The properties of quasar-host galaxies might be determined by the growth and feedback of their supermassive black holes (SMBHs, 10^8−10 M_⊙). We investigate such connection with a suite of cosmological simulations of massive (halo mass ≈10^12 M_⊙) galaxies at z ≃ 6 that include a detailed subgrid multiphase gas and accretion model. BH seeds of initial mass 10^5 M_⊙ grow mostly by gas accretion, and become SMBH by z = 6 setting on the observed M_BH−M_⋆ relation without the need for a boost factor. Although quasar feedback crucially controls the SMBH growth, its impact on the properties of the host galaxy at z = 6 is negligible. In our model, quasar activity can both quench (via gas heating) or enhance (by interstellar medium overpressurization) star formation. However, we find that the star formation history is insensitive to such modulation as it is largely dominated, at least at z > 6, by cold gas accretion from the environment that cannot be hindered by the quasar energy deposition. Although quasar-driven outflows can achieve velocities |$\gt 1000~\rm km~s^{-1}$|, only ≈4 per cent of the outflowing gas mass can actually escape from the host galaxy. These findings are only loosely constrained by available data, but can guide observational campaigns searching for signatures of quasar feedback in early galaxies.
The emergence of evermore complex entities from prebiotic building blocks is a key aspect of origins of life research. The RNA-world hypothesis posits that RNA oligomers known as ribozymes acted as the first self-replicating entities. However, the mechanisms governing the self-assembly of complex informational polymers from the shortest prebiotic building blocks were unclear. One open issue concerns the relation between concentration and oligonucleotide length, usually assumed to be exponentially decreasing. Here, we show that a competition of timescales in the self-assembly of informational polymers by templated ligation generically leads to nonmonotonic strand-length distributions with two distinct length scales. The first length scale characterizes the onset of a strongly nonequilibrium regime and is visible as a local minimum. Dynamically, this regime is governed by extension cascades, where the elongation of a "primer" with a short building block is more likely than its dehybridization. The second length scale appears as a local concentration maximum and reflects a balance between degradation and dehybridization of completely hybridized double strands in a heterocatalytic extension-reassembly process. Analytical arguments and extensive numerical simulations within a sequence-independent model allowed us to predict and control these emergent length scales. Nonmonotonic strand-length distributions confirming our theory were obtained in thermocycler experiments using random DNA sequences from a binary alphabet. Our work emphasizes the role of structure-forming processes already for the earliest stages of prebiotic evolution. The accumulation of strands with a typical length reveals a possible starting point for higher-order self-organization events that ultimately lead to a self-replicating, evolving system.
Simulating a survey of fluxes and redshifts (distances) from an astrophysical population is a routine task. \texttt{popsynth} provides a generic, object-oriented framework to produce synthetic surveys from various distributions and luminosity functions, apply selection functions to the observed variables and store them in a portable (HDF5) format. Population synthesis routines can be constructed either using classes or from a serializable YAML format allowing flexibility and portability. Users can not only sample the luminosity and distance of the populations, but they can create auxiliary distributions for parameters which can have arbitrarily complex dependencies on one another. Thus, users can simulate complex astrophysical populations which can be used to calibrate analysis frameworks or quickly test ideas.
Molecular outflows contributing to the matter cycle of star-forming galaxies are now observed in small and large systems at low and high redshift. Their physical origin is still unclear. In most theoretical studies, only warm ionized/neutral and hot gas outflowing from the interstellar medium is generated by star formation. We investigate an in situ H2 formation scenario in the outflow using high-resolution simulations, including non-equilibrium chemistry and self-gravity, of turbulent, warm, and atomic clouds with densities 0.1, 0.5, and $1\, \mathrm{cm}^{-3}$ exposed to a magnetized hot wind. For cloud densities $\gtrsim 0.5\, \mathrm{cm}^{-3}$, a magnetized wind triggers H2 formation before cloud dispersal. Up to 3 per cent of the initial cloud mass can become molecular on $\sim \! 10\, \mathrm{Myr}$ time-scales. The effect is stronger for winds with perpendicular B-fields and intermediate density clouds ($n_\mathrm{c}\sim 0.5\, \mathrm{cm}^{-3}$). Here, H2 formation can be boosted by up to one order of magnitude compared to isolated cooling clouds independent of self-gravity. Self-gravity preserves the densest clouds well past their $\sim \! 15\, \mathrm{Myr}$ cloud crushing time-scales. This model could provide a plausible in situ origin for the observed molecular gas. All simulations form warm ionized gas, which represents an important observable phase. The amount of warm ionized gas is almost independent of the cloud density but solely depends on the magnetic field configuration in the wind. For low-density clouds ($0.1\, \mathrm{cm}^{-3}$), up to 60 per cent of the initially atomic cloud mass can become warm and ionized.
Hydroxyl ($\rm OH$) is known to form efficiently in cold gas (T ~ 100 K) along with the molecule $\rm H_2$ and can be used as an efficient tracer of the diffuse molecular gas in the interstellar medium (ISM). Using a simple formalism describing the $\rm H\, I/H_2$ transition and a reduced network of major chemical reactions, we present a semi-analytical prescription to estimate the abundances of O-bearing molecules in the diffuse ISM. We show that predictions based on our prescription are in good agreement with the estimates obtained using the MEUDON PDR code which utilizes the full reaction network. We investigate the dependence of the relative abundances of $\rm OH/H\, I$ and $\rm OH/H_2$ on the variations of physical conditions i.e. the metallicity, number density (n), cosmic ray ionization rate (ζ), and strength of UV field (χ) in the medium. We find that the $\rm OH/H\, I$ abundances observed in the Galactic ISM can be reproduced by models with n ~ 50 cm-3, χ ~ 1 (Mathis field), and ζ ~ 3 × 10-17 s-1, with a variation of about 1 dex allowed around these values. Using the constrained $\rm H_2$ column density distribution function at z ~ 3, we estimate the $\rm OH$ column density distribution function and discuss future prospects with the upcoming large radio absorption line surveys.
The structure of protostellar cores can often be approximated by isothermal Bonnor-Ebert spheres (BES), which are stabilized by an external pressure. For the typical pressure of 104kB K cm-3 to 105kB K cm-3 found in molecular clouds, cores with masses below 1.5 M⊙ are stable against gravitational collapse. In this paper, we analyze the efficiency of triggering gravitational collapse with a nearby stellar wind, which represents an interesting scenario for triggering low-mass star formation. We analytically derive a new stability criterion for a BES compressed by a stellar wind, which depends on its initial nondimensional radius ${\xi }_{\max }$ . If the stability limit is violated the wind triggers a core collapse. Otherwise, the core is destroyed by the wind. We estimate its validity range to $2.5\lt {\xi }_{\max }\lt 4.2$ and confirm this in simulations with the SPH-Code GADGET-3. The efficiency of triggering a gravitational collapse strongly decreases for ${\xi }_{\max }\lt 2.5$ since in this case destruction and acceleration of the whole sphere begin to dominate. We were unable to trigger a collapse for ${\xi }_{\max }\lt 2$ , which leads to the conclusion that a stellar wind can move the smallest unstable stellar mass to 0.5 M⊙ and that destabilizing even smaller cores would require external pressure larger than 105kB K cm-3. For ${\xi }_{\max }\gt 4.2$ the expected wind strength according to our criterion is small enough that the compression is slower than the sound speed of the BES and sound waves can be triggered. In this case our criterion somewhat underestimates the onset of collapse and detailed numerical analyses are required.
Orbit superposition models are a non-parametric dynamical modelling technique to determine the mass of a galaxy's central supermassive black hole (SMBH), its stars, or its dark matter halo. One of the main problems is how to decide which model out of a large pool of trial models based on different assumed mass distributions represents the true structure of an observed galaxy best. We show that the traditional approach to judge models solely by their goodness-of-fit can lead to substantial biases in estimated galaxy properties caused by varying model flexibilities. We demonstrate how the flexibility of the models can be estimated using bootstrap iterations and present a model selection framework that removes these biases by taking the variable flexibility into account in the model evaluation. We extend the model selection approach to optimize the degree of regularization directly from the data. Altogether, this leads to a significant improvement of the constraining power of the modelling technique. We show with simulations that one can reconstruct the mass, anisotropy, and viewing angle of an axisymmetric galaxy with a few per cent accuracy from realistic observational data with fully resolved line-of-sight velocity distributions (LOSVDs). In a first application, we reproduce a photometric estimate of the inclination of the disc galaxy NGC 3368 to within 5° accuracy from kinematic data that cover only a few sphere-of-influence radii around the galaxy's SMBH. This demonstrates the constraining power that can be achieved with orbit models based on fully resolved LOSVDs and a model selection framework.
We present an overview of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, a Large Program on the European Southern Observatory Very Large Telescope. MAGPI is designed to study the physical drivers of galaxy transformation at a lookback time of 3-4 Gyr, during which the dynamical, morphological, and chemical properties of galaxies are predicted to evolve significantly. The survey uses new medium-deep adaptive optics aided Multi-Unit Spectroscopic Explorer (MUSE) observations of fields selected from the Galaxy and Mass Assembly (GAMA) survey, providing a wealth of publicly available ancillary multi-wavelength data. With these data, MAGPI will map the kinematic and chemical properties of stars and ionised gas for a sample of 60 massive ( ${>}7 × 10^{10} {M}_\odot$ ) central galaxies at $0.25 < z <0.35$ in a representative range of environments (isolated, groups and clusters). The spatial resolution delivered by MUSE with Ground Layer Adaptive Optics ( $0.6-0.8$ arcsec FWHM) will facilitate a direct comparison with Integral Field Spectroscopy surveys of the nearby Universe, such as SAMI and MaNGA, and at higher redshifts using adaptive optics, for example, SINS. In addition to the primary (central) galaxy sample, MAGPI will deliver resolved and unresolved spectra for as many as 150 satellite galaxies at $0.25 < z <0.35$ , as well as hundreds of emission-line sources at $z < 6$ . This paper outlines the science goals, survey design, and observing strategy of MAGPI. We also present a first look at the MAGPI data, and the theoretical framework to which MAGPI data will be compared using the current generation of cosmological hydrodynamical simulations including EAGLE, Magneticum, HORIZON-AGN, and Illustris-TNG. Our results show that cosmological hydrodynamical simulations make discrepant predictions in the spatially resolved properties of galaxies at $z≈ 0.3$ . MAGPI observations will place new constraints and allow for tangible improvements in galaxy formation theory.
Our work presents an independent calibration of the J-region Asymptotic Giant Branch (JAGB) method using Infrared Survey Facility photometric data and a custom luminosity function profile to determine JAGB mean magnitudes for nine galaxies. We determine a mean absolute magnitude of carbon stars of MLMC = -6.212 ± 0.010 (stat.) ±0.030 (syst.) mag. We then use near-infrared photometry of a number of nearby galaxies, originally obtained by our group to determine their distances from Cepheids using the Leavitt law, in order to independently determine their distances with the JAGB method. We compare the JAGB distances obtained in this work with the Cepheid distances resulting from the same photometry and find very good agreement between the results from the two methods. The mean difference is 0.01 mag with an rms scatter of 0.06 mag after taking into account seven out of the eight analyzed galaxies that had their distances determined using Cepheids. The very accurate distance to the Small Magellanic Cloud based on detached eclipsing binaries is also in very good agreement with the distance obtained from carbon stars.
Self-interacting dark matter (SIDM) models have the potential to solve the small-scale problems that arise in the cold dark matter paradigm. Simulations are a powerful tool for studying SIDM in the context of astrophysics, but it is numerically challenging to study differential cross-sections that favour small-angle scattering (as in light-mediator models). Here, we present a novel approach to model frequent scattering based on an effective drag force, which we have implemented into the N-body code GADGET-3. In a range of test problems, we demonstrate that our implementation accurately models frequent scattering. Our implementation can be used to study differences between SIDM models that predict rare and frequent scattering. We simulate core formation in isolated dark matter haloes, as well as major mergers of galaxy clusters and find that SIDM models with rare and frequent interactions make different predictions. In particular, frequent interactions are able to produce larger offsets between the distribution of galaxies and dark matter in equal-mass mergers.
We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $\beta \beta$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay $Q$ value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the $^{76}$Ge half-life of $1.3\times10^{28}$ years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time.
We present a method to derive conservative upper limits on the coupling constants of the effective theory of dark matter-nucleon interactions, taking into account the interference among operators. The method can be applied in any basis, and can be easily particularized to any UV complete model. To illustrate our method, we use the IceCube constraints on an exotic neutrino flux from dark matter annihilations in the Sun to derive conservative upper limits on the dark matter-nucleon coupling constants of the effective theory, as well as to derive conservative upper limits on the dark matter-proton and dark matter-neutron scattering cross-sections.
