Seite 3 von 11
(869)Extensive study of nuclear uncertainties and their impact on the r-process nucleosynthesis in neutron star mergers
  • I. Kullmann,
  • S. Goriely,
  • O. Just,
  • A. Bauswein,
  • H. -T. Janka
arXiv e-prints (07/2022) e-Print:2207.07421
abstract + abstract -

Theoretically predicted yields of elements created by the rapid neutron capture (r-) process carry potentially large uncertainties associated with incomplete knowledge of nuclear properties as well as approximative hydrodynamical modelling of the matter ejection processes. We present an in-depth study of the nuclear uncertainties by systematically varying theoretical nuclear input models that describe the experimentally unknown neutron-rich nuclei. This includes two frameworks for calculating the radiative neutron capture rates and six, four and four models for the nuclear masses, $\beta$-decay rates and fission properties, respectively. Our r-process nuclear network calculations are based on detailed hydrodynamical simulations of dynamically ejected material from NS-NS or NS-BH binary mergers plus the secular ejecta from BH-torus systems. The impact of nuclear uncertainties on the r-process abundance distribution and early radioactive heating rate is found to be modest (within a factor $\sim 20$ for individual $A>90$ nuclei and a factor 2 for the heating rate), however the impact on the late-time heating rate is more significant and depends strongly on the contribution from fission. We witness significantly larger sensitivity to the nuclear physics input if only a single trajectory is used compared to considering ensembles of $\sim$200-300 trajectories, and the quantitative effects of the nuclear uncertainties strongly depend on the adopted conditions for the individual trajectory. We use the predicted Th/U ratio to estimate the cosmochronometric age of six metal-poor stars to set a lower limit of the age of the Galaxy and find the impact of the nuclear uncertainties to be up to 2 Gyr.


(868)Condensed dark matter with a Yukawa interaction
  • Raghuveer Garani,
  • Michel H. G. Tytgat,
  • Jérôme Vandecasteele
arXiv e-prints (07/2022) e-Print:2207.06928
abstract + abstract -

We explore the possible phases of a condensed dark matter (DM) candidate taken to be in the form of a fermion with a Yukawa coupling to a scalar particle, at zero temperature but at finite density. This theory essentially depends on only four parameters, the Yukawa coupling, the fermion mass, the scalar mediator mass, and the DM density. At low fermion densities we delimit the Bardeen-Cooper-Schrieffer (BCS), Bose-Einstein Condensate (BEC) and crossover phases as a function of model parameters using the notion of scattering length. We further study the BCS phase by consistently including emergent effects such as the scalar density condensate and superfluid gaps. Within the mean field approximation, we derive the consistent set of gap equations, retaining their momentum dependence, and valid in both the non-relativistic and relativistic regimes. We present numerical solutions to the set of gap equations, in particular when the mediator mass is smaller and larger than the DM mass. Finally, we discuss the equation of state (EoS) and possible astrophysical implications for asymmetric DM.


(867)Three-loop helicity amplitudes for quark-gluon scattering in QCD
  • Fabrizio Caola,
  • Amlan Chakraborty,
  • Giulio Gambuti,
  • Andreas von Manteuffel,
  • Lorenzo Tancredi
arXiv e-prints (07/2022) e-Print:2207.03503
abstract + abstract -

We compute the three-loop helicity amplitudes for $q\bar{q} \to gg$ and its crossed partonic channels, in massless QCD. Our analytical results provide a non-trivial check of the color quadrupole contribution to the infrared poles for external states in different color representations. At high energies, the $qg \to qg$ amplitude shows the predicted factorized form from Regge theory and confirms previous results for the gluon Regge trajectory extracted from $qq' \to qq'$ and $gg \to gg$ scattering.


(866)A multi-simulation study of relativistic SZ temperature scalings in galaxy clusters and groups
  • Elizabeth Lee,
  • Dhayaa Anbajagane,
  • Priyanka Singh,
  • Jens Chluba,
  • Daisuke Nagai
  • +4
  • Scott T. Kay,
  • Weiguang Cui,
  • Klaus Dolag,
  • Gustavo Yepes
  • (less)
arXiv e-prints (07/2022) e-Print:2207.05834
abstract + abstract -

The Sunyaev-Zeldovich (SZ) effect is a powerful tool in modern cosmology. With future observations promising ever improving SZ measurements, the relativistic corrections to the SZ signals from galaxy groups and clusters are increasingly relevant. As such, it is important to understand the differences between three temperature measures: (a) the average relativistic SZ (rSZ) temperature, (b) the mass-weighted temperature relevant for the thermal SZ (tSZ) effect, and (c) the X-ray spectroscopic temperature. In this work, we compare these cluster temperatures, as predicted by the {\sc Bahamas} \& {\sc Macsis}, {\sc Illustris-TNG}, {\sc Magneticum}, and {\sc The Three Hundred Project} simulations. Despite the wide range of simulation parameters, we find the SZ temperatures are consistent across the simulations. We estimate a $\simeq 10\%$ level correction from rSZ to clusters with $Y\simeq10^{-4}$~Mpc$^{-2}$. Our analysis confirms a systematic offset between the three temperature measures; with the rSZ temperature $\simeq 20\%$ larger than the other measures, and diverging further at higher redshifts. We demonstrate that these measures depart from simple self-similar evolution and explore how they vary with the defined radius of haloes. We investigate how different feedback prescriptions and resolution affect the observed temperatures, and discover the SZ temperatures are rather insensitive to these details. The agreement between simulations indicates an exciting avenue for observational and theoretical exploration, determining the extent of relativistic SZ corrections. We provide multiple simulation-based fits to the scaling relations for use in future SZ modelling.


