advance up to quadratic order in spin, to one-loop and to all orders in velocity. We conclude with a discussion on the generalized `impetus formula' for spinning bodies and black holes as `elementary particles'. Our findings here and in [9] imply that the deflection angle already encodes vast amount of physical information for bound orbits, encouraging independent derivations using numerical and/or self-force methodologies.
Galaxy assembly bias, the correlation between galaxy properties and halo properties at fixed halo mass, could be an important ingredient in halo-based modelling of galaxy clustering. We investigate the central galaxy assembly bias by studying the relation between various galaxy and halo properties in the Illustris hydrodynamic galaxy formation simulation. Galaxy stellar mass M* is found to have a tighter correlation with peak maximum halo circular velocity Vpeak than with halo mass Mh. Once the correlation with Vpeak is accounted for, M* has nearly no dependence on any other halo assembly variables. The correlations between galaxy properties related to star formation history and halo assembly properties also show a cleaner form as a function of Vpeak than as a function of Mh, with the main correlation being with halo formation time and to a less extent halo concentration. Based on the galaxy-halo relation, we present a simple model to relate the bias factors of a central galaxy sample and the corresponding halo sample, both selected based on assembly-related properties. It is found that they are connected by the correlation coefficient of the galaxy and halo properties used to define the two samples, which provides a reasonable description for the samples in the simulation and suggests a simple prescription to incorporate galaxy assembly bias into the halo model. By applying the model to the local galaxy clustering measurements in Lin et al., we infer that the correlation between star formation history or specific star formation rate and halo formation time is consistent with being weak.
In light of prospects for measurements of Bc → D(∗)lv decays in the upcoming Upgrade II of the LHC, we show that by using calculated Bc → D(∗) form factors a competitive extraction of the |Vub| CKM matrix element from the Bc→Dμ v¯μ decay might be possible. To minimize experimental and theoretical uncertainties we provide the ratio |Vub|/|Vcb| by normalizing the Bc→D(∗)μ v¯μ to Bc→J /ψμ v¯μ decay. We also briefly examine the suggestion to extract |Vub|/|Vcs| from the theoretically interesting ratio of Bc→D0e v¯e and Bc→Bse v¯e decay rates in the zero-recoil limit. With the present average value of |Vub|, the predicted branching ratios are estimated to be BR (Bc→D0μ ν¯μ )=(2.4 ±0.4 ).10-5 and BR (Bc→D∗μ ν¯μ )=(7 ±3 ).10-5, and the semileptonic ratios for testing the lepton flavour universality in these Bc decays are Rc(D0) = 0.64 ± 0.05 and Rc(D∗) = 0.55 ± 0.05. We also provide q2 distributions and various angular observables of Bc→ D(∗)lν decays.
Effective field theory (EFT) approaches are widely used at the Large Hadron Collider (LHC), such that it is important to study their validity and ease of matching to specific new physics models. In this paper, we consider an extension of the Standard Model (SM) in which a top quark couples to a new heavy scalar. We find the dimension six operators generated by this theory at low energy and match the EFT to the full theory up to the next-to-leading order (NLO) precision in the simplified model coupling. We then examine the range of validity of the EFT description in top pair production, finding excellent validity even if the scalar mass is only slightly above LHC energies, provided NLO corrections are included. In the absence of the latter, the LO EFT overestimates kinematic distributions, such that overoptimistic constraints on beyond the Standard Model (BSM) contributions are obtained. We next examine the constraints on the EFT and full models that are expected to be obtained from both top pair and four top production at the LHC, finding for low scalar masses that both processes show similar exclusion power. However, for larger masses, estimated LHC uncertainties push constraints into the nonperturbative regime, where the full model is difficult to analyze, and thus is not perturbatively matchable to the EFT. This highlights the necessity to improve uncertainties of SM hypotheses in top final states.
Three hidden-charm pentaquark Pc states, Pc(4312 ), Pc(4440 ), and Pc(4457 ) were revealed in the Λb0→J /ψ p K- process measured by LHCb using both run I and run II data. Their nature is under lively discussion, and their quantum numbers have not been determined. We analyze the J /ψ p invariant mass distributions under the assumption that the crossed-channel effects provide a smooth background. For the first time, such an analysis is performed employing a coupled-channel formalism with the scattering potential involving both one-pion exchange as well as short-range operators constrained by heavy quark spin symmetry. We find that the data can be well described in the hadronic molecular picture, which predicts seven Σc(*)D¯(*) molecular states in two spin multiplets, such that the Pc(4312 ) is mainly a ΣcD ¯ bound state with JP=1 /2-, while Pc(4440 ) and Pc(4457 ) are ΣcD¯* bound states with quantum numbers 3 /2- and 1 /2-, respectively. We also show that there is evidence for a narrow Σc*D ¯ bound state in the data which we call Pc(4380 ), different from the broad one reported by LHCb in 2015. With this state included, all predicted ΣcD ¯, Σc*D ¯, and ΣcD¯* hadronic molecules are seen in the data, while the missing three Σc*D¯* states are expected to be found in future runs of the LHC or in photoproduction experiments.
We explored the possibility that Higgs coupling to new physics violates flavor universality. In particular, we parametrize such models with dimension-six effective operators which modify the coupling between the first generation quarks, Higgs boson, and Z boson. Through the use of boosted Higgsstrahlung events at both the HL-LHC and potential future hadron colliders, as well as existing ATLAS data for background estimates, we projected constraints on the scale of new physics as a function of the Wilson coefficient. The high energy Z h process will provide unique information about these class of operators, and the sensitivity is competitive with the LEP electroweak precision measurements. We include different scenarios of the overall systematic uncertainties and the PDF uncertainties when presenting the projected sensitivities. We also discuss the constraints from flavor changing neutral currents to these flavor-violating models and the complementarity of the exotic Higgs decay to the Z h process.
For direct detection of sub-MeV dark matter, a promising strategy is to search for individual phonon excitations in a crystal. We perform an analytic calculation of the rate for light dark matter (keV <mDM<MeV ) to produce two acoustic phonons through scattering in cubic crystals such as GaAs, Ge, Si, and diamond. The multiphonon rate is always smaller than the rate to produce a single optical phonon, whenever the latter is kinematically accessible. In Si and diamond, there is a dark matter mass range for which multiphonon production can be the most promising process, depending on the experimental threshold.
We construct and validate the selection function of the MARD-Y3 galaxy cluster sample. This sample was selected through optical follow-up of the 2nd ROSAT faint source catalogue with Dark Energy Survey year 3 data. The selection function is modelled by combining an empirically constructed X-ray selection function with an incompleteness model for the optical follow-up. We validate the joint selection function by testing the consistency of the constraints on the X-ray flux–mass and richness–mass scaling relation parameters derived from different sources of mass information: (1) cross-calibration using South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) clusters, (2) calibration using number counts in X-ray, in optical and in both X-ray and optical while marginalizing over cosmological parameters, and (3) other published analyses. We find that the constraints on the scaling relation from the number counts and SPT-SZ cross-calibration agree, indicating that our modelling of the selection function is adequate. Furthermore, we apply a largely cosmology independent method to validate selection functions via the computation of the probability of finding each cluster in the SPT-SZ sample in the MARD-Y3 sample and vice versa. This test reveals no clear evidence for MARD-Y3 contamination, SPT-SZ incompleteness or outlier fraction. Finally, we discuss the prospects of the techniques presented here to limit systematic selection effects in future cluster cosmological studies.