In the last decade, quantum simulators, and in particular cold atoms in optical lattices, have emerged as a valuable tool to study strongly correlated quantum matter. These experiments are now reaching regimes that are numerically difficult or impossible to access. In particular they have started to fulfill a promise which has contributed significantly to defining and shaping the field of cold atom quantum simulations, namely the exploration of doped and frustrated quantum magnets and the search for the origins of high-temperature superconductivity in the fermionic Hubbard model. Despite many future challenges lying ahead, such as the need to further lower the experimentally accessible temperatures, remarkable studies have already been conducted. Among them, spin-charge separation in one-dimensional systems has been demonstrated, extended-range antiferromagnetism in two-dimensional systems has been observed, connections to modern day large-scale numerical simulations were made, and unprecedented comparisons with microscopic trial wavefunctions have been carried out at finite doping. In many regards, the field has acquired new realms, putting old ideas to a new test and producing new insights and inspiration for the next generation of physicists. In the first part of this paper, we review the results achieved in cold atom realizations of the Fermi–Hubbard model in recent years. We put special emphasis on the new probes available in quantum gas microscopes, such as higher-order correlation functions, full counting statistics, the ability to study far-from-equilibrium dynamics, machine learning and pattern recognition of instantaneous snapshots of the many-body wavefunction, and access to non-local correlators. Our review is written from a theoretical perspective, but aims to provide basic understanding of the experimental procedures. We cover one-dimensional systems, where the phenomenon of spin-charge separation is ubiquitous, and two-dimensional systems where we distinguish between situations with and without doping. Throughout, we focus on the strong coupling regime where the Hubbard interactions <math display="inline" id="d1e3228" altimg="si1.svg"><mi>U</mi></math> dominate and connections to <math display="inline" id="d1e3233" altimg="si421.svg"><mrow><mi>t</mi><mo linebreak="goodbreak" linebreakstyle="after">−</mo><mi>J</mi></mrow></math> models can be justified. In the second part of this paper, with the stage set and the current state of the field in mind, we propose a new direction for cold atoms to explore: namely mixed-dimensional bilayer systems, where the charge motion is restricted to individual layers which remain coupled through spin-exchange. These systems can be directly realized experimentally and we argue that they have a rich phase diagram, potentially including a strongly correlated BEC-to-BCS cross-over and regimes with different superconducting order parameters, as well as complex parton phases and possibly even analogs of tetraquark states. In particular, we propose a novel, strong pairing mechanism in these systems, which puts the formation of hole pairs at experimentally accessible, elevated temperatures within reach. Ultimately we propose to explore how the physics of the mixed-dimensional bilayer system can be connected to the rich phenomenology of the single-layer Hubbard model. •Comprehensive review of cold atom experiments on the Fermi–Hubbard model.•Focus on physics highlights, from a theoretical perspective.•New results for hole-pairing in bilayer and ladder systems.•Including a discussion of contemporary analysis tools: from machine-learning to ARPES.
We present a model for the halo-mass correlation function that explicitly incorporates halo exclusion and allows for a redefinition of the halo boundary in a flexible way. We assume that haloes trace mass in a way that can be described using a single scale-independent bias parameter. However, our model exhibits scale-dependent biasing due to the impact of halo-exclusion, the use of a 'soft' (i.e. not infinitely sharp) halo boundary, and differences in the one halo term contributions to ξhm and ξmm. These features naturally lead us to a redefinition of the halo boundary that lies at the 'by eye' transition radius from the one-halo to the two-halo term in the halo-mass correlation function. When adopting our proposed definition, our model succeeds in describing the halo-mass correlation function with $\approx 2{{\ \rm per\ cent}}$ residuals over the radial range 0.1 h-1 Mpc < r < 80 h-1 Mpc, and for halo masses in the range 1013 h-1 M⊙ < M < 1015 h-1 M⊙. Our proposed halo boundary is related to the splashback radius by a roughly constant multiplicative factor. Taking the 87 percentile as reference we find rt/Rsp ≍ 1.3. Surprisingly, our proposed definition results in halo abundances that are well described by the Press-Schechter mass function with δsc = 1.449 ± 0.004. The clustering bias parameter is offset from the standard background-split prediction by $\approx 10{{\ \rm per\ cent}}\!-\!15{{\ \rm per\ cent}}$. This level of agreement is comparable to that achieved with more standard halo definitions.
We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian effective field theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability amplitude of graviton emission at leading and next-to-leading order in the Newton's constant G . The amplitude can be expressed in compact form as one-dimensional integrals over a Feynman parameter involving Bessel functions. We use it to recover the leading-order radiated angular momentum expression. Upon expanding it in the relative velocity between the two bodies v , we compute the total four-momentum radiated into gravitational waves at leading-order in G and up to an order v, 8 finding agreement with what was recently computed using scattering amplitude methods. Our results also allow us to investigate the zero frequency limit of the emitted energy spectrum.
We revisit light-cone sum rules with pion distribution amplitudes to determine the full set of local B→π form factors. To this end, we determine all duality threshold parameters from a Bayesian fit for the first time. Our results, obtained at small momentum transfer q2, are extrapolated to large q2 where they agree with precise lattice QCD results. We find that a modification to the commonly used BCL parametrization is crucial to interpolate the scalar form factor between the two q2 regions. We provide numerical results for the form factor parameters -- including their covariance -- based on simultaneous fit of all three form factors to both the sum rule and lattice QCD results. Our predictions for the form factors agree well with measurements of the q2 spectrum of the semileptonic decay B¯0→π+ℓ−ν¯. From the world average of the latter we obtain |Vub|=(3.77±0.15)⋅10−3, which is in agreement with the most recent inclusive determination at the 1σ level.
The evolution of young stars and disks is driven by the interplay of several processes, notably the accretion and ejection of material. These processes, critical to correctly describe the conditions of planet formation, are best probed spectroscopically. Between 2020 and 2022, about 500orbits of the Hubble Space Telescope (HST) are being devoted in to the ULLYSES public survey of about 70 low-mass (M⋆ ≤ 2 M⊙) young (age < 10 Myr) stars at UV wavelengths. Here, we present the PENELLOPE Large Program carried out with the ESO Very Large Telescope (VLT) with the aim of acquiring, contemporaneously to the HST, optical ESPRESSO/UVES high-resolution spectra for the purpose of investigating the kinematics of the emitting gas, along with UV-to-NIR X-shooter medium-resolution flux-calibrated spectra to provide the fundamental parameters that HST data alone cannot provide, such as extinction and stellar properties. The data obtained by PENELLOPE have no proprietary time and the fully reduced spectra are being made available to the whole community. Here, we describe the data and the first scientific analysis of the accretion properties for the sample of 13 targets located in the Orion OB1 association and in the σ-Orionis cluster, observed in November-December 2020. We find that the accretion rates are in line with those observed previously in similarly young star-forming regions, with a variability on a timescale of days (≲3). The comparison of the fits to the continuum excess emission obtained with a slab model on the X-shooter spectra and the HST/STIS spectra shows a shortcoming in the X-shooter estimates of ≲10%, which is well within the assumed uncertainty. Its origin can be either due to an erroneous UV extinction curve or to the simplicity of the modeling and, thus, this question will form the basis of the investigation undertaken over the course of the PENELLOPE program. The combined ULLYSES and PENELLOPE data will be key in attaining a better understanding of the accretion and ejection mechanisms in young stars.
Based on observations collected at the European Southern Observatory under ESO programme 106.20Z8.
We use the forward modeling approach to galaxy clustering combined with the likelihood from the effective-field theory of large-scale structure to measure assembly bias, i.e. the dependence of halo bias on properties beyond the total mass, in the linear (b1) and second order bias parameters (b2 and bK2) of dark matter halos in N-body simulations. This is the first time that assembly bias in the tidal bias parameter bK2 is measured. We focus on three standard halo properties: the concentration c, spin λ, and sphericity s, for which we find an assembly bias signal in bK2 that is opposite to that in b1. Specifically, at fixed mass, halos that get more (less) positively biased in b1, get less (more) negatively biased in bK2. We also investigate the impact of assembly bias on the b2(b1) and bK2(b1) relations, and find that while the b2(b1) relation stays roughly unchanged, assembly bias strongly impacts the bK2(b1) relation. This impact likely extends also to the corresponding relation for galaxies, which motivates future studies to design better priors on bK2(b1) for use in cosmological constraints from galaxy clustering data.
We study and model the properties of galaxy clusters in the normal-branch Dvali–Gabadadze–Porrati (nDGP) model of gravity, which is representative of a wide class of theories that exhibit the Vainshtein screening mechanism. Using the first cosmological simulations that incorporate both full baryonic physics and nDGP, we find that, despite being efficiently screened within clusters, the fifth force can raise the temperature of the intracluster gas, affecting the scaling relations between the cluster mass and three observable mass proxies: the gas temperature, the Compton Y-parameter of the Sunyaev–Zel’dovich effect, and the X-ray analogue of the Y-parameter. Therefore, unless properly accounted for, this could lead to biased measurements of the cluster mass in tests that use cluster observations, such as cluster number counts, to probe gravity. Using a suite of dark-matter-only simulations, which span a wide range of box sizes and resolutions, and which feature very different strengths of the fifth force, we also calibrate general fitting formulae that can reproduce the nDGP halo concentration at percent accuracy for 0 ≤ z ≤ 1, and halo mass function with |${\lesssim}3{{\ \rm per\ cent}}$| accuracy at 0 ≤ z ≤ 1 (increasing to |${\lesssim}5{{\ \rm per\ cent}}$| for 1 ≤ z ≤ 2), over a halo mass range spanning four orders of magnitude. Our model for the concentration can be used for converting between halo mass overdensities and predicting statistics such as the non-linear matter power spectrum. The results of this work will form part of a framework for unbiased constraints of gravity using the data from ongoing and upcoming cluster surveys.
Six binary-merger progenitors of supernova 1987A (SN 1987A) with properties close to those of the blue supergiant Sanduleak -69°202 are exploded by neutrino heating and evolved until long after shock breakout in 3D and continued for light-curve calculations in spherical symmetry. Our results confirm previous findings for single-star progenitors: (1) 3D neutrino-driven explosions with SN 1987A-like energies synthesize 56Ni masses consistent with the radioactive light-curve tail; (2) hydrodynamic models mix hydrogen inward to minimum velocities below 40 km s-1 compatible with spectral observations of SN 1987A; and (3) for given explosion energy the efficiency of outward radioactive 56Ni mixing depends mainly on high growth factors of Rayleigh-Taylor instabilities at the (C+O)/He and He/H composition interfaces and a weak interaction of fast plumes with the reverse shock occurring below the He/H interface. All binary-merger models possess presupernova radii matching the photometric radius of Sanduleak -69°202 and a structure of the outer layers allowing them to reproduce the observed initial luminosity peak in the first ~7 days. Models that mix about 0.5 M⊙ of hydrogen into the He-shell and exhibit strong outward mixing of 56Ni with maximum velocities exceeding the 3000 km s-1 observed for the bulk of ejected 56Ni have light-curve shapes in good agreement with the dome of the SN 1987A light curve. A comparative analysis of the best representatives of our 3D neutrino-driven explosion models of SN 1987A based on single-star and binary-merger progenitors reveals that only one binary model fulfills all observational constraints, except one.
We present theoretical predictions for the free-free emission at centimeter wavelengths obtained from photoevaporation and magnetohydrodynamic (MHD) wind disk models adjusted to the case of the TW Hydrae young stellar object. For this system, disk photoevaporation with heating due to the high-energy photons from the star has been proposed as a possible mechanism to open the gap observed in the dust emission with the Atacama Large Millimeter/submillimeter Array. We show that the photoevaporation disk model predicts a radial profile for the free-free emission that is made of two main spatial components, one originated from the bound disk atmosphere at 0.5-1 au from the star, and another more extended component from the photoevaporative wind at larger disk radii. We also show that the stellar X-ray luminosity has a significant impact on both these components. The predicted radio emission from the MHD wind model has a smoother radial distribution which extends to closer distances to the star than the photoevaporation case. We also show that a future radio telescope such as the Next Generation Very Large Array would have enough sensitivity and angular resolution to spatially resolve the main structures predicted by these models.
We calculate models of stellar evolution for very massive stars and include the effects of modified gravity to investigate the influence on the physical properties of blue supergiant stars and their use as extragalactic distance indicators. With shielding and fifth force parameters in a similar range as those in previous studies of Cepheid and tip of the red giant branch (TRGB) stars, we find clear effects on stellar luminosity and flux-weighted gravity. The relationship between flux-weighted gravity, gF ≡ g/ ${T}_{\mathrm{eff}}^{4}$ , and bolometric magnitude Mbol, which has been used successfully for accurate distance determinations, is systematically affected. While the stellar evolution of flux-weighted gravity-luminosity relationships (FGLRs) show a systematic offset from the observed relation, we can use the differential shifts between models with Newtonian and modified gravity to estimate the influence on FGLR distance determinations. Modified gravity leads to an increase in distance of 0.05-0.15 magnitudes in distance modulus. These changes are comparable to the ones found for Cepheid stars. We compare observed FGLR and TRGB distances of nine galaxies to constrain the free parameters of modified gravity. Not accounting for systematic differences between TRGB and FGLR distances shielding parameters of 5 × 10-7 and 10-6 and fifth force parameters of 1/3 and 1 can be ruled out with about 90% confidence. Allowing for potential systematic offsets between TRGB and FGLR distances no determination is possible for a shielding parameter of 10-6. For 5 × 10-7 a fifth force parameter of 1 can be ruled out to 92% but 1/3 is unlikely only to 60%.