(865)Testing spin-dependent dark matter interactions with lithium aluminate targets in CRESST-III
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento,
  • A. Bertolini
  • +56
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • N. Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V. M. Ghete,
  • S. Gerster,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • L. Meyer,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
arXiv e-prints (07/2022) e-Print:2207.07640
abstract + abstract -

In the past decades, numerous experiments have emerged to unveil the nature of dark matter, one of the most discussed open questions in modern particle physics. Among them, the CRESST experiment, located at the Laboratori Nazionali del Gran Sasso, operates scintillating crystals as cryogenic phonon detectors. In this work, we present first results from the operation of two detector modules which both have 10.46 g LiAlO$_2$ targets in CRESST-III. The lithium contents in the crystal are $^6$Li, with an odd number of protons and neutrons, and $^7$Li, with an odd number of protons. By considering both isotopes of lithium and $^{27}$Al, we set the currently strongest cross section upper limits on spin-dependent interaction of dark matter with protons and neutrons for the mass region between 0.25 and 1.5 GeV/c$^2$.


(864)CRESCENDO: An on-the-fly Fokker-Planck Solver for Spectral Cosmic Rays in Cosmological Simulations
  • Ludwig M. Böss,
  • Ulrich P. Steinwandel,
  • Klaus Dolag,
  • Harald Lesch
arXiv e-prints (07/2022) e-Print:2207.05087
abstract + abstract -

Non-thermal emission from relativistic Cosmic Ray (CR) electrons gives insight into the strength and morphology of intra-cluster magnetic fields, as well as providing powerful tracers of structure formation shocks. Emission caused by CR protons on the other hand still challenges current observations and is therefore testing models of proton acceleration at intra-cluster shocks. Large-scale simulations including the effects of CRs have been difficult to achieve and have been mainly reduced to simulating an overall energy budget, or tracing CR populations in post-processing of simulation output and has often been done for either protons or electrons. We introduce CRESCENDO: Cosmic Ray Evolution with SpeCtral Electrons aND prOtons, an efficient on-the-fly Fokker-Planck solver to evolve distributions of CR protons and electrons within every resolution element of our simulation. The solver accounts for CR (re-)acceleration at intra-cluster shocks, based on results of recent PIC simulations, adiabatic changes and radiative losses of electrons. We show its performance in test cases as well as idealized galaxy cluster (GC) simulations. We apply the model to an idealized GC merger following best-fit parameters for CIZA J2242.4+5301-1 and study CR injection, radio relic morphology, spectral steepening and synchrotron emission.


(863)Anapole Moment of Majorana Fermions and Implications for Direct Detection of Neutralino Dark Matter
  • Alejandro Ibarra,
  • Merlin Reichard,
  • Ryo Nagai
arXiv e-prints (07/2022) e-Print:2207.01014
abstract + abstract -

For Majorana fermions the anapole moment is the only allowed electromagnetic multipole moment. In this work we calculate the anapole moment induced at one-loop by the Yukawa and gauge interactions of a Majorana fermion, using the pinch technique to ensure the finiteness and gauge-invariance of the result. As archetypical example of a Majorana fermion, we calculate the anapole moment for the lightest neutralino in the Minimal Supersymmetric Standard Model, and specifically in the bino, wino and higgsino limits. Finally, we briefly discuss the implications of the anapole moment for the direct detection of dark matter in the form of Majorana fermions.


(862)Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering
  • T.M.C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +156
  • J. Annis,
  • S. Avila,
  • D. Bacon,
  • E. Baxter,
  • K. Bechtol,
  • M.R. Becker,
  • G.M. Bernstein,
  • S. Birrer,
  • J. Blazek,
  • S. Bocquet,
  • A. Brandao-Souza,
  • S.L. Bridle,
  • D. Brooks,
  • D.L. Burke,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • F.J. Castander,
  • R. Cawthon,
  • C. Chang,
  • A. Chen,
  • R. Chen,
  • A. Choi,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • M. Crocce,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • C. Davis,
  • T.M. Davis,
  • J. DeRose,
  • S. Desai,
  • E. Di Valentino,
  • H.T. Diehl,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T.F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Farahi,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • D. Friedel,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • L. Giani,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N. Hamaus,
  • I. Harrison,
  • W.G. Hartley,
  • K. Herner,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • H. Huang,
  • E.M. Huff,
  • D. Huterer,
  • B. Jain,
  • D.J. James,
  • M. Jarvis,
  • N. Jeffrey,
  • T. Jeltema,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • S. Lee,
  • P.-F. Leget,
  • P. Lemos,
  • C.D. Leonard,
  • A.R. Liddle,
  • M. Lima,
  • H. Lin,
  • N. MacCrann,
  • J.L. Marshall,
  • J. McCullough,
  • J. Mena-Fernández,
  • F. Menanteau,
  • R. Miquel,
  • V. Miranda,
  • J.J. Mohr,
  • J. Muir,
  • J. Myles,
  • S. Nadathur,
  • A. Navarro-Alsina,
  • R.C. Nichol,
  • R.L.C. Ogando,
  • Y. Omori,
  • A. Palmese,
  • S. Pandey,
  • Y. Park,
  • M. Paterno,
  • F. Paz-Chinchón,
  • W.J. Percival,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • M. Rodriguez-Monroy,
  • P. Rogozenski,
  • R.P. Rollins,
  • A.K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A.J. Ross,
  • E.S. Rykoff,
  • S. Samuroff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • D. Sanchez Cid,
  • V. Scarpine,
  • D. Scolnic,
  • L.F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. Smith,
  • M. Soares-Santos,
  • E. Suchyta,
  • M. Tabbutt,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • A. Troja,
  • M.A. Troxel,
  • I. Tutusaus,
  • T.N. Varga,
  • M. Vincenzi,
  • A.R. Walker,
  • N. Weaverdyck,
  • R.H. Wechsler,
  • J. Weller,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz
  • (less)
(07/2022) e-Print:2207.05766
abstract + abstract -