We improve the pNRQCD approach to annihilation processes of heavy quarkonium and make first pNRQCD predictions for exclusive electromagnetic production of heavy quarkonium. We consider strongly coupled quarkonia, i.e., quarkonia that are not Coulombic bound states. Possible strongly coupled quarkonia include excited charmonium and bottomonium states. For these, pNRQCD provides expressions for the decay and exclusive electromagnetic production NRQCD matrix elements that depend on the wavefunctions at the origin and few universal gluon field correlators. We compute electromagnetic decay widths and exclusive production cross sections, and inclusive decay widths into light hadrons for P -wave quarkonia at relative order v$^{2}$ and leading order, respectively. We also compute the decay widths of 2S and 3S bottomonium states into lepton pairs and their ratios with the inclusive widths into light hadrons at relative order v$^{2}$.
Light curves, explosion energies, and remnant masses are calculated for a grid of supernovae resulting from massive helium stars that have been evolved including mass loss. These presupernova stars should approximate the results of binary evolution for stars in interacting systems that lose their envelopes close to the time of helium core ignition. Initial helium star masses are in the range 2.5-40 M⊙, which corresponds to main-sequence masses of about 13-90 M⊙. Common SNe Ib and Ic result from stars whose final masses are approximately 2.5-5.6 M⊙. For heavier stars, a large fraction of collapses lead to black holes, though there is an island of explodability for presupernova masses near 10 M⊙. The median neutron star mass in binaries is 1.35-1.38 M⊙, and the median black hole mass is between 9 and 11 M⊙. Even though black holes less massive than 5 M⊙ are rare, they are predicted down to the maximum neutron star mass. There is no empty "gap," only a less populated mass range. For standard assumptions regarding the explosions and nucleosynthesis, the models predict light curves that are fainter than the brighter common SNe Ib and Ic. Even with a very liberal but physically plausible increase in 56Ni production, the highest-energy models are fainter than 1042.6 erg s-1 at peak, and very few approach that limit. The median peak luminosity ranges from 1042.0 to 1042.3 erg s-1. Possible alternatives to the standard neutrino-powered and radioactive-illuminated models are explored. Magnetars are a promising alternative. Several other unusual varieties of SNe I at both high and low mass are explored.
We present a general formalism to write the decay amplitude for multibody reactions with explicit separation of the rotational degrees of freedom, which are well controlled by the spin of the decay particle, and dynamic functions on the subchannel invariant masses, which require modeling. Using the three-particle kinematics we demonstrate the proposed factorization, named the Dalitz-plot decomposition. The Wigner rotations, which are subtle factors needed by the isobar modeling in the helicity framework, are simplified with the proposed decomposition. Consequently, we are able to provide them in an explicit form suitable for the general case of arbitrary spins. The only unknown model-dependent factors are the isobar line shapes that describe the subchannel dynamics. The advantages of the new decomposition are shown through three examples relevant for the recent discovery of the exotic charmonium candidate Zc(4430 ), the pentaquarks Pc, and the intriguing Λc+→p K-π+ decay.
Following updated and extended measurements of the full angular distribution of the decay Λb→Λ(→pπ−)μ+μ− by the LHCb collaborations, as well as a new measurement of the Λ→pπ− decay asymmetry parameter by the BESIII collaboration, we study the impact of these results on searches for non-standard effects in exclusive b→sμ+μ− decays. To this end, we constrain the Wilson coefficients 9 and 10 of the numerically leading dimension-six operators in the weak effective Hamiltonian, in addition to the relevant nuisance parameters. In stark contrast to previous analyses of this decay mode, the changes in the updated experimental results lead us to find very good compatibility with both the Standard Model and with the b→sμ+μ− anomalies observed in rare B-meson decays. We provide a detailed analysis of the impact of the partial angular distribution, the full angular distribution, and the Λb→Λμ+μ− branching fraction on the Wilson coefficients. In this process, we are also able to constrain the size of the production polarization of the Λb baryon at LHCb.
Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of the protoplanetary disk around HD 169142 reveal a peculiar structure made of concentric dusty rings: a main ring at ∼20 au, a triple system of rings at ∼55-75 au in millimetric continuum emission, and a perturbed gas surface density from the 12CO,13CO, and C18O (J = 2-1) surface brightness profile. In this Letter, we perform 3D numerical simulations and radiative transfer modeling exploring the possibility that two giant planets interacting with the disk and orbiting in resonant locking can be responsible for the origin of the observed dust inner rings structure. We find that in this configuration the dust structure is actually long lived while the gas mass of the disk is accreted onto the star and the giant planets, emptying the inner region. In addition, we also find that the innermost planet is located at the inner edge of the dust ring, and can accrete mass from the disk, generating a signature in the dust ring shape that can be observed in mm ALMA observations.
We present new 890 μm continuum ALMA observations of five brown dwarfs (BDs) with infrared excess in Lupus I and III, which in combination with four previously observed BDs allowed us to study the millimeter properties of the full known BD disk population of one star-forming region. Emission is detected in five out of the nine BD disks. Dust disk mass, brightness profiles, and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove a drop in the disk mass over stellar mass ratio for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 M⊙; these results suggest that the measured solid masses in BD disks cannot explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of Ṁacc/Mdisk that are significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
Parametric correlations are studied in several classes of covariant density functional theories (CDFTs) using a statistical analysis in a large parameter hyperspace. In the present manuscript, we investigate such correlations for two specific types of models, namely, for models with density dependent meson exchange and for point coupling models. Combined with the results obtained previously in Ref. [1] for a non-linear meson exchange model, these results indicate that parametric correlations exist in all major classes of CDFTs when the functionals are fitted to the ground state properties of finite nuclei and to nuclear matter properties. In particular, for the density dependence in the isoscalar channel only one parameter is really independent. Accounting for these facts potentially allows one to reduce the number of free parameters considerably.
Single-particle resonances are crucial for exotic nuclei near and beyond the drip lines. Since the majority of nuclei are deformed, the interplay between deformation and orbital structure near threshold becomes very important and can lead to an improved description of exotic nuclei. In this work, the Green's function (GF) method is applied to solve the coupled-channel Dirac equation with quadrupole-deformed Woods-Saxon potentials. The detailed formalism for the partial-wave expansion of the Green's function is presented. A different approach getting exact values for energies and widths of resonant states by the GF method is proposed. Numerical checks are carried out by comparing with our previous implementation of the spherical GF method and the results from the deformed complex momentum representation, the analytical continuation of the coupling constant, and the scattering phase shift methods, and it is proved that the GF method is very effective and reliable for describing resonance states, no matter whether they are narrow or broad, spherical or deformed. Finally, Nilsson levels for bound and resonant orbitals in the halo candidate nucleus 37Mg are calculated from the deformed GF method over a wide range of deformations, and some decisive hints of p-wave halo formation are shown in this nucleus; namely, the crossing between the configurations 1/2[321] and 5/2[312] at deformation parameter β>0.5 may enhance the probability to occupy the 1/2[321] orbital that originates from the 2p3/2 shell.