Recent millimeter and infrared observations have shown that gap- and ring-like structures are common in both dust thermal emission and scattered light of protoplanetary disks. We investigate the impact of the so-called thermal wave instability (TWI) on the millimeter and infrared scattered light images of disks. We perform 11D simulations of the TWI and confirm that the TWI operates when the disk is optically thick enough for stellar light, i.e., small-grain-to-gas mass ratio of 0.0001. The midplane temperature varies as the waves propagate, and hence gap and ring structures can be seen in both millimeter and infrared emission. The millimeter substructures can be observed even if the disk is fully optically thick since it is induced by the temperature variation, while density-induced substructures would disappear in the optically thick regime. The fractional separation between TWI-induced ring and gap is r/r 0.20.4 at 1050 au, which is comparable to those found by the Atacama Large Millimeter/submillimeter Array. Due to the temperature variation, snow lines of volatile species move radially and multiple snow lines are observed even for a single species. The wave propagation velocity is as fast as 0.6 au yr1, which can be potentially detected with a multiepoch observation with a time separation of a few years.
Context. In 2019, the eROSITA telescope on board the Russian-German satellite Spectrum-Roentgen-Gamma (SRG) began to perform a deep all-sky X-ray survey with the aim of identifying ~100 000 clusters and groups over the course of four years. As part of its performance verification phase, a ~140 deg2 survey, called eROSITA Final Equatorial-Depth Survey (eFEDS), was performed. With a depth typical of the all-sky survey after four years, it allows tests of tools and methods as well as improved predictions for the all-sky survey.Aims. As part of this effort, a catalog of 542 X-ray selected galaxy group and cluster candidates was compiled. In this paper we present the optical follow-up, with the aim of providing redshifts and cluster confirmation for the full sample. Furthermore, we aim to provide additional information on the dynamical state, richness, and optical center of the clusters. Finally, we aim to evaluate the impact of optical cluster confirmation on the purity and completeness of the X-ray selected sample.Methods. We used optical imaging data from the Hyper Suprime-Cam Subaru Strategic Program and from the Legacy Survey to identify optical counterparts to the X-ray detected cluster candidates. We make use of the multi-component matched filter cluster confirmation tool (MCMF), as well as of the optical cluster finder CAMIRA to derive cluster redshifts and richnesses. MCMF provided the probabilities with which an optical structure would be a chance superposition with the X-ray candidate. These probabilities were used to identify the best optical counterpart as well as to confirm an X-ray candidate as a cluster. The impact of this confirmation process on catalog purity and completeness was estimated using optical to X-ray scaling relations as well as simulations. The resulting catalog was furthermore matched with public group and cluster catalogs. Optical estimators of the cluster dynamical state were constructed based on density maps of the red-sequence galaxies at the cluster redshift.Results. By providing redshift estimates for all 542 candidates, we construct an optically confirmed sample of 477 clusters and groups with a residual contamination of 6%. Of these, 470 (98.5%) are confirmed using MCMF, and 7 systems are added through cross-matching with spectroscopic group catalogs. Using observable-to-observable scaling and the applied confirmation threshold, we predict that 8 ± 2 real systems have been excluded with the MCMF cut required to build this low-contamination sample. This number agrees well with the 7 systems found through cross-matching that were not confirmed with MCMF. The predicted redshift and mass distribution of this catalog agree well with simulations. Thus, we expect that these 477 systems include >99% of all true clusters in the candidate list. Using an MCMF-independent method, we confirm that the catalog contamination of the confirmed subsample is 6 ± 3%. Application of the same method to the full candidate list yields 17 ± 3%, consistent with estimates coming from the fraction of confirmed systems of ~17% and with expectations from simulations of ~20%. We also present a sample of merging cluster candidates based on the derived estimators of the cluster dynamical state.Key words: catalogs / galaxies: clusters: general / galaxies: distances and redshifts / galaxies: clusters: intracluster medium / X-rays: galaxies: clusters★ The catalog is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A4
We provide the largest and most homogeneous sample of α-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs; 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of old (t ≥ 10 Gyr), low-mass stellar tracers (208 RRLs: 169 fundamental, 38 first overtone, and 1 mixed mode) covering 3 dex in iron abundance (-3.00 ≤ [Fe/H] ≤ 0.24). We found that field RRLs are ~0.3 dex more α poor than typical halo tracers in the metal-rich regime ([Fe/H] ≥ -1.2), while in the metal-poor regime ([Fe/H] ≤ -2.2) they seem to be on average ~0.1 dex more α enhanced. This is the first time that the depletion in α elements for solar iron abundances is detected on the basis of a large, homogeneous, and coeval sample of old stellar tracers. Interestingly, we also detected a close similarity in the [α/Fe] trend between α-poor, metal-rich RRLs and red giants (RGs) in the Sagittarius dwarf galaxy as well as between α-enhanced, metal-poor RRLs and RGs in ultrafaint dwarf galaxies. These results are supported by similar elemental abundances for 46 field horizontal branch stars. These stars share with RRLs the same evolutionary phase and the same progenitors. This evidence further supports the key role that old stellar tracers play in constraining the early chemical enrichment of the halo and, in particular, in investigating the impact that dwarf galaxies have had in the mass assembly of the Galaxy. * Based on observations obtained with the du Pont telescope at Las Campanas Observatory, operated by Carnegie Institution for Science. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based partly on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. Some of the observations reported in this paper were obtained with the Southern African Large Telescope (SALT). Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere.
Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky.Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift.Methods. To identifyy the counterparts, we combined the results from two independent methods (NWAY and ASTROMATCH), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts.Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available.Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.Key words: methods: data analysis / X-rays: general / catalogs / surveys / galaxies: active / galaxies: distances and redshifts★ The data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A3
New neutral heavy gauge bosons (Z') are predicted within many extensions of the Standard Model. While in case they couple to quarks the LHC bounds are very stringent, leptophilic Z' bosons (even with sizable couplings) can be much lighter and therefore lead to interesting quantum effects in precision observables (like (g − 2)μ) and generate flavour violating decays of charged leptons. In particular, ℓ →ℓ 'v v ¯ decays, anomalous magnetic moments of charged leptons, ℓ → ℓ'γ and ℓ → 3ℓ' decays place stringent limits on leptophilic Z' bosons. Furthermore, in case of mixing Z' with the SM Z, Z pole observables are affected. In light of these many observables we perform a global fit to leptophilic Z' models with the main goal of finding the bounds for the Z' couplings to leptons. To this end we consider a number of scenarios for these couplings. While in generic scenarios correlations are weak, this changes once additional constraints on the couplings are imposed. In particular, if one considers an Lμ− Lτ symmetry broken only by left-handed rotations, or considers the case of τ − μ couplings only. In the latter setup, on can explain the (g − 2)μ anomaly and the hint for lepton flavour universality violation in τ →μv v ¯/τ →ev v ¯ without violating bounds from electroweak precision observables.
We present a joint likelihood analysis of the real-space power spectrum and bispectrum measured from a variety of halo and galaxy mock catalogs. A novel aspect of this work is the inclusion of nonlinear triangle configurations for the bispectrum, made possible by a complete next-to-leading order ("one-loop") description of galaxy bias, as is already common practice for the power spectrum. Based on the goodness of fit and the unbiasedness of the parameter posteriors, we accomplish a stringent validation of this model compared to the leading order ("tree-level") bispectrum. Using measurement uncertainties that correspond to an effective survey volume of 6 (Gpc /h )3 , we determine that the one-loop corrections roughly double the applicable range of scales, from ∼0.17 h /Mpc (tree level) to ∼0.3 h /Mpc . This converts into a 1.5-2x improvement on constraints of the linear bias parameter at fixed cosmology, and a 1.5-2.4x shrinkage of uncertainties on the amplitude of fluctuations As, which clearly demonstrates the benefit of extracting information from nonlinear scales despite having to marginalize over a larger number of bias parameters. Besides, our precise measurements of galaxy bias parameters up to fourth order allow for thorough comparisons to coevolution relations, showing excellent agreement for all contributions generated by the nonlocal action of gravity. Using these relations in the likelihood analysis does not compromise the model validity and is crucial for obtaining the quoted improvements on As. We also analyzed the impact of higher-derivative and scale-dependent stochastic terms, finding that for a subset of our tracers the former can boost the performance of the tree-level model with constraints on As that are only slightly degraded compared to the one-loop model.
The Method of Moments is a powerful framework to disentangle the relative contributions of amplitudes of a specific process to its various phase space regions. We apply this method to carry out a fully differential analysis of the Higgs decay channel h → 4ℓ and constrain gauge-Higgs coupling modifications parametrised by dimension-six effective operators. We find that this analysis approach provides very good constraints and minimises degeneracies in the parameter space of the effective theory. By combining the decay h → 4ℓ with Higgs-associated production processes, Wh and Zh, we obtain the strongest reported bounds on anomalous gauge-Higgs couplings.
We present simulations of the multiphase interstellar medium (ISM) at solar neighbourhood conditions including thermal and non-thermal ISM processes, star cluster formation, and feedback from massive stars: stellar winds, hydrogen ionizing radiation computed with the novel TREERAY radiative transfer method, supernovae (SN), and the injection of cosmic rays (CR). N-body dynamics is computed with a 4th-order Hermite integrator. We systematically investigate the impact of stellar feedback on the self-gravitating ISM with magnetic fields, CR advection and diffusion, and non-equilibrium chemical evolution. SN-only feedback results in strongly clustered star formation with very high star cluster masses, a bi-modal distribution of the ambient SN densities, and low volume-filling factors (VFF) of warm gas, typically inconsistent with local conditions. Early radiative feedback prevents an initial starburst, reduces star cluster masses and outflow rates. Furthermore, star formation rate surface densities of $\Sigma _{\dot{M}_\star } = 1.4-5.9 \times 10^{-3}$$\mathrm{M}_\odot \, \mathrm{yr}^{-1}\, \mathrm{kpc}^{-2}$, VFFwarm = 60-80 per cent as well as thermal, kinetic, magnetic, and cosmic ray energy densities of the model including all feedback mechanisms agree well with observational constraints. On the short, 100 Myr, time-scales investigated here, CRs only have a moderate impact on star formation and the multiphase gas structure and result in cooler outflows, if present. Our models indicate that at low gas surface densities SN-only feedback only captures some characteristics of the star-forming ISM and outflows/inflows relevant for regulating star formation. Instead, star formation is regulated on star cluster scales by radiation and winds from massive stars in clusters, whose peak masses agree with solar neighbourhood estimates.
Despite the success of the Standard Model of particle physics, a number of hints suggest the existence of new physics beyond the scope of phenomena that can be explained in the theoretical
framework of the Standard Model. One class of theories that could be able to explain some of the open questions of the Standard Model is Supersymmetry. It introduces supersymmetric partners to each of the Standard Model particles, and could, for example, provide a candidate for Dark Matter. This thesis presents a search for electroweak production of supersymmetric particles in events with a lepton, missing transverse momentum and a Higgs boson decaying into two b-quarks. The search analyses 139 fb−1 of proton–proton collision data at a centre-of-mass energy of √s = 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider. A likelihood-based simultaneous fit in all search regions is introduced in order to achieve sensitivity to a large variety of kinematic regimes.
We develop a formalism for computing inclusive production cross sections of heavy quarkonia based on the nonrelativistic QCD and the potential nonrelativistic QCD effective field theories. Our formalism applies to strongly coupled quarkonia, which include excited charmonium and bottomonium states. Analogously to heavy quarkonium decay processes, we express nonrelativistic QCD long-distance matrix elements in terms of quarkonium wavefunctions at the origin and universal gluonic correlators. Our expressions for the long-distance matrix elements are valid up to corrections of order $ 1/{N}_c^2 $. These expressions enhance the predictive power of the nonrelativistic effective field theory approach to inclusive production processes by reducing the number of nonperturbative unknowns, and make possible first-principle determinations of long-distance matrix elements once the gluonic correlators are known. Based on this formalism, we compute the production cross sections of P-wave charmonia and bottomonia at the LHC, and find good agreement with measurements.
Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $^{11}$C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $^{11}$C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a $^{11}$C tagging efficiency of $\sim 90$ % and $\sim $ 63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $^{11}$C produced in high-multiplicity during major spallation events. Such $^{11}$C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $\sim 90\%$ but with a higher fraction of the exposure surviving, in the range of $\sim $ 66–68 %.
Radiation protection is one of the critical aspects of future manned missions to the Moon, Mars, and other deep-space destinations. The precise characterization of the space radiation environment and its interaction with the spacecraft shielding is a prerequisite for protecting astronauts from the adverse health effects of radiation exposure. In this paper, we present the RadMap Telescope, a technology-demonstration experiment whose main objective is to validate new radiation-sensing concepts for applications in manned and unmanned spacecraft. It comprises a mix of newly developed and flight-proven sensors that we will use to characterize the radiation environment inside the International Space Station (ISS).
On the way of a microscopic derivation of covariant density functionals, the first complete solution of the relativistic Brueckner-Hartree-Fock (RBHF) equations is presented for symmetric nuclear matter. In most of the earlier investigations, the G-matrix is calculated only in the space of positive energy solutions. On the other side, for the solution of the relativistic Hartree-Fock (RHF) equations, also the elements of this matrix connecting positive and negative energy solutions are required. So far, in the literature, these matrix elements are derived in various approximations. We discuss solutions of the Thompson equation for the full Dirac space and compare the resulting equation of state with those of earlier attempts in this direction.