We constrain extensions to the $\Lambda$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $\sigma_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $\Omega_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(\Delta N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $\Sigma(k,z) = \Sigma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ and $\mu(k,z)=\mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ respectively to $\Sigma_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(\Sigma_0,\mu_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $\Lambda$CDM.


(861)Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements
  • Isabelle Tanseri,
  • Steffen Hagstotz,
  • Sunny Vagnozzi,
  • Elena Giusarma,
  • Katherine Freese
(07/2022) e-Print:2207.01913
abstract + abstract -

We revisit cosmological constraints on the sum of the neutrino masses $\Sigma m_\nu$ from a combination of full-shape BOSS galaxy clustering [$P(k)$] data and measurements of the cross-correlation between Planck Cosmic Microwave Background (CMB) lensing convergence and BOSS galaxy overdensity maps [$C^{\kappa \text{g}}_{\ell}$], using a simple but theoretically motivated model for the scale-dependent galaxy bias in auto- and cross-correlation measurements. We improve upon earlier related work in several respects, particularly through a more accurate treatment of the correlation and covariance between $P(k)$ and $C^{\kappa \text{g}}_{\ell}$ measurements. When combining these measurements with Planck CMB data, we find a 95% confidence level upper limit of $\Sigma m_\nu<0.14\,{\rm eV}$, while slightly weaker limits are obtained when including small-scale ACTPol CMB data, in agreement with our expectations. We confirm earlier findings that (once combined with CMB data) the full-shape information content is comparable to the geometrical information content in the reconstructed BAO peaks given the precision of current galaxy clustering data, discuss the physical significance of our inferred bias and shot noise parameters, and perform a number of robustness tests on our underlying model. While the inclusion of $C^{\kappa \text{g}}_{\ell}$ measurements does not currently appear to lead to substantial improvements in the resulting $\Sigma m_{\nu}$ constraints, we expect the converse to be true for near-future galaxy clustering measurements, whose shape information content will eventually supersede the geometrical one.


(860)Towards an accurate model of small-scale redshift-space distortions in modified gravity
  • Cheng-Zong Ruan,
  • Carolina Cuesta-Lazaro,
  • Alexander Eggemeier,
  • César Hernández-Aguayo,
  • Carlton M. Baugh
  • +2
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1345
abstract + abstract -

The coming generation of galaxy surveys will provide measurements of galaxy clustering with unprecedented accuracy and data size, which will allow us to test cosmological models at much higher precision than achievable previously. This means that we must have more accurate theoretical predictions to compare with future observational data. As a first step towards more accurate modelling of the redshift space distortions (RSD) of small-scale galaxy clustering in modified gravity (MG) cosmologies, we investigate the validity of the so-called Skew-T (ST) probability distribution function (PDF) of halo pairwise peculiar velocities in these models. We show that, combined with the streaming model of RSD, the ST PDF substantially improves the small-scale predictions by incorporating skewness and kurtosis, for both Λ cold dark matter (ΛCDM) and two leading MG models: f(R) gravity and the DGP braneworld model. The ST model reproduces the velocity PDF and redshift-space halo clustering measured from MG N-body simulations very well down to $\sim 5 \, h^{-1}\, \mathrm{Mpc}$. In particular, we investigate the enhancements of halo pairwise velocity moments with respect to ΛCDM for a larger range of MG variants than previous works, and present simple explanations to the behaviours observed. By performing a simple Fisher analysis, we find a significant increase in constraining power to detect modifications of General Relativity by introducing small-scale information in the RSD analyses.


(859)The importance of X-ray frequency in driving photoevaporative winds
  • Andrew D. Sellek,
  • Cathie J. Clarke,
  • Barbara Ercolano
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1148
abstract + abstract -

Photoevaporative winds are a promising mechanism for dispersing protoplanetary discs, but so far theoretical models have been unable to agree on the relative roles that the X-ray, extreme ultraviolet or far-ultraviolet play in driving the winds. This has been attributed to a variety of methodological differences between studies, including their approach to radiative transfer and thermal balance, the choice of irradiating spectrum employed, and the processes available to cool the gas. We use the MOCASSIN radiative transfer code to simulate wind heating for a variety of spectra on a static density grid taken from simulations of an EUV-driven wind. We explore the impact of choosing a single representative X-ray frequency on their ability to drive a wind by measuring the maximum heated column as a function of photon energy. We demonstrate that for reasonable luminosities and spectra, the most effective energies are at a few 100 eV, firmly in the softer regions of the X-ray spectrum, while X-rays with energies ~1000 eV interact too weakly with disc gas to provide sufficient heating to drive a wind. We develop a simple model to explain these findings. We argue that further increases in the cooling above our models - for example due to molecular rovibrational lines - may further restrict the heating to the softer energies but are unlikely to prevent X-ray heated winds from launching entirely; increasing the X-ray luminosity has the opposite effect. The various results of photoevaporative wind models should therefore be understood in terms of the choice of irradiating spectrum.