The axion provides a compelling solution to the strong CP problem as well as a candidate for the dark matter of the universe. However, the axion solution relies on the spontaneous breaking of a global U(1)PQ symmetry, which is also explicitly violated by quantum gravity. To preserve the axion solution, gravitational violations of the U(1)PQ symmetry must be suppressed to sufficiently high order. We present a simple, geometric solution of the axion quality problem by modelling the axion with a bulk complex scalar field in a slice of AdS5, where the U(1)PQ symmetry is spontaneously broken in the bulk but explicitly broken on the UV brane. By localising the axion field towards the IR brane, gravitational violations of the PQ symmetry on the UV brane are sufficiently sequestered. This geometric solution is holographically dual to 4D strong dynamics where the global U(1)PQ is an accidental symmetry to sufficiently high order.
We study UV-complete Froggatt-Nielsen-like models for the generation of mass and mixing hierarchies, assuming that the integrated heavy fields are chiral with respect to an abelian Froggatt-Nielsen symmetry. It modifies the mixed anomalies with respect to the Standard Model gauge group, which opens up the possibility to gauge the Froggatt-Nielsen symmetry without the need to introduce additional spectator fermions, while keeping mass matrices usually associated to anomalous flavour symmetries. We give specific examples where this happens, and we study the flavourful axion which arises from an accidental Peccei-Quinn symmetry in some of those models. Such an axion is typically more coupled to matter than in models with spectator fermions.
This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.
We present a detailed analysis of the Magellanic Bridge Cepheid sample constructed using the Optical Gravitational Lensing Experiment Collection of Variable Stars. Our updated Bridge sample contains 10 classical and 13 anomalous Cepheids. We calculate their individual distances using optical period-Wesenheit relations and construct three-dimensional maps. Classical Cepheid (CC) on-sky locations match very well neutral hydrogen and young stars distributions; thus, they add to the overall young Bridge population. In three dimensions, 8 out of 10 CCs form a bridge-like connection between the Magellanic Clouds. The other two are located slightly farther away and may constitute the Counter Bridge. We estimate ages of our Cepheids to be less than 300 Myr for from 5 up to 8 out of 10, depending on whether the rotation is included. This is in agreement with a scenario where these stars were formed in situ after the last encounter of the Magellanic Clouds. Cepheids' proper motions reveal that they are moving away from both Large and Small Magellanic Clouds. Anomalous Cepheids are more spread than CCs in both two and three dimensions, even though they form a rather smooth connection between the Magellanic Clouds. However, this connection does not seem to be bridge-like, as there are many outliers around both Magellanic Clouds.
We use the extended and updated Optical Gravitational Lensing Experiment (OGLE) Collection of Variable Stars to thoroughly analyze the distribution of RR Lyrae stars in the Magellanic Bridge. We use photometric metallicities to derive the absolute Wesenheit magnitude and individual distance of each RR Lyrae star. We confirm results from our earlier study showing that RR Lyrae stars are present in between the Magellanic Clouds, though their three-dimensional distribution more resembles two extended overlapping structures than a strict bridge-like connection. The contours do connect in the southern parts of the Bridge, albeit on a level too low to state that an evident connection exists. To test the sample numerically, we use multi-Gaussian fitting and conclude that there is no additional population or overdensity located in the Bridge. We also try to reproduce results on the putative RR Lyrae Magellanic Bridge stream by selecting RR Lyrae candidates from Gaia Data Release 1. We show that we are not able to obtain the evident connection of the Clouds without many spurious sources in the sample, as the cuts are not able to remove artifacts without eliminating the evident connection at the same time. Moreover, for the first time, we present the Gaia Data Release 2 RR Lyrae stars in the Magellanic Bridge area and show that their distribution matches our results.
We show that the leading coupling between a shift symmetric inflaton and the standard model fermions leads to an induced electroweak symmetry breaking due to particle production during inflation, and as a result, a unique oscillating feature in non-Gaussianities. In this one parameter model, the enhanced production of standard model fermions dynamically generates a new electroweak symmetry breaking minimum, where the Higgs field classically rolls to. The production of fermions stops when the Higgs expectation value and hence the fermion masses become too large, suppressing fermion production. The balance between the above-mentioned effects gives the standard model fermions masses that are uniquely determined by their couplings to the inflaton. In particular, the heaviest standard model fermion, the top quark, can produce a distinct cosmological collider physics signature characterized by a one-to-one relation between amplitude and frequency of the oscillating signal, which is observable at future 21-cm surveys.
We explore the possibility that lepton family numbers and baryon number are such good symmetries of Nature because they are the global remnant of a spontaneously broken gauge symmetry. An almost arbitrary linear combination of these symmetries (together with a component of global hypercharge) can be consistently gauged, if the Standard Model (SM) fermion content is augmented by three chiral SM singlet states. Within this framework of U (1 ) extensions of the SM one generically expects flavor nonuniversality to emerge in the charged leptons, in such a way that naturally prevents lepton flavor violation, by aligning the mass and weak eigenbases. For quarks, all the SM Yukawa couplings responsible for their observed masses and mixings arise at the renormalizable level. We perform fits to show that models in this class can explain RK(*) and the other neutral current B anomaly data if we introduce a heavy vectorlike quark to mediate the required quark flavor violation, while simultaneously satisfying other constraints from direct Z' searches at the LHC, Bs meson mixing, a number of electroweak precision observables, and neutrino trident production. Within this symmetry-motivated framework of models, we find interesting implications for the flavor anomalies; notably, any axial couplings of the Z' to electrons and muons must be flavor universal, with the flavor universality violation arising solely from the vectorlike couplings. We also comment on the generation of neutrino masses in these models.
Context. Planets in accretion disks can excite spiral shocks and if these planets are massive enough, they can even open gaps in their vicinity. Both of these effects can influence the overall thermal structure of the disk.
Aims: We model planets of different masses and semimajor axes in disks of various viscosities and accretion rates to examine their impact on disk thermodynamics and to highlight the mutable, non-axisymmetric nature of ice lines in systems with massive planets.
Methods: We conducted a parameter study using numerical hydrodynamics simulations where we treated viscous heating, thermal cooling, and stellar irradiation as additional source terms in the energy equation, with some runs including radiative diffusion. Our parameter space consists of a grid containing different combinations of planet and disk parameters.
Results: Both gap opening and shock heating can displace the ice line, with the effects amplified for massive planets in optically thick disks. The gap region can split an initially hot (T > 170 K) disk into a hot inner disk and a hot ring just outside of the planet's location, while shock heating can reshape the originally axisymmetric ice line into water-poor islands along spirals. We also find that radiative diffusion does not alter the picture significantly in this context.
Conclusions: Shock heating and gap opening by a planet can effectively heat up optically thick disks and, in general, they can move or reshape the water ice line. This can affect the gap structure and migration torques. It can also produce azimuthal features that follow the trajectory of spiral arms, creating hot zones which lead to "islands" of vapor and ice around spirals that could affect the accretion or growth of icy aggregates.