We consider matter density effects in theories with a false ground state. Large and dense systems, such as stars, can destabilize a metastable minimum and allow for the formation of bubbles of the true minimum. We derive the conditions under which these bubbles form, as well as the conditions under which they either remain confined to the dense region or escape to infinity. The latter case leads to a phase transition in the universe at star formation. We explore the phenomenological consequences of such seeded phase transitions.
Stars in the mass range from 8 M⊙ to 10 M⊙ are expected to produce one of two types of supernovae (SNe), either electron-capture supernovae (ECSNe) or core-collapse supernovae (CCSNe), depending on their previous evolution. Either of the associated progenitors retain extended and massive hydrogen-rich envelopes and the observables of these SNe are, therefore, expected to be similar. In this study, we explore the differences in these two types of SNe. Specifically, we investigate three different progenitor models: a solar-metallicity ECSN progenitor with an initial mass of 8.8 M⊙, a zero-metallicity progenitor with 9.6 M⊙, and a solar-metallicity progenitor with 9 M⊙, carrying out radiative transfer simulations for these progenitors. We present the resulting light curves for these models. The models exhibit very low photospheric velocity variations of about 2000 km s-1; therefore, this may serve as a convenient indicator of low-mass SNe. The ECSN has very unique light curves in broad-bands, especially the U band, and does not resemble any currently observed SN. This ECSN progenitor being part of a binary will lose its envelope for which reason the light curve becomes short and undetectable. The SN from the 9.6 M⊙ progenitor exhibits also quite an unusual light curve, explained by the absence of metals in the initial composition. The artificially iron-polluted 9.6 M⊙ model demonstrates light curves closer to normal SNe IIP. The SN from the 9 M⊙ progenitor remains the best candidate for so-called low-luminosity SNe IIP like SN 1999br and SN 2005cs.
We present the first application of the extended Fast Action Minimization method (eFAM) to a real data set, the SDSS-DR12 Combined Sample, to reconstruct galaxies orbits back-in-time, their two-point correlation function (2PCF) in real-space, and enhance the baryon acoustic oscillation (BAO) peak. For this purpose, we introduce a new implementation of eFAM that accounts for selection effects, survey footprint, and galaxy bias. We use the reconstructed BAO peak to measure the angular diameter distance, $D_\mathrm{A}(z)r^\mathrm{fid}_\mathrm{s}/r_\mathrm{s}$ , and the Hubble parameter, $H(z)r_\mathrm{s}/r^\mathrm{fid}_\mathrm{s}$ , normalized to the sound horizon scale for a fiducial cosmology $r^\mathrm{fid}_\mathrm{s}$ , at the mean redshift of the sample z = 0.38, obtaining $D_\mathrm{A}(z=0.38)r^\mathrm{fid}_\mathrm{s}/r_\mathrm{s}=1090\pm 29$ (Mpc)-1, and $H(z=0.38)r_\mathrm{s}/r^\mathrm{fid}_\mathrm{s}=83\pm 3$ (km s-1 Mpc-1), in agreement with previous measurements on the same data set. The validation tests, performed using 400 publicly available SDSS-DR12 mock catalogues, reveal that eFAM performs well in reconstructing the 2PCF down to separations of ∼25h-1Mpc, i.e. well into the non-linear regime. Besides, eFAM successfully removes the anisotropies due to redshift-space distortion (RSD) at all redshifts including that of the survey, allowing us to decrease the number of free parameters in the model and fit the full-shape of the back-in-time reconstructed 2PCF well beyond the BAO peak. Recovering the real-space 2PCF, eFAM improves the precision on the estimates of the fitting parameters. When compared with the no-reconstruction case, eFAM reduces the uncertainty of the Alcock-Paczynski distortion parameters α⊥ and α∥ of about 40 per cent and that on the non-linear damping scale Σ∥ of about 70 per cent. These results show that eFAM can be successfully applied to existing redshift galaxy catalogues and should be considered as a reconstruction tool for next-generation surveys alternative to popular methods based on the Zel'dovich approximation.
We present cosmological zoom-in hydrodynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts the two-size approximation to estimate the grain-size distribution, with the MUPPI star formation and feedback subresolution model. Our dust evolution model follows carbon and silicate dust separately. To distinguish differences induced by the chaotic behaviour of simulations from those genuinely due to different simulation set-up, we run each model six times, after introducing tiny perturbations in the initial conditions. With this method, we discuss the role of various dust-related physical processes and the effect of a few possible approximations adopted in the literature. Metal depletion and dust cooling affect the evolution of the system, causing substantial variations in its stellar, gas, and dust content. We discuss possible effects on the Spectral Energy Distribution of the significant variations of the size distribution and chemical composition of grains, as predicted by our simulations during the evolution of the galaxy. We compare dust surface density, dust-to-gas ratio, and small-to-large grain mass ratio as a function of galaxy radius and gas metallicity predicted by our fiducial run with recent observational estimates for three disc galaxies of different masses. The general agreement is good, in particular taking into account that we have not adjusted our model for this purpose.
We showed how to use trained neural networks to perform Bayesian reasoning in order to solve tasks outside their initial scope. Deep generative models provide prior knowledge, and classification/regression networks impose constraints. The tasks at hand were formulated as Bayesian inference problems, which we approximately solved through variational or sampling techniques. The approach built on top of already trained networks, and the addressable questions grew super-exponentially with the number of available networks. In its simplest form, the approach yielded conditional generative models. However, multiple simultaneous constraints constitute elaborate questions. We compared the approach to specifically trained generators, showed how to solve riddles, and demonstrated its compatibility with state-of-the-art architectures.
We present here a self-consistent cosmological zoom-in simulation of a triple supermassive black hole (SMBH) system forming in a complex multiple galaxy merger. The simulation is run with an updated version of our code KETJU, which is able to follow the motion of SMBHs down to separations of tens of Schwarzschild radii while simultaneously modeling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation, and stellar and AGN feedback. Our simulation produces initially an SMBH binary system for which the hardening process is interrupted by the late arrival of a third SMBH. The KETJU code is able to accurately model the complex behavior occurring in such a triple SMBH system, including the ejection of one SMBH to a kiloparsec-scale orbit in the galaxy due to strong three-body interactions as well as Lidov-Kozai oscillations suppressed by relativistic precession when the SMBHs are in a hierarchical configuration. One pair of SMBHs merges ∼3 Gyr after the initial galaxy merger, while the remaining binary is at a parsec-scale separation when the simulation ends at redshift z = 0. We also show that KETJU can capture the effects of the SMBH binaries and triplets on the surrounding stellar population, which can affect the binary merger timescales as the stellar density in the system evolves. Our results demonstrate the importance of dynamically resolving the complex behavior of multiple SMBHs in galactic mergers, as such systems cannot be readily modeled using simple orbit-averaged semianalytic models.
Parametric and non-parametric classifiers often have to deal with real-world data, where corruptions like noise, occlusions, and blur are unavoidable - posing significant challenges. We present a probabilistic approach to classify strongly corrupted data and quantify uncertainty, despite the model only having been trained with uncorrupted data. A semi-supervised autoencoder trained on uncorrupted data is the underlying architecture. We use the decoding part as a generative model for realistic data and extend it by convolutions, masking, and additive Gaussian noise to describe imperfections. This constitutes a statistical inference task in terms of the optimal latent space activations of the underlying uncorrupted datum. We solve this problem approximately with Metric Gaussian Variational Inference (MGVI). The supervision of the autoencoder's latent space allows us to classify corrupted data directly under uncertainty with the statistically inferred latent space activations. Furthermore, we demonstrate that the model uncertainty strongly depends on whether the classification is correct or wrong, setting a basis for a statistical "lie detector" of the classification. Independent of that, we show that the generative model can optimally restore the uncorrupted datum by decoding the inferred latent space activations.
The frequency of Earth-sized planets in habitable zones appears to be higher around M-dwarfs, making these systems exciting laboratories to investigate planet formation. Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA 1 (~0.1-0.2 M⊙) is one of the very few known disks that host a large cavity (20 au radius in size) around a very low-mass star. We present new ALMA observations at Band 7 (0.9 mm) and Band 4 (2.1 mm) of CIDA 1 with a resolution of ~0.05″ × 0.034″. These new ALMA observations reveal a very bright and unresolved inner disk, a shallow spectral index of the dust emission (~2), and a complex morphology of a ring located at 20 au. We also present X-shooter (VLT) observations that confirm the high accretion rate of CIDA 1 of Ṁacc = 1.4 × 10−8 M⊙ yr−1. This high value of Ṁacc, the observed inner disk, and the large cavity of 20 au exclude models of photo-evaporation to explain the observed cavity. When comparing these observations with models that combine planet-disk interaction, dust evolution, and radiative transfer, we exclude planets more massive than 0.5 MJup as the potential origin of the large cavity because with these it is difficult to maintain a long-lived and bright inner disk. Even in this planet mass regime, an additional physical process may be needed to stop the particles from migrating inwards and to maintain a bright inner disk on timescales of millions of years. Such mechanisms include a trap formed by a very close-in extra planet or the inner edge of a dead zone. The low spectral index of the disk around CIDA 1 is difficult to explain and challenges our current dust evolution models, in particular processes like fragmentation, growth, and diffusion of particles inside pressure bumps.
We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark-gluon plasma using the highly efficient Monte Carlo wave-function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.
We report the serendipitous detection of an H2-bearing damped Lyα absorber at z = 0.576 in the spectrum of the QSO J0111-0316 in the Cosmic Ultraviolet Baryon Survey. Spectroscopic observations from Hubble Space Telescope-COS in the far-ultraviolet reveal a damped absorber with log[N(H I)/cm-2] = 20.1 ± 0.2 and log[N(H2)/cm-2] $={18.97}_{-0.06}^{+0.05}$ . The diffuse molecular gas is found in two velocity components separated by Δ ν ≍ 60 km s-1, with >99.9% of the total H2 column density concentrated in one component. At a metallicity of ≍50% of solar, there is evidence for Fe enhancement and dust depletion, with a dust-to-gas ratio κO ≍ 0.4. A galaxy redshift survey conducted with IMACS and LDSS-3C on Magellan reveals an overdensity of nine galaxies at projected distance d ≤ 600 proper kpc (pkpc) and line-of-sight velocity offset Δ νg ≤ 300 km s-1 from the absorber. The closest is a massive, early-type galaxy at d = 41 pkpc that contains ≍70% of the total stellar mass identified at d ≤ 310 pkpc of the H2 absorber. The close proximity of the H2-bearing gas to the quiescent galaxy and the Fe-enhanced chemical abundance pattern of the absorber suggest a physical connection, in contrast to a picture in which DLAs are primarily associated with gas-rich dwarfs. This case study illustrates that deep galaxy redshift surveys are needed to gain insight into the diverse environments that host dense and potentially star-forming gas. * Based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory and the NASA/ESA Hubble Space Telescope operated by the Space Telescope Science Institute and the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
We use field-level forward models of galaxy clustering and the EFT likelihood formalism to study, for the first time for self-consistently simulated galaxies, the relations between the linear b_1 and second-order bias parameters b 2 and b K 2 . The forward models utilize all of the information available in the galaxy distribution up to a given order in perturbation theory, which allows us to infer these bias parameters with high signal-to-noise, even from relatively small volumes (L box = 205 Mpc/h). We consider galaxies from the simulations, and our main result is that the b 2(b 1) and b K 2 (b 1) relations obtained from gravity-only simulations for total mass selected objects are broadly preserved for simulated galaxies selected by stellar mass, star formation rate, color and black hole accretion rate. We also find good agreement between the bias relations of the simulated galaxies and a number of recent estimates for observed galaxy samples. The consistency under different galaxy selection criteria suggests that theoretical priors on these bias relations may be used to improve cosmological constraints based on observed galaxy samples. We do identify some small differences between the bias relations in the hydrodynamical and gravity-only simulations, which we show can be linked to the environmental dependence of the relation between galaxy properties and mass. We also show that the EFT likelihood recovers the value of σ8 to percent-level from various galaxy samples (including splits by color and star formation rate) and after marginalizing over 8 bias parameters. This demonstration using simulated galaxies adds to previous works based on halos as tracers, and strengthens further the potential of forward models to infer cosmology from galaxy data.
We study the approach to scaling in axion string networks in the radiation era, through measuring the root-mean-square velocity v as well as the scaled mean string separation x . We find good evidence for a fixed point in the phase-space analysis in the variables (x ,v ), providing a strong indication that standard scaling is taking place. We show that the approach to scaling can be well described by a two parameter velocity-one-scale (VOS) model, and show that the values of the parameters are insensitive to the initial state of the network. The string length has also been commonly expressed in terms of a dimensionless string length density ζ , proportional to the number of Hubble lengths of string per Hubble volume. In simulations with initial conditions far from the fixed point ζ is still evolving after half a light-crossing time, which has been interpreted in the literature as a long-term logarithmic growth. We show that all our simulations, even those starting far from the fixed point, are accounted for by a VOS model with an asymptote of ζ*=1.20 ±0.09 (calculated from the string length in the cosmic rest frame) and v*=0.609 ±0.014 .