(858)THE THREE HUNDRED project: The GIZMO-SIMBA run
  • Weiguang Cui,
  • Romeel Dave,
  • Alexander Knebe,
  • Elena Rasia,
  • Meghan Gray
  • +20
  • Frazer Pearce,
  • Chris Power,
  • Gustavo Yepes,
  • Dhayaa Anbajagane,
  • Daniel Ceverino,
  • Ana Contreras-Santos,
  • Daniel de Andres,
  • Marco De Petris,
  • Stefano Ettori,
  • Roan Haggar,
  • Qingyang Li,
  • Yang Wang,
  • Xiaohu Yang,
  • Stefano Borgani,
  • Klaus Dolag,
  • Ying Zu,
  • Ulrike Kuchner,
  • Rodrigo Cañas,
  • Antonio Ferragamo,
  • Giulia Gianfagna
  • (less)
Monthly Notices of the Royal Astronomical Society, 514, p20 (07/2022) doi:10.1093/mnras/stac1402
abstract + abstract -

We introduce GIZMO-SIMBA, a new suite of galaxy cluster simulations within THE THREE HUNDRED project. THE THREE HUNDRED consists of zoom re-simulations of 324 clusters with $M_{200}\gtrsim 10^{14.8}\, \mathrm{M}_\odot$ drawn from the MultiDark-Planck N-body simulation, run using several hydrodynamic and semi-analytical codes. The GIZMO-SIMBA suite adds a state-of-the-art galaxy formation model based on the highly successful SIMBA simulation, mildly re-calibrated to match $z$ = 0 cluster stellar properties. Comparing to THE THREE HUNDRED zooms run with GADGET-X, we find intrinsic differences in the evolution of the stellar and gas mass fractions, BCG ages, and galaxy colour-magnitude diagrams, with GIZMO-SIMBA generally providing a good match to available data at $z$ ≍ 0. GIZMO-SIMBA's unique black hole growth and feedback model yields agreement with the observed BH scaling relations at the intermediate-mass range and predicts a slightly different slope at high masses where few observations currently lie. GIZMO-SIMBA provides a new and novel platform to elucidate the co-evolution of galaxies, gas, and black holes within the densest cosmic environments.


(857)Transport model comparison studies of intermediate-energy heavy-ion collisions
  • Hermann Wolter,
  • Maria Colonna,
  • Dan Cozma,
  • Pawel Danielewicz,
  • Che Ming Ko
  • +48
  • Rohit Kumar,
  • Akira Ono,
  • ManYee Betty Tsang,
  • Jun Xu,
  • Ying-Xun Zhang,
  • Elena Bratkovskaya,
  • Zhao-Qing Feng,
  • Theodoros Gaitanos,
  • Arnaud Le Fèvre,
  • Natsumi Ikeno,
  • Youngman Kim,
  • Swagata Mallik,
  • Paolo Napolitani,
  • Dmytro Oliinychenko,
  • Tatsuhiko Ogawa,
  • Massimo Papa,
  • Jun Su,
  • Rui Wang,
  • Yong-Jia Wang,
  • Janus Weil,
  • Feng-Shou Zhang,
  • Guo-Qiang Zhang,
  • Zhen Zhang,
  • Joerg Aichelin,
  • Wolfgang Cassing,
  • Lie-Wen Chen,
  • Hui-Gan Cheng,
  • Hannah Elfner,
  • K. Gallmeister,
  • Christoph Hartnack,
  • Shintaro Hashimoto,
  • Sangyong Jeon,
  • Kyungil Kim,
  • Myungkuk Kim,
  • Bao-An Li,
  • Chang-Hwan Lee,
  • Qing-Feng Li,
  • Zhu-Xia Li,
  • Ulrich Mosel,
  • Yasushi Nara,
  • Koji Niita,
  • Akira Ohnishi,
  • Tatsuhiko Sato,
  • Taesoo Song,
  • Agnieszka Sorensen,
  • Ning Wang,
  • Wen-Jie Xie,
  • (TMEP collaboration)
  • (less)
Progress in Particle and Nuclear Physics, 125 (07/2022) doi:10.1016/j.ppnp.2022.103962
abstract + abstract -

Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with periodic boundary conditions, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.