We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω(E) and ∆Φ(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
In models with extended scalars and C P violation, resonance searches in double Higgs final states stand in competition with related searches in top quark final states as optimal channels for the discovery of beyond the Standard Model (BSM) physics. This complementarity is particularly relevant for benchmark scenarios that aim to highlight multi-Higgs production as a standard candle for the study of BSM phenomena. In this paper, we compare interference effects in t t ¯ final states with correlated phenomena in double Higgs production in the complex singlet and the complex two-Higgs-doublet models. Our results indicate that the BSM discovery potential in di-Higgs searches can be underestimated in comparison to t t ¯ resonance searches. Top pair final states are typically suppressed due to destructive signal-background interference, while h h final states can be enhanced due to signal-signal interference. For parameter choices where the two heavy Higgs resonances are well separated in mass, top final states are suppressed relative to the naive signal expectation, while estimates of the production cross section times branching ratio remain accurate at the O (10 %) level for double Higgs final states.
Searching for new physics in large data sets needs a balance between two competing effects---signal identification vs background distortion. In this work, we perform a systematic study of both single variable and multivariate jet tagging methods that aim for this balance. The methods preserve the shape of the background distribution by either augmenting the training procedure or the data itself. Multiple quantitative metrics to compare the methods are considered, for tagging 2-, 3-, or 4-prong jets from the QCD background. This is the first study to show that the data augmentation techniques of Planing and PCA based scaling deliver similar performance as the augmented training techniques of Adversarial NN and uBoost, but are both easier to implement and computationally cheaper.
The detection of an oscillating pattern in the bispectrum of density perturbations could suggest the existence of a high-energy second minimum in the Higgs potential. If the Higgs field resided in this new minimum during inflation and was brought back to the electroweak vacuum by thermal corrections during reheating, the coupling of Standard Model particles to the inflaton would leave its imprint on the bispectrum. We focus on the fermions, whose dispersion relation can be modified by the coupling to the inflaton, leading to an enhanced particle production during inflation even if their mass during inflation is larger than the Hubble scale. This results in a large non-analytic contribution to non-Gaussianities, with an amplitude fNL as large as 100 in the squeezed limit, potentially detectable in future 21-cm surveys. Measuring the contributions from two fermions would allow us to compute the ratio of their masses, and to ascribe the origin of the signal to a new Higgs minimum. Such a discovery would be a tremendous step towards understanding the vacuum instability of the Higgs potential, and could have fascinating implications for anthropic considerations.
Direct imaging is a tried and tested method of detecting exoplanets in the near infrared, but has so far not been extended to longer wavelengths. New data at mid-IR wavelengths (8-20{\mu}m) canprovide additional constraints on planetary atmospheric models. We use the VISIR instrumenton the VLT to detect or set stringent limits on the 8.7{\mu}m flux of the four planets surrounding HR8799, and to search for additional companions. We use a novel circularised PSF subtractiontechnique to reduce the stellar signal and obtain instrument limited background levels andobtain optimal flux limits. The BT SETTL isochrones are then used to determine the resultingmass limits. We find flux limits between 0.7 and 3.3 mJy for the J8.9 flux of the differentplanets at better than5{\sigma}level and derive a new mass limit of 30 MJupfor any objects beyond40 AU. While this work has not detected planets in the HR 8799 system at 8.7{\mu}m, it has foundthat an instrument with the sensitivity of VISIR is sufficient to detect at least 4 known hotplanets around close stars, including\b{eta}Pictoris b (1700 K, 19 pc), with more than5{\sigma}certaintyin 10 hours of observing time in the mid-IR.
Following the 1999 analysis of Gambino, Haisch and one of us, we stress that all the recent NLO analyses of ε′/ ε in the Standard Model (SM) suffer from the renormalization scheme dependence present in the electroweak penguin contributions as well as from scale uncertainties in them related to the matching scale μW and in particular to μt in mt(μt). We also reemphasize the important role of isospin-breaking and QED effects in the evaluation of ε′/ ε. Omitting all these effects, as done in the 2015 analysis by RBC-UKQCD collaboration, and choosing as an example the QCD penguin (Q6) and electroweak penguin (Q8) parameters B6(1/2) and B8(3/2) to be B6(1/2)=0.80±0.08 and B8(3/2)=0.76±0.04 at μ=mc=1.3GeV, we find (ε′/ε)SM=(9.4±3.5)×10-4, whereas including them results in (ε′/ε)SM=(5.6±2.4)×10-4. This is an example of an anomaly at the 3.3σ level, which would be missed without these corrections. NNLO QCD contributions to QCD penguins are expected to further enhance this anomaly. We provide a table for ε′/ ε for different values of B6(1/2) and the isospin-breaking parameter Ω ^ eff, that should facilitate monitoring the values of ε′/ ε in the SM when the RBC-UKQCD calculations of hadronic matrix elements including isospin-breaking corrections and QED effects will improve with time.
We carry out an analysis of the full set of ten B¯→D(∗) form factors within the framework of the Heavy-Quark Expansion (HQE) to order (αs,1/mb,1/m2c), both with and without the use of experimental data. This becomes possible due to a recent calculation of these form factors at and beyond the maximal physical recoil using QCD light-cone sum rules, in combination with constraints from lattice QCD, QCD three-point sum rules and unitarity. We find good agreement amongst the various theoretical results, as well as between the theoretical results and the kinematical distributions in B¯→D(∗){e−,μ−}ν¯ measurements. The coefficients entering at the 1/m2c level are found to be of (1), indicating convergence of the HQE. The phenomenological implications of our study include an updated exclusive determination of |Vcb| in the HQE, which is compatible with both the exclusive determination using the BGL parametrization and with the inclusive determination. We also revisit predictions for the lepton-flavour universality ratios RD(∗), the τ polarization observables PD(∗)τ, and the longitudinal polarization fraction FL. Posterior samples for the HQE parameters are provided as ancillary files, allowing for their use in subsequent studies.
The structure and morphology of supernova remnants (SNRs) reflect the properties of the parent supernovae (SNe) and the characteristics of the inhomogeneous environments through which the remnants expand. Linking the morphology of SNRs to anisotropies developed in their parent SNe can be essential to obtain key information on many aspects of the explosion processes associated with SNe. Nowadays, our capability to study the SN-SNR connection has been largely improved thanks to multi-dimensional models describing the long-term evolution from the SN to the SNR as well as to observational data of growing quality and quantity across the electromagnetic spectrum which allow to constrain the models. Here we used the numerical resources obtained in the framework of the ``Accordo Quadro INAF-CINECA (2017)'' together with a CINECA ISCRA Award N.HP10BARP6Y to describe the full evolution of a SNR from the core-collapse to the full-fledged SNR at the age of 2000 years. Our simulations were compared with observations of SNR Cassiopeia A (Cas A) at the age of ∼ 350 years. Thanks to these simulations we were able to link the physical, chemical and morphological properties of a SNR to the physical processes governing the complex phases of the SN explosion.