New physics not far above the TeV scale should leave a pattern of virtual effects in observables at lower energies. What do these effects tell us about the flavor structure of a UV theory? Within the framework of Standard Model Effective Field Theory (SMEFT), we resolve the flavor structure of the Wilson coefficients in a combined analysis of top-quark and B-physics observables. Our fit to LHC and b-factory measurements shows that combining top and bottom observables is crucial to pin down possible sources of flavor symmetry breaking from UV physics. Our analysis includes the full analytic expansion of SMEFT coefficients in Minimal Flavor Violation and a detailed study of SMEFT effects in b→s flavor transitions.
High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108-9 M⊙ dubbed 'giant clumps'. However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107-8 M⊙ that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M⊙. Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.
We use a modified version of the peak patch excursion set formalism to compute the mass and size distribution of QCD axion miniclusters from a fully non-Gaussian initial density field obtained from numerical simulations of axion string decay. We find strong agreement with N -body simulations at significantly lower computational cost. We employ a spherical collapse model, and provide fitting functions for the modified barrier in the radiation era. The halo mass function at z =629 has a power-law distribution M-0.6 for masses within the range 10-15≲M ≲10-10 M⊙ , with all masses scaling as (ma/50 μ eV )-0.5 . We construct merger trees to estimate the collapse redshift and concentration mass relation, C (M ), which is well described using analytical results from the initial power spectrum and linear growth. Using the calibrated analytic results to extrapolate to z =0 , our method predicts a mean concentration C ∼O (few )×104. The low computational cost of our method makes future investigation of the statistics of rare, dense miniclusters easy to achieve.
We present a novel hierarchical formulation of the fourth-order forward symplectic integrator and its numerical implementation in the GPU-accelerated direct-summation N-body code frost. The new integrator is especially suitable for simulations with a large dynamical range due to its hierarchical nature. The strictly positive integrator sub-steps in a fourth-order symplectic integrator are made possible by computing an additional gradient term in addition to the Newtonian accelerations. All force calculations and kick operations are synchronous so the integration algorithm is manifestly momentum-conserving. We also employ a time-step symmetrization procedure to approximately restore the time-reversibility with adaptive individual time-steps. We demonstrate in a series of binary, few-body and million-body simulations that frost conserves energy to a level of |ΔE/E| ∼ 10-10 while errors in linear and angular momentum are practically negligible. For typical star cluster simulations, we find that frost scales well up to $N_\mathrm{GPU}^\mathrm{max}\sim 4\times N/10^5$ GPUs, making direct-summation N-body simulations beyond N = 106 particles possible on systems with several hundred and more GPUs. Due to the nature of hierarchical integration, the inclusion of a Kepler solver or a regularized integrator with post-Newtonian corrections for close encounters and binaries in the code is straightforward.
An analytical chemical evolution model is constructed to investigate the radial distribution of gas-phase and stellar metallicity for star-forming galaxies. By means of the model, the gas-phase and stellar metallicity can be obtained from the stellar-to-gas mass ratio. Both the gas inflow and outflow processes play an important role in building the final gas-phase metallicity, and there exists degeneracy effect between the gas inflow and outflow rates for star-forming galaxies. On the other hand, stellar metallicity is more sensitive to the gas outflow rate than to the gas inflow rate, and this helps to break the parameter degeneracy for star-forming galaxies. We apply this analysis method to the nearby disc galaxy M 101 and adopting the classical χ2 methodology to explore the influence of model parameters on the resulted metallicity. It can be found that the combination of gas-phase and stellar metallicity is indeed more effective for constraining the gas inflow and outflow rates. Our results also show that the model with relatively strong gas outflows but weak gas inflow describes the evolution of M 101 reasonably well.
Context. The Carina Nebula harbors a large population of high-mass stars, including at least 75 O-type and Wolf-Rayet (WR) stars, but the current census is not complete since further high-mass stars may be hidden in or behind the dense dark clouds that pervade the association.
Aims: With the aim of identifying optically obscured O- and early B-type stars in the Carina Nebula, we performed the first infrared spectroscopic study of stars in the optically obscured stellar cluster Tr 16-SE, located behind a dark dust lane south of η Car.
Methods: We used the integral-field spectrograph KMOS at the ESO VLT to obtain H- and K-band spectra with a resolution of R ≈ 4000 (Δλ ≈ 5 Å) for 45 out of the 47 possible OB candidate stars in Tr 16-SE, and we derived spectral types for these stars.
Results: We find 15 stars in Tr 16-SE with spectral types between O5 and B2 (i.e., high-mass stars with M ≥ 8 M⊙), only two of which were known before. An additional nine stars are classified as (Ae)Be stars (i.e., intermediate-mass pre-main-sequence stars), and most of the remaining targets show clear signatures of being late-type stars and are thus most likely foreground stars or background giants unrelated to the Carina Nebula. Our estimates of the stellar luminosities suggest that nine of the 15 O- and early B-type stars are members of Tr 16-SE, whereas the other six seem to be background objects.
Conclusions: Our study increases the number of spectroscopically identified high-mass stars (M ≥ 8 M⊙) in Tr 16-SE from two to nine and shows that Tr 16-SE is one of the larger clusters in the Carina Nebula. Our identification of three new stars with spectral types between O5 and O7 and four new stars with spectral types O9 to B1 significantly increases the number of spectroscopically identified O-type stars in the Carina Nebula.
Reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/648/A34
Based on observations collected at the European Southern Observatory under ESO program 097.C-0102.
NonGaussian cosmic shear statistics based on weak-lensing aperture mass (Map) maps can outperform the classical shear two-point correlation function (γ-2PCF) in terms of cosmological constraining power. However, reaching the full potential of these new estimators requires accurate modeling of the physics of baryons as the extra nonGaussian information mostly resides at small scales. We present one such modeling based on the Magneticum hydrodynamical simulation for the KiDS-450 and DES-Y1 surveys and a Euclid-like survey. We compute the bias due to baryons on the lensing PDF and the distribution of peaks and voids in Map maps and propagate it to the cosmological forecasts on the structure growth parameter S8, the matter density parameter Ωm, and the dark energy equation of state w0 using the SLICS and cosmo-SLICS sets of dark-matter-only simulations. We report a negative bias of a few percent on S8 and Ωm and also measure a positive bias of the same level on w0 when including a tomographic decomposition. These biases reach ∼5% when combining Map statistics with the γ-2PCF as these estimators show similar dependency on the AGN feedback. We verify that these biases constitute a less than 1σ shift on the probed cosmological parameters for current cosmic shear surveys. However, baryons need to be accounted for at the percentage level for future Stage IV surveys and we propose to include the uncertainty on the AGN feedback amplitude by marginalizing over this parameter using multiple simulations such as those presented in this paper. Finally, we explore the possibility of mitigating the impact of baryons by filtering the Map map but find that this process would require suppressing the small-scale information to a point where the constraints would no longer be competitive.
Supernova spectral time series contain a wealth of information about the progenitor and explosion process of these energetic events. The modeling of these data requires the exploration of very high dimensional posterior probabilities with expensive radiative transfer codes. Even modest parameterizations of supernovae contain more than 10 parameters and a detailed exploration demands at least several million function evaluations. Physically realistic models require at least tens of CPU minutes per evaluation putting a detailed reconstruction of the explosion out of reach of traditional methodology. The advent of widely available libraries for the training of neural networks combined with their ability to approximate almost arbitrary functions with high precision allows for a new approach to this problem. Instead of evaluating the radiative transfer model itself, one can build a neural network proxy trained on the simulations but evaluating orders of magnitude faster. Such a framework is called an emulator or surrogate model. In this work, we present an emulator for the TARDIS supernova radiative transfer code applied to Type Ia supernova spectra. We show that we can train an emulator for this problem given a modest training set of 100,000 spectra (easily calculable on modern supercomputers). The results show an accuracy on the percent level (that are dominated by the Monte Carlo nature of TARDIS and not the emulator) with a speedup of several orders of magnitude. This method has a much broader set of applications and is not limited to the presented problem.
Many neutron star properties, such as the proton fraction, reflect the symmetry energy contributions to the equation of state that dominate when neutron and proton densities differ strongly. To constrain these contributions at suprasaturation densities, we measure the spectra of charged pions produced by colliding rare isotope tin (Sn) beams with isotopically enriched Sn targets. Using ratios of the charged pion spectra measured at high transverse momenta, we deduce the slope of the symmetry energy to be 42 <L <117 MeV . This value is slightly lower but consistent with the L values deduced from a recent measurement of the neutron skin thickness of 208Pb.
We analyse from an observational perspective the formation history and kinematics of a Milky Way-like galaxy from a high-resolution zoom-in cosmological simulation that we compare to those of our Galaxy as seen by Gaia DR2 to better understand the origin and evolution of the Galactic thin and thick discs. The cosmological simulation was carried out with the GADGET-3 TreePM+SPH code using the MUlti-Phase Particle Integrator (MUPPI) model. We disentangle the complex overlapping of stellar generations that rises from the top-down and inside-out formation of the galactic disc. We investigate cosmological signatures in the phase-space of mono-age populations and highlight features stemming from past and recent dynamical perturbations. In the simulation, we identify a satellite with a stellar mass of $1.2 \times 10^9~\rm {M}_\odot$ , i.e. stellar mass ratio Δ ∼ 5.5 per cent at the time, accreted at z ∼ 1.6, which resembles the major merger Gaia-Sausage-Enceladus that produced the Galactic thick disc, i.e. Δ ∼ 6 per cent. We found at z ∼ 0.5-0.4 two merging satellites with a stellar mass of $8.8 \times 10^8~\rm {M}_\odot$ and $5.1 \times 10^8~\rm {M}_\odot$ that are associated to a strong starburst in the star formation history, which appears fairly similar to that recently found in the solar neighbourhood. Our findings highlight that detailed studies of coeval stellar populations kinematics, which are made available by current and future Gaia data releases and in synergy with simulations, are fundamental to unravel the formation and evolution of the Milky Way discs.
We construct empirical models of star-forming galaxy evolution assuming that individual galaxies evolve along well-known scaling relations between stellar mass, gas mass, and star formation rate following a simple description of chemical evolution. We test these models by a comparison with observations and detailed Magneticum high-resolution hydrodynamic cosmological simulations. Galaxy star formation rates, stellar masses, gas masses, ages, interstellar medium, and stellar metallicities are compared. It is found that these simple look-back models capture many of the crucial aspects of galaxy evolution reasonably well. Their key assumption of a redshift-dependent power-law relationship between galaxy interstellar medium gas mass and stellar mass is in agreement with the outcome of the complex Magneticum simulations. Star formation rates decline toward lower redshift not because galaxies are running out of gas, but because the fraction of the cold interstellar medium gas, which is capable of producing stars, becomes significantly smaller. Gas accretion rates in both model approaches are of the same order of magnitude. Metallicity in the Magneticum simulations increases with the ratio of stellar mass to gas mass as predicted by the look-back models. The mass-metallicity relationships agree, and the star formation rate dependence of these relationships is also reproduced. We conclude that these simple models provide a powerful tool for constraining and interpreting more complex models based on cosmological simulations and for population synthesis studies analyzing the integrated spectra of stellar populations.
The Standard Model of Particle Physics predicts the double-β decay of certain nuclei with the emission of two active neutrinos. In this letter, we argue that double-β decay experiments could be used to probe models with light exotic fermions through the search for spectral distortions in the electron spectrum with respect to the Standard Model expectations. We consider two concrete examples: models with light sterile neutrinos, singly produced in the double-β decay, and models with a light Z2-odd fermion, pair produced due to a Z2 symmetry. We estimate the discovery potential of a selection of double-β decay experiments and find that future searches will test for the first time a new part of the parameter space of interest at the MeV-mass scale.
In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
Mid-infrared imaging traces the sub-micron and micron sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks. We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-infrared images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-infrared observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. We derotate and stack the data to find the disk properties. Where available we compare the data to ProDiMo (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We apply the circularised PSF subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. We resolve three of the six disks and calculate position angles, inclinations and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refine the existing ProDiMo HD 100546 model SED fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increase the outer cavity radius to 22.3 AU. We produce flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with L>0.0028L⊙ for a>180 AU in the HD 100546 system. Upper limits of 0.5 mJy-30 mJy are obtained at 8 μm-12 μm for potential companions in the different disks.
Our current knowledge about the Moon’s resource potential is limited to remote-sensing measurements and the analysis of Apollo-era samples. Even though there are persistent indications for substantial deposits of water and other volatiles—especially in the lunar polar regions—high-resolution mapping and in situ measurements are required to assess the technical feasibility and economic viability of exploiting them. The LUVMI-X mission will use a 50-kg rover equipped with complementary instrumentation to prospect illuminated and shadowed areas in the Moon’s polar regions through the use of laser spectroscopy, neutron spectroscopy, and direct sampling in combination with mass spectroscopy. It will also analyze the regolith composition and characterize the surface radiation environment.