(856)On the superiority of the | V<SUB>cb</SUB>|-γ plots over the unitarity triangle plots in the 2020s
  • Andrzej J. Buras
European Physical Journal C, 82 (07/2022) doi:10.1140/epjc/s10052-022-10566-9
abstract + abstract -

The unitarity triangle (UT) plots played already for three decades an important role in the tests of the Standard Model (SM) and the determination of the CKM parameters. As of 2022, among the four CKM parameters, | Vus| and β are already measured with respectable precision, while this is not the case of | Vcb| and γ . In the case of | Vcb| the main obstacle are the significant tensions between its inclusive and exclusive determinations from tree-level decays and it could still take some years before a unique value of this parameter will be known. The present uncertainty in γ of 4 from tree-level decays will be reduced to 1 by the LHCb and Belle II collaborations in the coming years. Unfortunately in the common UT plots | Vcb| is not seen and the experimental improvements in the determination of γ from tree-level decays at the level of a few degrees are difficult to appreciate. In view of these deficiencies of the UT plots with respect to | Vcb| and γ and the central role these two CKM parameters will play in this decade, the recently proposed plots of | Vcb| versus γ extracted from various processes appear to be superior to the UT plots in the flavour phenomenology of the 2020s. We illustrate this idea with Δ F =2 observables Δ Ms , Δ Md , εK and with rare decays Bs→μ+μ- , Bd→μ+μ- , K+→π+ν ν ¯ and KL→π0ν ν ¯ . In particular the power of εK, B (K+→π+ν ν ¯ ) and B (KL→π0ν ν ¯ ) in the determination of | Vcb| , due to their strong dependence on | Vcb| , is transparently exhibited in this manner. Combined with future reduced errors on γ and | Vcb| from tree-level decays such plots can better exhibit possible inconsistencies between various determinations of these two parameters, caused by new physics, than it is possible with the UT plots. This can already be illustrated on the example of the recently found 2.7 σ anomaly in Bs→μ+μ-.


(855)Mapping `out-of-the-box' the properties of the baryons in massive halos
  • M. Angelinelli,
  • S. Ettori,
  • K. Dolag,
  • F. Vazza,
  • A. Ragagnin
Astronomy and Astrophysics, 663, p8 (07/2022) doi:10.1051/0004-6361/202244068
abstract + abstract -

We study the distributions of the baryons in massive halos (Mvir > 1013 h−1 M) in the Magneticum suite of smoothed particle hydrodynamical cosmological simulations, out to the unprecedented radial extent of 10R500, c. We confirm that, under the action of non-gravitational physical phenomena, the baryon mass fraction is lower in the inner regions (< R500, c) of increasingly less massive halos, and rises moving outwards, with values that span from 51% (87%) of the cosmological value in the regions around R500, c to 95% (100%) at 10R500, c in the systems with the lowest (highest; Mvir ∼ 5 × 1014 h−1 M) masses. The galaxy groups almost match the gas (and baryon) fraction measured in the most massive halos only at very large radii (r > 6R500, c), where the baryon depletion factor Ybar = fbar/(Ωbm) approaches the value of unity, expected for `closed-box' systems. We find that both the radial and mass dependence of the baryon, gas, and hot depletion factors are predictable and follow a simple functional form. The star mass fraction is higher in less massive systems, decreases systematically with increasing radii, and reaches a constant value of Ystar ≈ 0.09, where the gas metallicity is also constant, regardless of the host halo mass, as a result of the early (z > 2) enrichment process.


(854)Lifetimes of singly charmed hadrons
  • James Gratrex,
  • Blaženka Melić,
  • Ivan Nišandžić
Journal of High Energy Physics, 2022 (07/2022) doi:10.1007/JHEP07(2022)058
abstract + abstract -

We provide an extensive study of the lifetimes of singly charmed baryons and mesons, within the heavy quark expansion with all known corrections included. A special attention is devoted to the choice of the charm mass and wavefunctions of heavy baryons. We give our predictions for lifetimes, lifetime ratios, and semileptonic branching ratios of singly charmed baryons. Our results accommodate the experimentally-favoured hierarchy of singly charmed baryon lifetimes τ (Ξc0)<τ (Λc+)<τ (Ωc0)<τ (Ξc+), in contrast to earlier theoretical findings. Predictions for charmed meson lifetimes and semileptonic decay rates are in agreement with a recent comprehensive study and experimental results within uncertainties.


(853)Latest observations on the low energy excess in CRESST-III
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento,
  • A. Bertolini
  • +55
  • R. Breier,
  • C. Bucci,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • N. Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V. M. Ghete,
  • S. Gerster,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • L. Meyer,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
arXiv e-prints (07/2022) e-Print:2207.09375
abstract + abstract -

The CRESST experiment observes an unexplained excess of events at low energies. In the current CRESST-III data-taking campaign we are operating detector modules with different designs to narrow down the possible explanations. In this work, we show first observations of the ongoing measurement, focusing on the comparison of time, energy and temperature dependence of the excess in several detectors. These exclude dark matter, radioactive backgrounds and intrinsic sources related to the crystal bulk as a major contribution.


(852)Revisiting constraints on WIMPs around primordial black holes
  • Estanis Utrilla Ginés,
  • Samuel J. Witte,
  • Olga Mena
arXiv e-prints (07/2022) e-Print:2207.09481
abstract + abstract -

While Primordial Black Holes (PBHs) with masses $M_{\rm PBH} \gtrsim 10^{-11} \, M_\odot$ cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A sub-dominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of Weakly Interacting Massive Particles (WIMPs) with a small sub-dominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the Cosmic Microwave Background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that $\sim \mathcal{O}(M_\odot)$ PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.