Deformed relativistic kinematics, expected to emerge in a flat-spacetime limit of quantum gravity, predicts violation of discrete symmetries at energy scale in the vicinity of the Planck mass. Momentum-dependent deformations of the C, P and T invariance are derived from the \k{appa}-deformed Poincaré algebra. Deformation of the CPT symmetry leads to a subtle violation of Lorentz symmetry. This entails some small but measurable phenomenological consequences, as corrections to characteristics of time evolution: particle lifetimes or frequency of flavour oscillations in two-particle states at high energy. We argue here that using current experimental precisions on the muon lifetime one can bound the deformation parameter \k{appa} > 10^14 GeV at LHC energy and move this limit even to 10^16 GeV at Future Circular Collider, planned at CERN. Weaker limits on deformation can be also obtained from interference of neutral mesons. In case of B0s from {\Upsilon} decay it amounts to \k{appa} > 10^8 GeV at confidence level 99%.
The (tree) amplituhedron A(n,k,m) is the image in the Grassmannian Gr(k,k+m) of the totally nonnegative part of Gr(k,n), under a (map induced by a) linear map which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in N=4 supersymmetric Yang-Mills theory. In the case relevant to physics (m=4), there is a collection of recursively-defined 4k-dimensional BCFW cells in the totally nonnegative part of Gr(k,n), whose images conjecturally "triangulate" the amplituhedron--that is, their images are disjoint and cover a dense subset of A(n,k,4). In this paper, we approach this problem by first giving an explicit (as opposed to recursive) description of the BCFW cells. We then develop sign-variational tools which we use to prove that when k=2, the images of these cells are disjoint in A(n,k,4). We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron A(n,k,m) involving precisely M(k, n-k-m, m/2) top-dimensional cells (of dimension km), where M(a,b,c) is the number of plane partitions contained in an a x b x c box. This agrees with the fact that when m=4, the number of BCFW cells is the Narayana number N(n-3, k+1).
Recent years have seen considerable progress with ab-initio calculations of the
nuclear structure by non-relativistic many-body methods. Dirac-Brueckner-Hartree-Fock
Theory provides a relativistic ab-intio approach, which is able to reproduce saturation properties
of symmetric nuclear matter without three-body forces. However, so far, the corresponding
equations have been solved only for positive energy states. Negative energy states have
been included for forty years in various approximations, leading to differences in the isospin
dependence. This problem has been solved only recently by a complete solution of the self-
consistent relativistic Brueckner-Hartree-Fock equations in asymmetric nuclear matter. Due
to its numerical complexity, however, it is very difficult to extend the Relativistic Brueckner-
Hartree-Fock theory to the study of finite nuclear systems. Recent efforts will be discussed to
overcome this problem.
The measurement of an astrophysical flux of high-energy neutrinos by IceCube is an important step towards finding the long-sought sources of cosmic rays. Nevertheless, the long exposure neutrino sky map shows no significant indication of point sources so far. This may point to a large population of faint, steady sources or flaring objects as origins of this flux. The most compelling evidence for a neutrino point source so far is the recent observation of the flaring gamma-ray blazar TXS 0506+056 in coincidence with a high-energy neutrino from IceCube. This is a result of a Neutrino Target of Opportunity (NToO) program in which all currently operating Imaging Atmospheric Cherenkov Telescopes (IACTs) take part. The case for TXS 0506+056 being a neutrino source was made stronger by evidence of a 5-month long neutrino flare in 2014-2015.Here we investigate the chances of a detection of a gamma-ray counterpart to a neutrino source with CTA, as a result of a follow-up observation of a neutrino alert. We use the FIRESONG software to simulate different neutrino sources populations, which could be responsible for the diffuse flux of astrophysical neutrinos as measured by IceCube. We scan over parameters that can be used to describe the populations such as density (density rate) for steady (flaring) objects. Several CTA array layouts and instrument response functions are tested in order to derive optimal follow-up strategies and the potential science reach of the NToO program for CTA. We find that following neutrino alerts by IceCube, CTA has a low per alert probability of detecting a matching steady source. However, using a model by Halzen et al. (2018), for neutrino flares similar to that of 2014-2015, we find that CTA will detect a counterpart in as many as one third of the alerts.
The large volume of data expected to be produced by the Belle II experiment presents the opportunity for studies of rare, previously inaccessible processes. Investigating such rare processes in a high data volume environment necessitates a correspondingly high volume of Monte Carlo simulations to prepare analyses and gain a deep understanding of the contributing physics processes to each individual study. This resulting challenge, in terms of computing resource requirements, calls for more intelligent methods of simulation, in particular for processes with very high background rejection rates. This work presents a method of predicting in the early stages of the simulation process the likelihood of relevancy of an individual event to the target study using graph neural networks. The results show a robust training that is integrated natively into the existing Belle II analysis software framework.
Numerically estimating the integral of functions in high dimensional spaces is a non-trivial task. A oft-encountered example is the calculation of the marginal likelihood in Bayesian inference, in a context where a sampling algorithm such as a Markov Chain Monte Carlo provides samples of the function. We present an Adaptive Harmonic Mean Integration (AHMI) algorithm. Given samples drawn according to a probability distribution proportional to the function, the algorithm will estimate the integral of the function and the uncertainty of the estimate by applying a harmonic mean estimator to adaptively chosen regions of the parameter space. We describe the algorithm and its mathematical properties, and report the results using it on multiple test cases.
The time dependent density functional theory is applied to study modes of vibrational excitations in atomic nuclei. The covariant density functional DD-ME2 is adopted. It turns out that DD-ME2 is able to provide simultaneously a satisfactory description of isocalar giant monopole (ISGM), isovector giant dipole (IVGD), and isoscalar giant quadrupole (ISGQ) resonances. The functional is also able to describe very well the soft dipole modes known as pygmy dipole resonances (PDR).
In an interacting neutrino gas, flavor coherence becomes dynamical and can propagate as a collective mode. In particular, tachyonic instabilities can appear, leading to "fast flavor conversion" that is independent of neutrino masses and mixing angles. On the other hand, without neutrino-neutrino interaction, a prepared wave packet of flavor coherence simply dissipates by kinematical decoherence of infinitely many non-collective modes. We reexamine the dispersion relation for fast flavor modes and show that for any wavenumber, there exists a continuum of non-collective modes besides a few discrete collective ones. So for any initial wave packet, both decoherence and collective motion occurs, although the latter typically dominates for a sufficiently dense gas. We derive explicit eigenfunctions for both collective and non-collective modes. If the angular mode distribution of electron-lepton number crosses between positive and negative values, two non-collective modes can merge to become a tachyonic collective mode. We explicitly calculate the interaction strength for this critical point. As a corollary we find that a single crossing always leads to a tachyonic instability. For an even number of crossings, no instability needs to occur.
This thesis seeks to identify and investigate various universal quantum phenomena that are particularly, albeit by far not exclusively, relevant for gravity. In the first part, we study the question of how long a generic quantum system can be approximated as classical. Using a prototypical model of a self-interacting scalar field, we discuss possible scalings of the quantum break-time, after which the classical description breaks down. Subsequently, we apply this analysis to the hypothetical QCD axion. We conclude that the approximation as classically oscillating scalar field is extremely accurate. Next we turn to de Sitter. Our approach is to resolve the classical metric as a multi-graviton state defined on top of Minkowski vacuum. On the one hand, this composite picture of de Sitter is able to reproduce all known (semi)classical properties. On the other hand, it leads a breakdown of the description in terms of a classical metric after the timescale 1/(G H^3), where G and H correspond to Newton’s constant and the Hubble scale, respectively. This finding results in important restrictions on inflationary scenarios. [...]