Light axionlike particles occur in many theories of beyond-Standard-Model physics, and may make up some or all of the Universe's dark matter. One of the ways they can couple to the Standard Model is through the electromagnetic Fμ νF∼μ ν portal, and there is a broad experimental program, covering many decades in mass range, aiming to search for axion dark matter via this coupling. In this paper, we derive limits on the absorbed power, and coupling sensitivity, for a broad class of such searches. We find that standard techniques, such as resonant cavities and dielectric haloscopes, can achieve O (1 )-optimal axion-mass-averaged signal powers, for given volume and magnetic field. For low-mass (frequency ≪GHz ) axions, experiments using static background magnetic fields generally have suppressed sensitivity; we discuss the physics of this limitation, and propose experimental methods to avoid it, such as microwave up-conversion experiments. We also comment on the detection of other forms of dark matter, including dark photons, as well as the detection of relativistic hidden-sector particles.
We observed the K7 class III star NO Lup in an ALMA survey of the 1-3 Myr Lupus association and detected circumstellar dust and CO gas. Here we show that the J = 3-2 CO emission is both spectrally and spatially resolved, with a broad velocity width ~19 km s-1 for its resolved size ~1 arcsec (~130 au). We model the gas emission as a Keplerian disc, finding consistency, but only with a central mass of ~11M⊙, which is implausible given its spectral type and X-Shooter spectrum. A good fit to the data can also be found by modelling the CO emission as outflowing gas with a radial velocity ~22 km s-1. We interpret NO Lup's CO emission as the first imaged class III circumstellar disc with outflowing gas. We conclude that the CO is continually replenished, but cannot say if this is from the breakup of icy planetesimals or from the last remnants of the protoplanetary disc. We suggest further work to explore the origin of this CO, and its higher than expected velocity in comparison to photoevaporative models.
We present an effective model for the one-dimensional Lyman-α flux power spectrum far above the baryonic Jeans scale. The main new ingredient is constituted by a set of two parameters that encode the impact of small, highly non-linear scales on the one-dimensional power spectrum on large scales, where it is measured by BOSS. We show that, by marginalizing over the model parameters that capture the impact of the intergalactic medium, the flux power spectrum from both simulations and observations can be described with high precision. The model displays a degeneracy between the neutrino masses and the (unknown, in our formalism) normalization of the flux power spectrum. This degeneracy can be lifted by calibrating one of the model parameters with simulation data, and using input from Planck CMB data. We demonstrate that this approach can be used to extract bounds on the sum of neutrino masses with comparably low numerical effort, while allowing for a conservative treatment of uncertainties from the dynamics of the intergalactic medium. An explorative analysis yields an upper bound of 0.16eV at 95% C.L. when applied to BOSS data at 3 ≤ z ≤ 4.2. We also forecast that if the systematic and statistical errors will be reduced by a factor two the upper bound will become 0.1eV at 95% C.L, and 0.056eV when assuming a 1% error.
We establish that unitarity of scattering amplitudes imposes universal entropy bounds. The maximal entropy of a self-sustained quantum field object of radius R is equal to its surface area and at the same time to the inverse running coupling α evaluated at the scale R. The saturation of these entropy bounds is in one-to-one correspondence with the non-perturbative saturation of unitarity by 2 → N particle scattering amplitudes at the point of optimal truncation. These bounds are more stringent than Bekenstein’s bound and in a consistent theory all three get saturated simultaneously. This is true for all known entropy-saturating objects such as solitons, instantons, baryons, oscillons, black holes or simply lumps of classical fields. We refer to these collectively as saturons and show that in renormalizable theories they behave in all other respects like black holes. Finally, it is argued that the confinement in SU(N) gauge theory can be understood as a direct consequence of the entropy bounds and unitarity.
We analyse the gas content evolution of infalling haloes in cluster environments from The Three Hundred project, a collection of 324 numerically modelled galaxy clusters. The haloes in our sample were selected within 5R200 of the main cluster halo at $z$ = 0 and have total halo mass M200 ≥ 1011h-1M⊙. We track their main progenitors and study their gas evolution since their crossing into the infall region, which we define as 1-4R200. Studying the radial trends of our populations using both the full phase-space information and a line-of-sight projection, we confirm the Arthur et al. (2019) result and identify a characteristic radius around 1.7R200 in 3D and at R200 in projection at which infalling haloes lose nearly all of the gas prior their infall. Splitting the trends by subhalo status,we show that subhaloes residing in group-mass and low-mass host haloes in the infall region follow similar radial gas-loss trends as their hosts, whereas subhaloes of cluster-mass host haloes are stripped of their gas much further out. Our results show that infalling objects suffer significant gaseous disruption that correlates with time-since-infall, cluster-centric distance, and host mass, and that the gaseous disruption they experience is a combination of subhalo pre-processing and object gas depletion at a radius that behaves like an accretion shock.
Wavelength selection in reaction-diffusion systems can be understood as a coarsening process that is interrupted by counteracting processes at certain wavelengths. We first show that coarsening in mass-conserving systems is driven by self-amplifying mass transport between neighboring high-density domains. We derive a general coarsening criterion and show that coarsening is generically uninterrupted in two-component systems that conserve mass. The theory is then generalized to study interrupted coarsening and anticoarsening due to weakly broken mass conservation, providing a general path to analyze wavelength selection in pattern formation far from equilibrium.
We combine orbital information from N-body simulations with an analytic model for star formation quenching and SDSS observations to infer the differential effect of the group/cluster environment on star formation in satellite galaxies. We also consider a model for gas stripping, using the same input supplemented with H I fluxes from the ALFALFA survey. The models are motivated by and tested on the Hydrangea cosmological hydrodynamical simulation suite. We recover the characteristic times when satellite galaxies are stripped and quenched. Stripping in massive ($M_{\rm vir}\sim 10^{14.5}\, {\rm M}_\odot$) clusters typically occurs at or just before the first pericentric passage. Lower mass ($\sim 10^{13.5}\, {\rm M}_\odot$) groups strip their satellites on a significantly longer (by $\sim 3\, {\rm Gyr}$) time-scale. Quenching occurs later: Balmer emission lines typically fade $\sim 3.5\, {\rm Gyr}$ ($5.5\, {\rm Gyr}$) after first pericentre in clusters (groups), followed a few hundred Myr later by reddenning in (g - r) colour. These 'delay time-scales' are remarkably constant across the entire satellite stellar mass range probed (~109.5-$10^{11}\, {\rm M}_\odot$), a feature closely tied to our treatment of 'group pre-processing'. The lowest mass groups in our sample ($\sim 10^{12.5}\, {\rm M}_\odot$) strip and quench their satellites extremely inefficiently: typical time-scales may approach the age of the Universe. Our measurements are qualitatively consistent with the 'delayed-then-rapid' quenching scenario advocated for by several other studies, but we find significantly longer delay times. Our combination of a homogeneous analysis and input catalogues yields new insight into the sequence of events leading to quenching across wide intervals in host and satellite mass.
From 22 to 26 June 2020, we hosted ESO's first live e-conference, #H02020, from within ESO headquarters in Garching, Germany. Every day, between 200 and 320 researchers around the globe tuned in to discuss the nature and implications of the discord between precise determinations of the Universe's expansion rate, H0. Originally planned as an in-person meeting, we moved to the virtual domain to maintain strong scientific discourse despite the SARS-CoV-2 (COVID-19) pandemic. Here, we describe our conference setup, participants feedback gathered before and after the meeting, and lessons learned from this unexpected exercise. As e-conferencing will become increasingly common in the future, we provide our perspective on how e-conferences can make scientific exchange more effective and inclusive, in addition to climate friendly.
Cosmological inference from cluster number counts is systematically limited by the accuracy of the mass calibration, i.e. the empirical determination of the mapping between cluster selection observables and halo mass. In this work we demonstrate a method to quantitatively determine the bias and uncertainties in weak-lensing (WL) mass calibration. To this end, we extract a library of projected matter density profiles from hydrodynamical simulations. Accounting for shear bias and noise, photometric redshift uncertainties, mis-centreing, cluster member contamination, cluster morphological diversity, and line-of-sight projections, we produce a library of shear profiles. Fitting a one-parameter model to these profiles, we extract the so-called WL mass M_WL. Relating the WL mass to the halo mass from gravity-only simulations with the same initial conditions as the hydrodynamical simulations allows us to estimate the impact of hydrodynamical effects on cluster number counts experiments. Creating new shear libraries for ∼1000 different realizations of the systematics provides a distribution of the parameters of the WL to halo mass relation, reflecting their systematic uncertainty. This result can be used as a prior for cosmological inference. We also discuss the impact of the inner fitting radius on the accuracy, and determine the outer fitting radius necessary to exclude the signal from neighbouring structures. Our method is currently being applied to different Stage III lensing surveys, and can easily be extended to Stage IV lensing surveys.
To understand the history and formation mechanisms of galaxies, it is crucial to determine their current multidimensional structure. In this work, we focus on the properties that characterise stellar populations, such as metallicity and [α/Fe] enhancement. We devised a new technique to recover the distribution of these parameters using spatially resolved, line-of-sight averaged data. Our chemodynamical method is based on the made-to-measure framework and results in an N-body model for the abundance distribution. Following a test on a mock data set we found that the radial and azimuthal profiles were well-recovered, however, only the overall shape of the vertical profile matches the true profile. We applied our procedure to spatially resolved maps of mean [Z/H] and [α/Fe] for the Andromeda Galaxy, using an earlier barred dynamical model of M 31. We find that the metallicity is enhanced along the bar, with a possible maxima at the ansae. In the edge-on view, the [Z/H] distribution has an X shape due to the boxy/peanut bulge; the average vertical metallicity gradient is equal to −0.133 ± 0.006 dex kpc−1. We identify a metallicity-enhanced ring around the bar, which also has relatively lower [α/Fe]. The highest [α/Fe] is found in the centre, due to the classical bulge. Away from the centre, the α-overabundance in the bar region increases with height, which could be an indication of a thick disc. We argue that the galaxy assembly resulted in a sharp peak of metallicity in the central few hundred parsecs and a more gentle negative gradient in the remaining disc, but no [α/Fe] gradient. The formation of the bar leads to the re-arrangement of the [Z/H] distribution, causing a flat gradient along the bar. Subsequent star formation close to the bar ends may have produced the metallicity enhancements at the ansae and the [Z/H] enhanced lower-α ring.
RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm)3 and an energy threshold of 1 keV will probe the entire Milky Way Galaxy for (failed) core-collapse SNe with > 3 σ detection significance. The high detector modularity makes RES-NOVA ideal also for reconstructing the main parameters (e.g. average neutrino energy, star binding energy) of SNe occurring in our vicinity, without deterioration of the detector performance caused by the high neutrino interaction rate. For the first time, distances <3 kpc can be surveyed, similarly to the ones where all known past galactic SNe happened. We discuss the RES-NOVA potential, accounting for a realistic setup, considering the detector geometry, modularity and background level in the region of interest. We report on the RES-NOVA background model and on the sensitivity to SN neutrinos as a function of the distance travelled by neutrinos.
Context. High-redshift quasars signpost the early accretion history of the Universe. The penetrating nature of X-rays enables a less absorption-biased census of the population of these luminous and persistent sources compared to optical/near-infrared colour selection. The ongoing SRG/eROSITA X-ray all-sky survey offers a unique opportunity to uncover the bright end of the high-z quasar population and probe new regions of colour parameter space.
Aims: We searched for high-z quasars within the X-ray source population detected in the contiguous ~140 deg2 field observed by eROSITA during the performance verification phase. With the purpose of demonstrating the unique survey science capabilities of eROSITA, this field was observed at the depth of the final all-sky survey. The blind X-ray selection of high-redshift sources in a large contiguous, near-uniform survey with a well-understood selection function can be directly translated into constraints on the X-ray luminosity function (XLF), which encodes the luminosity-dependent evolution of accretion through cosmic time.
Methods: We collected the available spectroscopic information in the eFEDS field, including the sample of all currently known optically selected z > 5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample.
Results: We report the X-ray detection of eFEDSU J083644.0+005459, an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 (z = 5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. The detection of SDSS J083643.85+005453.3 allows us to place the first constraints on the XLF at z > 5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at z ~ 6 beyond L*, the knee in the luminosity function. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that SDSS J083643.85+005453.3 could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 indicate that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes.
Conclusions: Our results indicate that the population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect ~90 X-ray luminous AGNs at redshifts 5.7 < z < 6.4 in the full-sky survey (De+RU). While subject to different jet physics, both high-redshift quasars detected by eROSITA so far are radio-loud; a hint at the great potential of combined X-ray and radio surveys for the search of luminous high-redshift quasars.
We give a double copy construction for the symmetries of the self-dual sectors of Yang-Mills (YM) and gravity, in the light-cone formulation. We find an infinite set of double copy constructible symmetries. We focus on two families which correspond to the residual diffeomorphisms on the gravitational side. For the first one, we find novel non-perturbative double copy rules in the bulk. The second family has a more striking structure, as a non-perturbative gravitational symmetry is obtained from a perturbatively defined symmetry on the YM side.At null infinity, we find the YM origin of the subset of extended Bondi-Metzner-Sachs (BMS) symmetries that preserve the self-duality condition. In particular, holomorphic large gauge YM symmetries are double copied to holomorphic supertranslations. We also identify the single copy of superrotations with certain non-gauge YM transformations that to our knowledge have not been previously presented in the literature.