(851)Two-Loop Infrared Renormalization with On-shell Methods
  • Pietro Baratella
arXiv e-prints (07/2022) e-Print:2207.08831
abstract + abstract -

Within the framework proposed by Caron-Huot and Wilhelm, we give a recipe for computing infrared anomalous dimensions purely on-shell, efficiently up to two loops in any massless theory. After introducing the general formalism and reviewing the one-loop recipe, we extract a practical formula that relates two-loop infrared anomalous dimensions to certain two- and three-particle phase space integrals with tree-level form factors of conserved operators. We finally provide several examples of the use of the two-loop formula and comment on some of its formal aspects, especially the cancellation of `one-loop squared' spurious terms.


(850)On the Small-scale Turbulent Dynamo in the Intracluster Medium: A Comparison to Dynamo Theory
  • Ulrich P. Steinwandel,
  • Ludwig M. Böss,
  • Klaus Dolag,
  • Harald Lesch
The Astrophysical Journal, 933, p25 (07/2022) doi:10.3847/1538-4357/ac715c
abstract + abstract -

We present non-radiative, cosmological zoom-in simulations of galaxy-cluster formation with magnetic fields and (anisotropic) thermal conduction of one massive galaxy cluster with M vir ~ 2 × 1015 M at z ~ 0. We run the cluster on three resolution levels (1×, 10×, 25×), starting with an effective mass resolution of 2 × 108 M , subsequently increasing the particle number to reach 4 × 106 M . The maximum spatial resolution obtained in the simulations is limited by the gravitational softening reaching ϵ = 1.0 kpc at the highest resolution level, allowing one to resolve the hierarchical assembly of the structures in fine detail. All simulations presented are carried out with the SPMHD code GADGET3 with an updated SPMHD prescription. The primary focus of this paper is to investigate magnetic field amplification in the intracluster medium. We show that the main amplification mechanism is the small-scale turbulent dynamo in the limit of reconnection diffusion. In our two highest resolution models we start to resolve the magnetic field amplification driven by the dynamo and we explicitly quantify this with the magnetic power spectra and the curvature of the magnetic field lines, consistent with dynamo theory. Furthermore, we investigate the ∇ · B = 0 constraint within our simulations and show that we achieve comparable results to state-of-the-art AMR or moving-mesh techniques, used in codes such as ENZO and AREPO. Our results show for the first time in a cosmological simulation of a galaxy cluster that dynamo action can be resolved with modern numerical Lagrangian magnetohydrodynamic methods, a study that is currently missing in the literature. * Released on August, 19th, 2021.


(849)Anomalous Ward identities for on-shell amplitudes at the conformal fixed point
  • Dmitry Chicherin,
  • Johannes Henn,
  • Simone Zoia
arXiv e-prints (07/2022) e-Print:2207.12249
abstract + abstract -

Conformal symmetry underlies many massless quantum field theories, but little is known about the consequences of this powerful symmetry for on-shell scattering amplitudes. We study this problem in a dimensionally-regularized $\phi^3$ model at the conformal fixed point. We show that the on-shell renormalised amplitudes satisfy anomalous conformal Ward identities. Each external on-shell state contributes two terms to the anomaly, both proportional to the corresponding momentum. The first term is proportional to the elementary field anomalous dimension, and thus involves only lower-loop information. We argue that the second term is governed by collinear regions of loop momentum, and that it can be represented as the convolution of a universal function and lower-order amplitudes. The computation of the conformal anomaly is then simpler than that of the amplitude at the same perturbative order, giving our anomalous conformal Ward identities a strong predictive power in perturbation theory. This result is also of practical importance for dimensionally-regularised amplitudes away from the conformal fixed point. Indeed the knowledge of the on-shell amplitude at the conformal fixed point, together with lower loop information, fixes entirely the amplitude away from the fixed point. While our analysis is done in a cubic scalar toy model, we expect analogous results to hold for amplitudes in other quantum field theories with classical conformal symmetry, such as Yang-Mills and Yukawa theories.


(848)Mineral snowflakes on exoplanets and brown dwarfs. Coagulation and fragmentation of cloud particles with HYLANDS
  • D. Samra,
  • Ch. Helling,
  • T. Birnstiel
Astronomy and Astrophysics, 663, p32 (07/2022) doi:10.1051/0004-6361/202142651
abstract + abstract -

Context. Brown dwarfs and exoplanets provide unique atmospheric regimes that hold information about their formation routes and evolutionary states. Cloud particles form through nucleation, condensation, evaporation, and collisions, which affect the distribution of cloud particles in size and throughout these atmospheres. Cloud modelling plays a decisive role in understanding these regimes.
Aims: Modelling mineral cloud particle formation in the atmospheres of brown dwarfs and exoplanets is a key element in preparing for missions and instruments like CRIRES+, JWST, and ARIEL, as well as possible polarimetry missions like POLSTAR. The aim is to support the increasingly detailed observations that demand greater understanding of the microphysical cloud processes.
Methods: We extend our kinetic cloud formation model that treats nucleation, condensation, evaporation, and settling of mixed material cloud particles to consistently model cloud particle-particle collisions. The new hybrid code Hybrid moments (Ls) and Size (HYLANDS) is then applied to a grid of DRIFT-PHOENIX (Tgas, pgas) profiles. Effective medium theory and Mie theory are used to investigate the optical properties.
Results: Turbulence proves to be the main driving process of particle-particle collisions, with collisions becoming the dominant process in the lower atmosphere (p > 10−4 bar) at the cloud base. Particle-particle collisions produce one of three outcomes for brown dwarf and gas-giant atmospheres: fragmenting atmospheres (log10(g[cms−2])=3.0) coagulating atmospheres (log10(g)=5.0), Teff ≤1800K) or condensational growth dominated atmospheres (log10(g) = 5.0, Teff > 1800 K). Cloud particle opacity slope at optical wavelengths (Hubble) is increased with fragmentation, as are the silicate features at JWST NIRSpec, JWST MIRI, and ARIEL AIRS wavelengths.
Conclusions: The hybrid moment-bin method HYLANDS demonstrates the feasibility of combining a moment and a bin method for cloud modelling, whilst assuring element conservation. It provides a powerful and fast tool for capturing general trends of particle collisions, consistently with other microphysical growth processes. Collisions are an important process in exoplanet and brown dwarf atmospheres, but cannot be assumed to be hit-and-stick only. The spectral effects of cloud particle collisions in both optical and mid-infrared wavelengths complicate inferences of cloud particle size and material composition from observational data.