The location at which life emerged on Earth defined the physical boundary conditions under which the first replicating systems evolved. Nonequilibrium systems were necessary to provide the energy driving these processes. One such nonequilibrium system could have been temperature gradients, found for example across porous rock in hydrothermal vents. The work presented here focuses on the effects of temperature gradients on molecules in these water-filled micro-compartments and on methods how they could be analyzed. [...]
Context. Analyzing the properties of dust and its evolution in the early phases of star formation is crucial to put constraints on the collapse and accretion processes as well as on the pristine properties of planet-forming seeds.
Aims: In this paper, we aim to investigate the variations of the dust grain size in the envelopes of the youngest protostars.
Methods: We analyzed Plateau de Bure interferometric observations at 1.3 and 3.2 mm for 12 Class 0 protostars obtained as part of the CALYPSO survey. We performed our analysis in the visibility domain and derived dust emissivity index (β1-3mm) profiles as a function of the envelope radius at 200-2000 au scales.
Results: Most of the protostellar envelopes show low dust emissivity indices decreasing toward the central regions. The decreasing trend remains after correction of the (potentially optically thick) central region emission, with surprisingly low β1-3mm < 1 values across most of the envelope radii of NGC 1333-IRAS 4A, NGC 1333-IRAS 4B, SVS13B, and Serpens-SMM4.
Conclusions: We discuss the various processes that could explain such low and varying dust emissivity indices at envelope radii 200-2000 au. Our observations of extremely low dust emissivity indices could trace the presence of large (millimeter-size) grains in Class 0 envelopes, in which case our results would point to a radial increase of the dust grain size toward the inner envelope regions. While it is expected that large grains in young protostellar envelopes could be built via grain growth and coagulation, we stress that the typical timescales required to build millimeter grains in current coagulation models are at odds with the youth of our Class 0 protostars. Additional variations in the dust composition could also partly contribute to the low β1-3mm we observe. We find that the steepness of the β1-3mm radial gradient depends strongly on the envelope mass, which might favor a scenario in which large grains are built in high-density protostellar disks and transported to the intermediate envelope radii, for example with the help of outflows and winds.
The light-meson spectrum can be studied by analyzing data from diffractive dissociation of pion or kaon beams. The contributions of the various states that are produced in these reactions are disentangled by the means of partial-wave analysis. A challenge in these analyses is that the partial-wave expansion has to be truncated, i.e. that only a finite subset of the infinitely many partial-wave amplitudes can be inferred from the data. In recent years, different groups have applied regularization techniques in order to determine the contributing waves from the data. However, to obtain meaningful results the choice of the regularization term is crucial. We present our recent developments of wave-selection methods for partial-wave analyses based on simulated data for diffractively produced three-pion events.
We report the discovery of 10 kpc [C II] 158 μm halos surrounding star-forming galaxies in the early universe. We choose deep Atacama Large Millimeter/submillimeter Array data for 18 galaxies, each with a star formation rate of ≃10-70 M ⊙ with no signature of an active galactic nucleus whose [C II] lines are individually detected at z = 5.153-7.142, and we conduct stacking of the [C II] lines and dust continuum in the uv-visibility plane. The radial profiles of the surface brightnesses show a 10 kpc scale [C II] halo at the 9.2σ level, significantly more extended than the Hubble Space Telescope stellar continuum data by a factor of ∼5 on the exponential-profile basis, as well as the dust continuum. We compare the radial profiles of [C II] and Lyα halos universally found in star-forming galaxies at this epoch, and we find that the scale lengths agree within the 1σ level. While two independent hydrodynamic zoom-in simulations match the dust and stellar continuum properties, the simulations cannot reproduce the extended [C II] line emission. The existence of the extended [C II] halo is evidence of outflow remnants in the early galaxies and suggests that the outflows may be dominated by cold-mode outflows expelling the neutral gas.
We developed methods for mapping spatial variations of the spatial power spectrum (SPS) and structure function slopes, with the goal of connecting the statistical properties of neutral hydrogen (H I) with the turbulent drivers. The new methods were applied to the H I observations of the Small and Large Magellanic Clouds (SMC and LMC). In the case of the SMC, we find highly uniform turbulent properties of H I, with no evidence for local enhancements of turbulence due to stellar feedback. These properties could be caused by a significant turbulent driving on large scales. Alternatively, the significant line-of-sight depth of the SMC could be masking out localized regions with a steeper SPS slope caused by stellar feedback. In contrast to the SMC, the LMC H I shows a large diversity in terms of its turbulent properties. Across most of the LMC, the small-scale SPS slope is steeper than the large-scale slope due to the presence of the H I disk. On small spatial scales, we find several areas of localized steepening of the SPS slope around major H II regions, with the 30 Doradus region being the most prominent. This is in agreement with predictions from numerical simulations, which suggest a steepening of the SPS slope due to stellar feedback that erodes and destroys interstellar clouds. We also find a localized steepening of the large-scale SPS slope in the outskirts of the LMC. This is likely caused by the flaring of the H I disk, or alternatively, by ram-pressure stripping of the LMC disk due to the interactions with the surrounding halo gas.
We investigate the [C II] line intensity mapping (IM) signal from galaxies in the Epoch of Reionization (EoR) to assess its detectability, the possibility to constrain the L_{C II}-SFR relation, and to recover the [C II] luminosity function (LF) from future experiments. By empirically assuming that log L_{C II}=log A+γ SFR± σ _ L, we derive the [C II] LF from the observed UV LF, and the [C II] IM power spectrum. We study the shot noise and the full power spectrum separately. Although, in general, the shot-noise component has a much higher signal-to-noise ratio than the clustering one, it cannot be used to put independent constraints on log A and γ. Full power spectrum measurements are crucial to break such degeneracy and reconstruct the [C II] LF. In our fiducial survey S1 (inspired by CCAT-p/1000 h) at z ∼ 6, the shot-noise (clustering) signal is detectable for two (one) of the five considered L_{C II}-SFR relations. The shot noise is generally dominated by galaxies with L_{C II}≳ 108-109 L_⊙ (MUV ∼ -20 to -22), already at reach of ALMA pointed observations. However, given the small field of view of such telescope, an IM experiment would provide unique information on the bright end of the LF. The detection depth of an IM experiment crucially depends on the (poorly constrained) L_{C II}-SFR relation in the EoR. If the L_{C II}-SFR relation varies in a wide log A-γ range, but still consistent with ALMA [C II] LF upper limits, even the signal from galaxies with L_{C II} as faint as ∼107 L⊙ could be detectable. Finally, we consider the contamination by continuum foregrounds (cosmic infrared background, dust, cosmic microwave background) and CO interloping lines, and derive the requirements on the residual contamination level to reliably extract the [C II] signal.