Young dense massive star clusters are promising environments for the formation of intermediate mass black holes (IMBHs) through collisions. We present a set of 80 simulations carried out with NBODY6++GPU of 10 models of compact $\sim 7 \times 10^4 \, \mathrm{M}_{\odot }$ star clusters with half-mass radii Rh ≲ 1 pc, central densities $\rho _\mathrm{core} \gtrsim 10^5 \, \mathrm{M}_\odot \, \mathrm{pc}^{-3}$ , and resolved stellar populations with 10 per cent primordial binaries. Very massive stars (VMSs) up to $\sim 400 \, \mathrm{M}_\odot$ grow rapidly by binary exchange and three-body scattering with stars in hard binaries. Assuming that in VMS-stellar black hole (BH) collisions all stellar material is accreted on to the BH, IMBHs with masses up to $M_\mathrm{BH} \sim 350 \, \mathrm{M}_\odot$ can form on time-scales of ≲15 Myr, as qualitatively predicted from Monte Carlo MOCCA simulations. One model forms an IMBH of 140 $\mathrm{M_{\odot }}$ by three BH mergers with masses of 17:28, 25:45, and 68:70 $\mathrm{M_{\odot }}$ within ∼90 Myr. Despite the stochastic nature of the process, formation efficiencies are higher in more compact clusters. Lower accretion fractions of 0.5 also result in IMBH formation. The process might fail for values as low as 0.1. The IMBHs can merge with stellar mass BHs in intermediate mass ratio inspiral events on a 100 Myr time-scale. With 105 stars, 10 per cent binaries, stellar evolution, all relevant dynamical processes, and 300 Myr simulation time, our large suite of 80 simulations indicate another rapid IMBH formation channel in young and compact massive star clusters.
Planets form in discs of gas and dust around stars, and continue to grow by accretion of disc material while available. Massive planets clear a gap in their protoplanetary disc, but can still accrete gas through a circumplanetary disc. For high enough accretion rates, the planet should be detectable at infrared wavelengths. As the energy of the gas accreted on to the planet is released, the planet surroundings heat up in a feedback process. We aim to test how this planet feedback affects the gas in the coorbital region and the accretion rate itself. We modified the 2D code FARGO-AD to include a prescription for the accretion and feedback luminosity of the planet and use it to model giant planets on 10 au circular and eccentric orbits around a solar mass star. We find that this feedback reduces but does not halt the accretion on to the planet, although this result might depend on the near-coincident radial ranges where both recipes are implemented. Our simulations also show that the planet heating gives the accretion rate a stochastic variability with an amplitude $\Delta \dot{M}_p \sim 0.1 \dot{M}_p$ . A planet on an eccentric orbit (e = 0.1) presents a similar variability amplitude, but concentrated on a well-defined periodicity of half the orbital period and weaker broad-band noise, potentially allowing observations to discriminate between both cases. Finally, we find that the heating of the co-orbital region by the planet feedback alters the gas dynamics, reducing the difference between its orbital velocity and the Keplerian motion at the edge of the gap, which can have important consequences for the formation of dust rings.
In very dense environments, neutrinos can undergo fast flavor conversions on scales as short as a few centimeters provided that the angular distribution of the neutrino lepton number crosses zero. This work presents the first attempt to establish whether the non-negligible abundance of muons and their interactions with neutrinos in the core of supernovae can affect the occurrence of such crossings. For this purpose we employ state-of-the-art one-dimensional core-collapse supernova simulations, considering models that include muon-neutrino interactions as well as models without these reactions. Although a consistent treatment of muons in the equation of state and neutrino transport does not seem to modify significantly the conditions for the occurrence of fast modes, it allows for the existence of an interesting phenomenon, namely fast instabilities in the μ -τ sector. We also show that crossings below the supernova shock are a relatively generic feature of the one-dimensional simulations under investigation, which contrasts with the previous reports in the literature. Our results highlight the importance of multidimensional simulations with muon creation, where our results must be tested in the future.
We analyse the near-infrared colour-magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt-Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy's central molecular zone.
We present the first determination of the hadronic decays of the lightest exotic JP C=1-+ resonance in lattice QCD. Working with SU(3) flavor symmetry, where the up, down and strange-quark masses approximately match the physical strange-quark mass giving mπ∼700 MeV , we compute finite-volume spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels. Analytically continuing the scattering amplitudes into the complex-energy plane, we find a pole singularity corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar-pseudoscalar, vector-pseudoscalar and vector-vector decay channels, but large couplings to at least one kinematically closed axial-vector-pseudoscalar channel. Attempting a simple extrapolation of the couplings to physical light-quark mass suggests a broad π1 resonance decaying dominantly through the b1π mode with much smaller decays into f1π , ρ π , η′π and η π . A large total width is potentially in agreement with the experimental π1(1564 ) candidate state observed in η π , η′π , which we suggest may be heavily suppressed decay channels.
As cosmic structures form, matter density fluctuations collapse gravitationally and baryonic matter is shock-heated and thermalized. We therefore expect a connection between the mean gravitational potential energy density of collapsed halos, ${{\rm{\Omega }}}_{W}^{\mathrm{halo}}$ , and the mean thermal energy density of baryons, Ωth. These quantities can be obtained using two fundamentally different estimates: we compute ${{\rm{\Omega }}}_{W}^{\mathrm{halo}}$ using the theoretical framework of the halo model, which is driven by dark matter statistics, and measure Ωth using the Sunyaev-Zeldovich (SZ) effect, which probes the mean thermal pressure of baryons. First, we derive that, at the present time, about 90% of ${{\rm{\Omega }}}_{W}^{\mathrm{halo}}$ originates from massive halos with M > 1013 M⊙. Then, using our measurements of the SZ background, we find that Ωth accounts for about 80% of the kinetic energy of the baryons available for pressure in halos at z ≲ 0.5. This constrains the amount of nonthermal pressure, e.g., due to bulk and turbulent gas motion sourced by mass accretion, to be about Ωnon-th ≃ 0.4 × 10-8 at z = 0.
Spatial organization of proteins in cells is important for many biological functions. In general, the nonlinear, spatially coupled models for protein-pattern formation are only accessible to numerical simulations, which has limited insight into the general underlying principles. To overcome this limitation, we adopt the setting of two diffusively coupled, well-mixed compartments that represents the elementary feature of any pattern—an interface. For intracellular systems, the total numbers of proteins are conserved on the relevant timescale of pattern formation. Thus the essential dynamics is the redistribution of the globally conserved mass densities between the two compartments. We present a phase-portrait analysis in the phase-space of the redistributed masses that provides insights on the physical mechanisms underlying pattern formation. We demonstrate this approach for several paradigmatic model systems. In particular, we show that the pole-to-pole Min oscillations in Escherichia coli are relaxation oscillations of the MinD polarity orientation. This reveals a close relation between cell polarity oscillatory patterns in cells. Critically, our findings suggest that the design principles of intracellular pattern formation are found in characteristic features in these phase portraits (nullclines and fixed points). These features are not uniquely determined by the topology of the protein-interaction network but depend on parameters (kinetic rates, diffusion constants) and distinct networks can give rise to equivalent phase portrait features.
The diffuse cosmic supernova neutrino background (DSNB) is an observational target of the gadolinium-loaded Super-Kamiokande (SK) detector and the forthcoming JUNO and Hyper-Kamiokande detectors. Current predictions are hampered by our still incomplete understanding of the supernova (SN) explosion mechanism and of the neutron star (NS) equation of state and maximum mass. In our comprehensive study we revisit this problem on grounds of the landscapes of successful and failed SN explosions obtained by Sukhbold et al. and Ertl et al. with parameterized one-dimensional neutrino engines for large sets of single-star and helium-star progenitors, with the latter serving as a proxy for binary evolution effects. Besides considering engines of different strengths, leading to different fractions of failed SNe with black hole (BH) formation, we also vary the NS mass limit and the spectral shape of the neutrino emission and include contributions from poorly understood alternative NS formation channels, such as accretion-induced and merger-induced collapse events. Since the neutrino signals of our large model sets are approximate, we calibrate the associated degrees of freedom by using state-of-the-art simulations of proto-NS cooling. Our predictions are higher than other recent ones because of a large fraction of failed SNe with long delay to BH formation. Our best-guess model predicts a DSNB ${\bar{\nu }}_{{\rm{e}}}$ <!-- --> -flux of ${28.8}_{-10.9}^{+24.6}$ <!-- --> cm-2 s-1 with ${6.0}_{-2.1}^{+5.1}$ <!-- --> cm-2 s-1 in the favorable measurement interval of [10, 30] MeV and ${1.3}_{-0.4}^{+1.1}$ <!-- --> cm-2 s-1 with ${\bar{\nu }}_{{\rm{e}}}$ <!-- --> energies > 17.3 MeV, which is roughly a factor of two below the current SK limit. The uncertainty range is dominated by the still insufficiently constrained cosmic rate of stellar core-collapse events.
We introduce the LYRA project, a new high-resolution galaxy formation model built within the framework of the cosmological hydrodynamical moving mesh code AREPO. The model resolves the multiphase interstellar medium (ISM) down to 10 K. It forms individual stars sampled from the initial mass function (IMF), and tracks their lifetimes and death pathways individually. Single supernova (SN) blast waves with variable energy are followed within the hydrodynamic calculation to interact with the surrounding ISM. In this paper, we present the methods and apply the model to a $10^{10}\, \mathrm{M}_{\odot }$ isolated halo. We demonstrate that the majority of SNe are Sedov resolved at our fiducial gas mass resolution of $4\, \mathrm{M}_{\odot }$ . We show that our SN feedback prescription self-consistently produces a hot phase within the ISM that drives significant outflows, reduces the gas density, and suppresses star formation. Clustered SNe play a major role in enhancing the effectiveness of feedback, because the majority of explosions occur in low-density material. Accounting for variable SN energy allows the feedback to respond directly to stellar evolution. We show that the ISM is sensitive to the spatially distributed energy deposition. It strongly affects the outflow behaviour, reducing the mass loading by a factor of 2-3, thus allowing the galaxy to retain a higher fraction of mass and metals. LYRA makes it possible to use a comprehensive multiphysics ISM model directly in cosmological (zoom) simulations of dwarf and higher mass galaxies.
Context. Pebble accretion is an emerging paradigm for the fast growth of planetary cores. Pebble flux and pebble sizes are the key parameters used in the pebble accretion models.
Aims: We aim to derive the pebble sizes and fluxes from state-of-the-art dust coagulation models and to understand their dependence on disk parameters and the fragmentation threshold velocity, and the impact of those on planetary growth by pebble accretion.
Methods: We used a 1D dust evolution model including dust growth and fragmentation to calculate realistic pebble sizes and mass flux. We used this information to integrate the growth of planetary embryos placed at various locations in the protoplanetary disk.
Results: Pebble flux strongly depends on disk properties including size and turbulence level, as well as the dust aggregates' fragmentation threshold. We find that dust fragmentation may be beneficial to planetary growth in multiple ways. First of all, it prevents the solids from growing to very large sizes, at which point the efficiency of pebble accretion drops. What is more, small pebbles are depleted at a lower rate, providing a long-lasting pebble flux. As the full coagulation models are computationally expensive, we provide a simple method of estimating pebble sizes and flux in any protoplanetary disk model without substructure and with any fragmentation threshold velocity.
In first-order cosmological phase transitions, the asymptotic velocity of expanding bubbles is of crucial relevance for predicting observables like the spectrum of stochastic gravitational waves, or for establishing the viability of mechanisms explaining fundamental properties of the universe such as the observed baryon asymmetry. In these dynamic phase transitions, it is generally accepted that subluminal bubble expansion requires out-of-equilibrium interactions with the plasma which are captured by friction terms in the equations of motion for the scalar field. This has been disputed in works pointing out subluminal velocities in local equilibrium arising either from hydrodynamic effects in deflagrations or from the entropy change across the bubble wall in general situations. We argue that both effects are related and can be understood from the conservation of the entropy of the degrees of freedom in local equilibrium, leading to subluminal speeds for both deflagrations and detonations. The friction effect arises from the background field dependence of the entropy density in the plasma, and can be accounted for by simply imposing local conservation of stress-energy and including field dependent thermal contributions to the effective potential. We illustrate this with explicit calculations of dynamic and static bubbles for a first-order electroweak transition in a Standard Model extension with additional scalar fields.
There is a guaranteed background of stochastic gravitational waves produced in the thermal plasma in the early universe. Its energy density per logarithmic frequency interval scales with the maximum temperature Tmax which the primordial plasma attained at the beginning of the standard hot big bang era. It peaks in the microwave range, at around 80 GHz [106.75/g*s(Tmax)]1/3, where g*s(Tmax) is the effective number of entropy degrees of freedom in the primordial plasma at Tmax. We present a state-of-the-art prediction of this Cosmic Gravitational Microwave Background (CGMB) for general models, and carry out calculations for the case of the Standard Model (SM) as well as for several of its extensions. On the side of minimal extensions we consider the Neutrino Minimal SM (νMSM) and the SM-Axion-Seesaw-Higgs portal inflation model (SMASH), which provide a complete and consistent cosmological history including inflation. As an example of a non-minimal extension of the SM we consider the Minimal Supersymmetric Standard Model (MSSM). Furthermore, we discuss the current upper limits and the prospects to detect the CGMB in laboratory experiments and thus measure the maximum temperature and the effective number of degrees of freedom at the beginning of the hot big bang.