(847)Next-to-leading power endpoint factorization and resummation for off-diagonal "gluon" thrust
  • M. Beneke,
  • M. Garny,
  • S. Jaskiewicz,
  • J. Strohm,
  • R. Szafron
  • +2
Journal of High Energy Physics, 2022 (07/2022) doi:10.1007/JHEP07(2022)144
abstract + abstract -

The lack of convergence of the convolution integrals appearing in next-to-leading-power (NLP) factorization theorems prevents the applications of existing methods to resum power-suppressed large logarithmic corrections in collider physics. We consider thrust distribution in the two-jet region for the flavour-nonsinglet off-diagonal contribution, where a gluon-initiated jet recoils against a quark-antiquark pair, which is power-suppressed. With the help of operatorial endpoint factorization conditions, we obtain a factorization formula, where the individual terms are free from endpoint divergences in convolutions and can be expressed in terms of renormalized hard, soft and collinear functions in four dimensions. This allows us to perform the first resummation of the endpoint-divergent SCETI observables at the leading logarithmic accuracy using exclusively renormalization-group methods. The presented approach relies on universal properties of the soft and collinear limits and may serve as a paradigm for the systematic NLP resummation for other 1 → 2 and 2 → 1 collider physics processes.


(846)The exclusive vision of rare K and B decays and of the quark mixing in the standard model
  • Andrzej J. Buras,
  • Elena Venturini
European Physical Journal C, 82 (07/2022) doi:10.1140/epjc/s10052-022-10583-8
abstract + abstract -

The most common predictions for rare K and B decay branching ratios in the Standard Model in the literature are based on the CKM elements | Vcb| and | Vub| resulting from global fits, that are in the ballpark of their inclusive and exclusive determinations, respectively. In the present paper we follow another route, which to our knowledge has not been explored for Δ Ms ,d and rare K and B decays by anybody to date. We assume, in contrast to the prevailing inclusive expectations for | Vcb| , that the future true values of | Vcb| and | Vub| will be both from exclusive determinations; in practice we use the most recent averages from FLAG. With the precisely known | Vus| the resulting rare decay branching ratios, εK, Δ Md , Δ Ms and Sψ KS depend then only on the angles β and γ in the unitarity triangle that moreover are correlated through the CKM unitarity. An unusual pattern of SM predictions results from this study with some existing tensions being dwarfed and new tensions being born. In particular using HPQCD Bs,d 0-B¯s ,d 0 hadronic matrix elements a 3.1 σ tension in Δ Ms independently of γ is found. For 60≤γ ≤75 the tension in Δ Md between 4.0 σ and 1.1 σ is found and in the case of εK between 5.2 σ and 2.1 σ . Moreover, the room for new physics in K+→π+ν ν ¯ , KL→π0ν ν ¯ and B →K (K)ν ν ¯ decays is significantly increased. We compare the results in this EXCLUSIVE scenario with the HYBRID one in which | Vcb| in the former scenario is replaced by the most recent inclusive | Vcb| and present the dependence of all observables considered by us in both scenarios as functions of γ . As a byproduct we compare the determination of | Vcb| from Δ Ms , Δ Md , εK and Sψ KS using Bs,d 0-B¯s ,d 0 hadronic matrix elements from LQCD with 2 +1 +1 flavours, 2 +1 flavours and their average. Only for the 2 +1 +1 case values for β and γ exist for which the same value of | Vcb| is found: | Vcb|=42.6 (4 ) × 10-3 , γ =64.6 (16) ∘ and β =22.2 (7) ∘ . This in turn implies a 2.7 σ anomaly in Bs→μ+μ-.


(845)Intermediate- and high-velocity clouds in the Milky Way - I. Covering factors and vertical heights
  • Nicolas Lehner,
  • J. Christopher Howk,
  • Antonino Marasco,
  • Filippo Fraternali
Monthly Notices of the Royal Astronomical Society, 513, p13 (07/2022) doi:10.1093/mnras/stac987
abstract + abstract -