We present an alternative method for carrying out a principal-component analysis of Wilson coefficients in standard model effective field theory (SMEFT). The method is based on singular-value decomposition (SVD). The SVD method provides information about the sensitivity of experimental observables to physics beyond the standard model that is not accessible in the Fisher-information method. In principle, the SVD method can also have computational advantages over diagonalization of the Fisher information matrix. We demonstrate the SVD method by applying it to the dimension-6 coefficients for the process of top-quark decay to a b quark and a W boson and use this example to illustrate some pitfalls in widely used fitting procedures. We also outline an iterative procedure for applying the SVD method to dimension-8 SMEFT coefficients.
Dark matter substructure can contribute significantly to local dark matter searches and may provide a large uncertainty in the interpretation of those experiments. For direct detection experiments, sub-halos give rise to an additional dark matter component on top of the smooth dark matter distribution of the host halo. In the case of dark matter capture in the Sun, sub-halo encounters temporarily increase the number of captured particles. Even if the encounter happened in the past, the number of dark matter particles captured by the Sun can still be enhanced today compared to expectations from the host halo as those enhancements decay over time. Using results from an analytical model of the sub-halo population of a Milky Way-like galaxy, valid for sub-halo masses between 10-5 Msolar and 1011 Msolar, we assess the impact of sub-halos on direct dark matter searches in a probabilistic way. We find that the impact on direct detection can be sizable, with a probability of ~ 10-3 to find an Script O(1) enhancement of the recoil rate. In the case of the capture rate in the Sun, we find that Script O(1) enhancements are very unlikely, with probability lesssim 10-5, and are even impossible for some dark matter masses.
Context. Large area catalogs of galaxy clusters constructed from ROSAT All-Sky Survey provide the basis for our knowledge of the population of clusters thanks to long-term multiwavelength efforts to follow up observations of these clusters.Aims. The advent of large area photometric surveys superseding previous, in-depth all-sky data allows us to revisit the construction of X-ray cluster catalogs, extending the study to lower cluster masses and higher redshifts and providing modeling of the selection function.Methods. We performed a wavelet detection of X-ray sources and made extensive simulations of the detection of clusters in the RASS data. We assigned an optical richness to each of the 24 788 detected X-ray sources in the 10 382 square degrees of the Baryon Oscillation Spectroscopic Survey area using red sequence cluster finder redMaPPer version 5.2 run on Sloan Digital Sky Survey photometry. We named this survey COnstrain Dark Energy with X-ray (CODEX) clusters.Results. We show that there is no obvious separation of sources on galaxy clusters and active galactic nuclei (AGN) based on the distribution of systems on their richness. This is a combination of an increasing number of galaxy groups and their selection via the identification of X-ray sources either by chance or by groups hosting an AGN. To clean the sample, we use a cut on the optical richness at the level corresponding to the 10% completeness of the survey and include it in the modeling of the cluster selection function. We present the X-ray catalog extending to a redshift of 0.6.Conclusions. The CODEX suvey is the first large area X-ray selected catalog of northern clusters reaching fluxes of 10−13 ergs s−1 cm−2. We provide modeling of the sample selection and discuss the redshift evolution of the high end of the X-ray luminosity function (XLF). Our results on z < 0.3 XLF agree with previous studies, while we provide new constraints on the 0.3 < z < 0.6 XLF. We find a lack of strong redshift evolution of the XLF, provide exact modeling of the effect of low number statistics and AGN contamination, and present the resulting constraints on the flat ΛCDM.Key words: surveys / catalogs / large-scale structure of Universe⋆ The catalog of clusters is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A114
We present two determinations of the strong coupling αs. The first one is from the static energy at three-loop accuracy, and may be considered an update of earlier determinations by some of us. The new analysis includes new lattice data at smaller lattice spacings, and reaches distances as short as 0.0237 fm. We present a comprehensive and detailed estimate of the error sources that contribute to the uncertainty of the final result, αs(MZ)=0.1166 0-0.00056+0.00110. The second determination is based on lattice data for the singlet free energy at finite temperature up to distances as small as 0.0081 fm, from which we obtain αs(MZ)=0.1163 8-0.00087+0.0009 5.
We calculate the step scaling function, the lattice analog of the renormalization group β -function, for an SU(3) gauge theory with twelve flavors. The gauge coupling of this system runs very slowly, which is reflected in a small step scaling function, making numerical simulations particularly challenging. We present a detailed analysis including the study of systematic effects of our extensive data set generated with twelve dynamical flavors using the Symanzik gauge action and three times stout smeared Möbius domain wall fermions. Using up to 324 volumes, we calculate renormalized couplings for different gradient flow schemes and determine the step-scaling β function for a scale change s =2 on up to five different lattice volume pairs. Our preferred analysis is fully O (a2) Symanzik improved and uses Zeuthen flow combined with the Symanzik operator. We find an infrared fixed point within the range 5.2 ≤gc2≤6.4 in the c =0.250 finite volume gradient flow scheme. We account for systematic effects by calculating the step-scaling function based on alternative flows (Wilson or Symanzik) as well as operators (Wilson plaquette, clover) and also explore the effects of the perturbative tree-level improvement.
The detection of the high-energy neutrino event, IceCube-170922A, demonstrated that multimessenger particle astrophysics triggered by neutrino alerts is feasible. We consider time delay signatures caused by secret neutrino interactions with the cosmic neutrino background and dark matter and suggest that these can be used as a novel probe of neutrino interactions beyond the standard model (BSM). The tests with BSM-induced neutrino echoes are distinct from existing constraints from the spectral modification and will be enabled by multimessenger observations of bright neutrino transients with future experiments such as IceCube-Gen2, KM3Net, and Hyper-Kamiokande. The constraints are complementary to those from accelerator and laboratory experiments and powerful for testing various particle models that explain tensions prevailing in the cosmological data.
The existence of millicharged dark matter (mDM) can leave a measurable imprint on 21-cm cosmology through mDM-baryon scattering. However, the minimal scenario is severely constrained by existing cosmological bounds on both the fraction of dark matter that can be millicharged and the mass of mDM particles. We point out that introducing a long-range force between a millicharged subcomponent of dark matter and the dominant cold dark matter (CDM) component leads to efficient cooling of baryons in the early Universe, while also significantly extending the range of viable mDM masses. Such a scenario can explain the anomalous absorption signal in the sky-averaged 21-cm spectrum observed by EDGES and leads to a number of testable predictions for the properties of the dark sector. The mDM mass can then lie between 10 MeV and a few hundreds of GeVs, and its scattering cross section with baryons lies within an unconstrained window of parameter space above direct detection limits and below current bounds from colliders. In this allowed region, mDM can make up as little as 10-8 of the total dark matter energy density. The CDM mass ranges from 10 MeV to a few GeVs and has an interaction cross section with the Standard Model that is induced by a loop of mDM particles. This cross section is generically within reach of near-future low-threshold direct detection experiments.
Physics beyond the Standard Model can manifest itself as both new light states and heavy degrees of freedom. In this paper, we assume that the former comprise only a sterile neutrino, N . Therefore, the most agnostic description of the new physics is given by an effective field theory built upon the Standard Model fields as well as N . We show that Higgs phenomenology provides a sensitive and potentially crucial tool to constrain effective gauge interactions of sterile neutrinos, not yet probed by current experiments. In parallel, this motivates a range of new Higgs decay channels with clean signatures as candidates for the next LHC runs, including h →γ +pTmiss and h →γ γ +pTmiss .