We analyzed archival molecular line data of pre-main-sequence (PMS) stars in the Lupus and Taurus star-forming regions obtained with ALMA surveys with an integration time of a few minutes per source. We stacked the data of 13CO and C18O (J = 2-1 and 3-2) and CN (N = 3-2, J = 7/2-5/2) lines to enhance the signal-to-noise ratios and measured the stellar masses of 45 out of 67 PMS stars from the Keplerian rotation in their circumstellar disks. The measured dynamical stellar masses were compared to the stellar masses estimated from the spectroscopic measurements with seven different stellar evolutionary models. We found that the magnetic model of Feiden provides the best estimate of the stellar masses in the mass range of 0.6 M⊙ ≤ M⋆ ≤ 1.3 M⊙ with a deviation of <0.7σ from the dynamical masses, while all the other models underestimate the stellar masses in this mass range by 20%-40%. In the mass range of <0.6 M⊙, the stellar masses estimated with the magnetic model of Feiden have a larger deviation (>2σ) from the dynamical masses, and other, nonmagnetic stellar evolutionary models of Siess et al., Baraffe et al., and Feiden show better agreement with the dynamical masses with the deviations of 1.4σ-1.6σ. Our results show the mass dependence of the accuracy of these stellar evolutionary models.
The apparent clustering in longitude of perihelion $\varpi$ and ascending node $\Omega$ of extreme trans-Neptunian objects (ETNOs) has been attributed to the gravitational effects of an unseen 5-10 Earth-mass planet in the outer solar system. To investigate how selection bias may contribute to this clustering, we consider 14 ETNOs discovered by the Dark Energy Survey, the Outer Solar System Origins Survey, and the survey of Sheppard and Trujillo. Using each survey's published pointing history, depth, and TNO tracking selections, we calculate the joint probability that these objects are consistent with an underlying parent population with uniform distributions in $\varpi$ and $\Omega$. We find that the mean scaled longitude of perihelion and orbital poles of the detected ETNOs are consistent with a uniform population at a level between $17\%$ and $94\%$, and thus conclude that this sample provides no evidence for angular clustering.
We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton-y parameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg$^{2}$ of the southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution ( for our highest-resolution Compton-y maps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-y map products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available at pole.uchicago.edu/public/data/sptsz_ymap and on the NASA/LAMBDA website.
Nonzero topological charge is prohibited in the chiral limit of continuum gauge-fermion systems because any unpaired instanton would create a zero mode of the Dirac operator. On the lattice, however, the geometric Qgeom=⟨F F ∼ ⟩/32 π2 definition of the topological charge does not necessarily vanish in the chiral limit even when the gauge fields are smoothed for example with gradient flow. Small vacuum fluctuations (dislocations) not seen by the fermions may be promoted to instantonlike objects by the gradient flow. We demonstrate that these artifacts of the flow cause the gradient flow renormalized gauge coupling to increase and appear to run faster. In step-scaling studies such strong coupling artifacts contribute a term that might not follow perturbative scaling. The usual a /L →0 continuum limit extrapolations can hence lead to incorrect results. In this paper we investigate these topological lattice artifacts in the massless SU(3) 10-flavor system with domain wall fermions and the massless 8-flavor system with staggered fermions. For both systems we observe that in the range of strong coupling Symanzik gradient flow exhibits more lattice artifacts compared to Wilson gradient flow. We demonstrate how this artifact impacts the determination of the renormalized gauge coupling and the step-scaling β function.
In the past two decades, pions created in the high density regions of heavy ion collisions have been predicted to be sensitive at high densities to the symmetry energy term in the nuclear equation of state, a property that is key to our understanding of neutron stars. In a new experiment designed to study the symmetry energy, the multiplicities of negatively and positively charged pions have been measured with high accuracy for central 132Sn+124Sn, 112Sn+124Sn, and 108Sn+112Sn collisions at E / A = 270 MeV with the SπRIT Time Projection Chamber. While individual pion multiplicities are measured to 4% accuracy, those of the charged pion multiplicity ratios are measured to 2% accuracy. We compare these data to predictions from seven major transport models. The calculations reproduce qualitatively the dependence of the multiplicities and their ratios on the total neutron and proton number in the colliding systems. However, the predictions of the transport models from different codes differ too much to allow extraction of reliable constraints on the symmetry energy from the data. This finding may explain previous contradictory conclusions on symmetry energy constraints obtained from pion data in Au+Au system. These new results call for still better understanding of the differences among transport codes, and new observables that are more sensitive to the density dependence of the symmetry energy.
In this paper we analyze the spectrum of the primordial gravitational waves (GWs) predicted in the Standard Model*Axion*Seesaw*Higgs portal inflation (SMASH) model, which was proposed as a minimal extension of the Standard Model that addresses five fundamental problems of particle physics and cosmology (inflation, baryon asymmetry, neutrino masses, strong CP problem, and dark matter) in one stroke. The SMASH model has a unique prediction for the critical temperature of the second order Peccei-Quinn (PQ) phase transition Tc ~ 108 GeV up to the uncertainty in the calculation of the axion dark matter abundance, implying that there is a drastic change in the equation of state of the universe at that temperature. Such an event is imprinted on the spectrum of GWs originating from the primordial tensor fluctuations during inflation and entering the horizon at T ~ Tc, which corresponds to f ~ 1 Hz, pointing to a best frequency range covered by future space-borne GW interferometers. We give a precise estimation of the effective relativistic degrees of freedom across the PQ phase transition and use it to evaluate the spectrum of GWs observed today. It is shown that the future high sensitivity GW experiment—ultimate DECIGO—can probe the nontrivial feature resulting from the PQ phase transition in this model.
We investigate the application of volume statistics to probe the distribution of underdense regions in the large-scale structure of the Universe. This statistic measures the distortion of Eulerian volume elements relative to Lagrangian ones and can be built from tracer particles using tessellation methods. We apply Voronoi and Delaunay tessellation to study the clustering properties of density and volume statistics. Their level of shot-noise contamination is similar, as both methods take into account all available tracer particles in the field estimator. The tessellation causes a smoothing effect in the power spectrum, which can be approximated by a constant window function on large scales. The clustering bias of the volume statistic with respect to the dark matter density field is determined and found to be negative. We further identify the baryon acoustic oscillation (BAO) feature in the volume statistic. Apart from being smoothed out on small scales, the BAO is present in the volume power spectrum as well, without any systematic bias. These observations suggest that the exploitation of volume statistics as a complementary probe of cosmology is very promising.
To use strongly lensed Type Ia supernovae (LSNe Ia) for cosmology, a time-delay measurement between the multiple supernova (SN) images is necessary. The sharp rise and decline of SN Ia light curves make them promising for measuring time delays, but microlensing can distort these light curves and therefore add large uncertainties to the measurements. An alternative approach is to use color curves where uncertainties due to microlensing are significantly reduced for a certain period of time known as the achromatic phase. In this work, we investigate in detail the achromatic phase, testing four different SN Ia models with various microlensing configurations. We find on average an achromatic phase of around three rest-frame weeks or longer for most color curves, but the spread in the duration of the achromatic phase (due to different microlensing maps and filter combinations) is quite large and an achromatic phase of just a few days is also possible. Furthermore, the achromatic phase is longer for smoother microlensing maps and lower macro-magnifications. From our investigations, we do not find a strong dependency on the SN model or on asymmetries in the SN ejecta. We find that six rest-frame LSST color curves exhibit features such as extreme points or turning points within the achromatic phase, which make them promising for time-delay measurements; however, only three of the color curves are independent. These curves contain combinations of rest-frame bands u, g, r, and i, and to observe them for typical LSN Ia redshifts, it would be ideal to cover (observer-frame) filters r, i, z, y, J, and H. If follow-up resources are restricted, we recommend r, i, and z as the bare minimum for using color curves and/or light curves since LSNe Ia are bright in these filters and observational uncertainties are lower than in the infrared regime. With additional resources, infrared observations in y, J, and H would be useful for obtaining color curves of SNe, especially at redshifts above ∼0.8 when they become critical.
Gas-rich circumstellar disks are the cradles of planet formation. As such, their evolution will strongly influence the resulting planet population. In the ESO DESTINYS large program, we study these disks within the first 10 Myr of their development with near-infrared scattered-light imaging. Here we present VLT/SPHERE polarimetric observations of the nearby class II system SU Aur in which we resolve the disk down to scales of ∼7 au. In addition to the new SPHERE observations, we utilize VLT/NACO, HST/STIS, and ALMA archival data. The new SPHERE data show the disk around SU Aur and extended dust structures in unprecedented detail. We resolve several dust tails connected to the Keplerian disk. By comparison with ALMA data, we show that these dust tails represent material falling onto the disk. The disk itself shows an intricate spiral structure and a shadow lane, cast by an inner, misaligned disk component. Our observations suggest that SU Aur is undergoing late infall of material, which can explain the observed disk structures. SU Aur is the clearest observational example of this mechanism at work and demonstrates that late accretion events can still occur in the class II phase, thereby significantly affecting the evolution of circumstellar disks. Constraining the frequency of such events with additional observations will help determine whether this process is responsible for the spin-orbit misalignment in evolved exoplanet systems. * Based on observations performed with VLT/SPHERE under program ID 1104.C-0415(E).
We compute the color-singlet and color-octet nonrelativistic QCD (NRQCD) long-distance matrix elements for inclusive production of P -wave quarkonia in the framework of potential NRQCD. In this way, the color-octet NRQCD long-distance matrix element can be determined without relying on measured cross section data, which has not been possible so far. We obtain inclusive cross sections of χc J and χb J at the LHC, which are in good agreement with data. In principle, the formalism developed in this Letter can be applied to all inclusive production processes of heavy quarkonia.
Dark matter models involving a very light bosonic particle, generally known as fuzzy dark matter (FDM), have been recently attracting great interest in the cosmology community, as their wave-like phenomenology would simultaneously explain the long-standing misdetection of a dark matter particle and help easing the small-scale issues related to the standard cold dark matter (CDM) scenario. With this work, we initiate a series of papers aiming at investigating the evolution of FDM structures in a cosmological framework performed with our N-body code AX-GADGET, detailing for the first time in the literature how the actual scaling relations between solitonic cores and host haloes properties are significantly affected by the dynamical state, morphology, and merger history of the individual systems. In particular, in this first paper we confirm the ability of AX-GADGET to correctly reproduce the typical FDM solitonic core and we employ it to study the non-linear evolution of eight FDM haloes in their cosmological context through the zoom-in simulation approach. We find that the scaling relations identified in previous works for isolated systems are generally modified for haloes evolving in a realistic cosmological environment, and appear to be valid only as a limit for the most relaxed and spherically symmetric systems.
Hexaquarks constitute a natural extension of complex quark systems, just as tetra- and pentaquarks do. To this end, the current status of $d^*(2380)$ in both experiment and theory is reviewed. Recent high-precision measurements in the nucleon-nucleon channel and analyses thereof have established $d^*(2380)$ as an indisputable resonance in the long-sought dibaryon channel. Important features of this $I(J^P) = 0(3^+)$ state are its narrow width and deep binding relative to the $\Delta(1232)\Delta(1232)$ threshold. Its decay branchings favor theoretical calculations predicting a compact hexaquark nature of this state. We review the current status of experimental and theoretical studies on $d^*(2380)$ as well as new physics aspects it may bring in future. In addition, we review the situation at the $\Delta(1232) N$ and $N^*(1440)N$ thresholds, where evidence for a number of resonances of presumably molecular nature has been found - similar to the situation in charmed and beauty sectors. Finally, we briefly discuss the situation of dibaryon searches in the flavored quark sectors. * This work has been supported by DFG (CL 214/3-3). H. Cl. appreciates the support by the Munich Institute for Astro- and Particle Physics (MIAPP) which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2094 - 390783311
Context. Transition discs are expected to be a natural outcome of the interplay between photoevaporation and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of disc dispersal due to photoevaporation through a process known as Planet-Induced PhotoEvaporation. In this case, a cavity is formed as material inside the planetary orbit is removed by photoevaporation, leaving only the outer disc to drive the migration of the giant planet.
Aims: We investigate the impact of photoevaporation on giant planet migration and focus specifically on the case of transition discs with an evacuated cavity inside the planet location. This is important for determining under what circumstances photoevaporation is efficient at halting the migration of giant planets, thus affecting the final orbital distribution of a population of planets.
Methods: For this purpose, we use 2D FARGO simulations to model the migration of giant planets in a range of primordial and transition discs subject to photoevaporation. The results are then compared to the standard prescriptions used to calculate the migration tracks of planets in 1D planet population synthesis models.
Results: The FARGO simulations show that once the disc inside the planet location is depleted of gas, planet migration ceases. This contradicts the results obtained by the impulse approximation, which predicts the accelerated inward migration of planets in discs that have been cleared inside the planetary orbit.
Conclusions: These results suggest that the impulse approximation may not be suitable for planets embedded in transition discs. A better approximation that could be used in 1D models would involve halting planet migration once the material inside the planetary orbit is depleted of gas and the surface density at the 3:2 mean motion resonance location in the outer disc reaches a threshold value of 0.01 g cm−2.