We study charged Dirac quasinormal modes (QNMs) on Reissner-Nordström-anti-de Sitter (RN-AdS) black holes with generic Robin boundary conditions, by extending our earlier work of neutral Dirac QNMs on Schwarzschild-AdS black holes. We first derive the equations of motion for charged Dirac fields on a RN-AdS background. To solve these equations we impose a requirement on the Dirac field: that its energy flux should vanish at asymptotic infinity. A set of two Robin boundary conditions compatible with QNMs is consequently found. By employing both analytic and numeric methods, we then obtain the quasinormal spectrum for charged Dirac fields and analyze the impact of various parameters, in particular of electric charges. An analytic calculation shows explicitly that the charge coupling between the black hole and the Dirac field does not trigger super-radiant instabilities in the small black hole and low frequency limit. Numeric calculations, on the other hand, show quantitatively that Dirac QNMs may change substantially due to the electric charge. Our results illustrate how vanishing energy flux boundary conditions, as a generic principle, are applicable not only to neutral but also to electrically charged fields.
Consistency relations for the large scale structure are exact equalities between correlation functions of different order. These relations descend from the equivalence principle and hold for primordial perturbations generated by single-field models of inflation. They are not affected by nonlinearities and hold also for biased tracers and in redshift space. We show that baryonic acoustic oscillations in the bispectrum (BS) in the squeezed limit are suppressed with respect to those in the power spectrum by a coefficient that depends on the BS configuration and on the bias parameter (and, in redshift space, also on the growth rate). We test these relations using large volume N -body simulations and show that they provide a novel way to measure large scale halo bias and, potentially, the growth rate. Since bias is obtained by comparing two directly observable quantities, the method is free from theoretical uncertainties both on the computational scheme and on the underlying cosmological model.
By means of 3D hydrodynamical simulations, we evaluate here the impact that supernova (SN) explosions occurring within wind-driven bubbles have on the survival or destruction of dust grains. We consider both the dust generated within the ejecta and the dust initially present in the ambient gas and later locked up in the surrounding wind-driven shell (WDS). The collision of the SN blast wave with the WDS leads to a transmitted shock that moves into the shell and a reflected shock that moves into the ejecta. The transmitted shock is capable of destroying large amounts of the dust locked in the shell, but only if the mass of the WDS is small, less than a few tens the ejected mass. Conversely, massive WDSs, with several times the ejected mass, lead upon the interaction to strong radiative cooling, which inhibits the Sedov-Taylor phase and weakens the transmitted shock, making it unable to traverse the WDS. In such a case, the destruction/disruption of the ambient dust is largely inhibited. On the other hand, the SN remnants grow rapidly in the very tenuous region excavated by the stellar winds, and thus a large fraction of the dust generated within the ejecta is not efficiently destroyed by the SN reverse shock, nor by the reflected shock. Our calculations favor a scenario in which core-collapse SNe within sufficiently massive WDSs supply more dust to the interstellar medium than they are able to destroy.
We introduce k-evolution, a relativistic N-body code based on gevolution, which includes clustering dark energy among its cosmological components. To describe dark energy, we use the effective field theory approach. In particular, we focus on k-essence with a speed of sound much smaller than unity but we lay down the basis to extend the code to other dark energy and modified gravity models. We develop the formalism including dark energy non-linearities but, as a first step, we implement the equations in the code after dropping non-linear self-coupling in the k-essence field. In this simplified setup, we compare k-evolution simulations with those of CLASS and gevolution 1.2, showing the effect of dark matter and gravitational non-linearities on the power spectrum of dark matter, of dark energy and of the gravitational potential. Moreover, we compare k-evolution to Newtonian N-body simulations with back-scaled initial conditions and study how dark energy clustering affects massive halos.
We study the impact of anomalous couplings in the Higgs sector on the shape of the Higgs boson pair invariant mass distribution at NLO. Our analysis is based on a five-dimensional coupling parameter space relevant for Higgs boson pair production in gluon fusion, in the framework of a non-linear Effective Field Theory. In particular, we present a clustering procedure into certain shape types based on unsupervised machine learning, with the aim to infer information about the underlying parameter space from a given shape type.
Unilamellar lipid vesicles can serve as model for protocells. We present a vesicle fission mechanism in a thermal gradient under flow in a convection chamber, where vesicles cycle cold and hot regions periodically. Crucial to obtain fission of the vesicles in this scenario is a temperature-induced membrane phase transition that vesicles experience multiple times. We model the temperature gradient of the chamber with a capillary to study single vesicles on their way through the temperature gradient in an external field of shear forces. Starting in the gel-like phase the spherical vesicles are heated above their main melting temperature resulting in a dumbbell-deformation. Further downstream a temperature drop below the transition temperature induces splitting of the vesicles without further physical or chemical intervention. This mechanism also holds for less cooperative systems, as shown here for a lipid alloy with a broad transition temperature width of 8 K. We find a critical tether length that can be understood from the transition width and the locally applied temperature gradient. This combination of a temperature-induced membrane phase transition and realistic flow scenarios as given e.g. in a white smoker enable a fission mechanism that can contribute to the understanding of more advanced protocell cycles.
We revisit the decay Λ0b→Λ+cℓ−ν¯ (ℓ=e,μ,τ) with a subsequent two-body decay Λ+c→Λ0π+ in the Standard Model and in generic New Physics models. The decay's joint four-differential angular distribution can be expressed in terms of ten angular observables, assuming negligible polarization of the initial Λb state. We present compact analytical results for all angular observables, which enables us to discuss their possible New Physics reach. We find that the decay at hand probes more and complementary independent combinations of Wilson coefficients compared to its mesonic counter parts B¯→D(∗)ℓ−ν¯. Our result for the angular distribution is at variance with some of the results on scalar-vector interference terms in the literature. We provide numerical estimates for all angular observables based on lattice-QCD results for the Λb→Λc form factors and account for a recent measurement of the parity-violating parameter in Λ+c→Λ0π+ decays by BESIII. A numerical implementation of our results is made publicly available as part of the EOS software.
Nuclear structure models built from phenomenological mean fields, the effective nucleon–nucleon interactions (or Lagrangians), and the realistic bare nucleon–nucleon interactions are reviewed. The success of covariant density functional theory (CDFT) to describe nuclear properties and its influence on Brueckner theory within the relativistic framework are focused upon. The challenges and ambiguities of predictions for unstable nuclei without data or for high-density nuclear matter, arising from relativistic density functionals, are discussed. The basic ideas in building an ab initio relativistic density functional for nuclear structure from ab initio calculations with realistic nucleon–nucleon interactions for both nuclear matter and finite nuclei are presented. The current status of fully self-consistent relativistic Brueckner–Hartree–Fock (RBHF) calculations for finite nuclei or neutron drops (ideal systems composed of a finite number of neutrons and confined within an external field) is reviewed. The guidance and perspectives towards an ab initio covariant density functional theory for nuclear structure derived from the RBHF results are provided.