Intermediate- and high-velocity clouds (IVCs, HVCs) are a potential source of fuel for star formation in the Milky Way (MW), but their origins and fates depend sensitively on their distances. We search for IVCs and HVCs in HST high-resolution ultraviolet spectra of 55 halo stars at vertical heights $|z|\gtrsim \,1$ kpc. We show that IVCs (40 ≤ |$v$LSR| < 90 ${\rm km\, s}^{-1}$) have a high detection rate - the covering factor, fc - that is about constant (fc = 0.90 ± 0.04) from $z$ = 1.5 to 14 kpc, implying IVCs are essentially confined to |$z$| ≲ 1.5 kpc. For the HVCs (90 ≤ |$v$LSR| ≲ 170 ${\rm km\, s}^{-1}$), we find fc increases from fc ≃ 0.14 ± 0.10 at |$z$| ≲ 2-3 kpc to fc = 0.60 ± 0.15 at 6 ≲ |$z$| ≲ 14 kpc, the latter being similar to that found towards QSOs. In contrast, the covering factor of very high-velocity clouds (VHVCs; |$v$LSR| ≳ 170 ${\rm km\, s}^{-1}$) is $f_c \lt 0.04$ in the stellar sample compared to 20 per cent towards QSOs, implying these clouds must be at d ≳ 10-15 kpc (|$z$| ≳ 10 kpc). Gas clouds with |$v$LSR| > 40 ${\rm km\, s}^{-1}$ at |b| ≳ 15° have therefore |$v$LSR| decreasing with decreasing |$z$|. Our findings are consistent with a Galactic rain and/or fountain origin for these clouds. In the latter scenario, VHVCs may mostly serve as fuel for the MW halo. In view of their high covering factors and since all the IVCs and some HVCs are found in the thick disc, they appear good candidates as gas reservoirs to help sustain star formation in the MW.


(844)Same-hemisphere three-gluon-emission contribution to the zero-jettiness soft function at N3LO QCD
  • Daniel Baranowski,
  • Maximilian Delto,
  • Kirill Melnikov,
  • Chen-Yu Wang
Physical Review D, 106 (07/2022) doi:10.1103/PhysRevD.106.014004
abstract + abstract -

We complete the calculation of the three-gluon-emission contribution to the same-hemisphere part of the zero-jettiness soft function at next-to-next-to-next-to-leading order in perturbative QCD.


(843)HOLISMOKES -- X. Comparison between neural network and semi-automated traditional modeling of strong lenses
  • S. Schuldt,
  • S. H. Suyu,
  • R. Canameras,
  • Y. Shu,
  • S. Taubenberger
  • +2
arXiv e-prints (07/2022) e-Print:2207.10124
abstract + abstract -

Modeling of strongly gravitationally lensed galaxies is often required in order to use them as astrophysical or cosmological probes. With current and upcoming wide-field imaging surveys, the number of detected lenses is increasing significantly such that automated and fast modeling procedures for ground-based data are urgently needed. This is especially pertinent to short-lived lensed transients in order to plan follow-up observations. Therefore, we present in a companion paper (submitted) a neural network predicting the parameter values with corresponding uncertainties of a Singular Isothermal Ellipsoid (SIE) mass profile with external shear. In this work, we present a newly-developed pipeline glee_auto.py to model consistently any galaxy-scale lensing system. In contrast to previous automated modeling pipelines that require high-resolution images, glee_auto.py is optimized for ground-based images such as those from the Hyper-Suprime-Cam (HSC) or the upcoming Rubin Observatory Legacy Survey of Space and Time. We further present glee_tools.py, a flexible automation code for individual modeling that has no direct decisions and assumptions implemented. Both pipelines, in addition to our modeling network, minimize the user input time drastically and thus are important for future modeling efforts. We apply the network to 31 real galaxy-scale lenses of HSC and compare the results to the traditional models. In the direct comparison, we find a very good match for the Einstein radius especially for systems with $\theta_E \gtrsim 2$". The lens mass center and ellipticity show reasonable agreement. The main discrepancies are on the external shear as expected from our tests on mock systems. In general, our study demonstrates that neural networks are a viable and ultra fast approach for measuring the lens-galaxy masses from ground-based data in the upcoming era with $\sim10^5$ lenses expected.


(842)Endpoint factorization and next-to-leading power resummation of gluon thrust
  • Martin Beneke,
  • Mathias Garny,
  • Sebastian Jaskiewicz,
  • Julian Strohm,
  • Robert Szafron
  • +2
arXiv e-prints (07/2022) e-Print:2207.14199
abstract + abstract -

Endpoint divergences in the convolution integrals appearing in next-to-leading-power factorization theorems prevent a straightforward application of standard methods to resum large logarithmic power-suppressed corrections in collider physics. We study the power-suppressed configuration of the thrust distribution in the two-jet region, where a gluon-initiated jet recoils against a quark-antiquark pair. With the aid of operatorial endpoint factorization conditions, we derive a factorization formula where the individual terms are free from endpoint divergences and can be written in terms of renormalized hard, (anti) collinear, and soft functions in four dimensions. This framework enables us to perform the first resummation of the endpoint-divergent SCET$_{\rm I}$ observables at the leading logarithmic accuracy using exclusively renormalization-group methods.


(841)Large-scale Hydrodynamical Shocks as the Smoking-gun Evidence for a Bar in M31
  • Zi-Xuan Feng,
  • Zhi Li,
  • Juntai Shen,
  • Ortwin Gerhard,
  • R. P. Saglia
  • +1
The Astrophysical Journal, 933, p14 (07/2022) doi:10.3847/1538-4357/ac7964
abstract + abstract -

The formation and evolutionary history of M31 are closely related to its dynamical structures, which remain unclear due to its high inclination. Gas kinematics could provide crucial evidence for the existence of a rotating bar in M31. Using the position-velocity diagram of [O III] and H I, we are able to identify clear sharp velocity jump (shock) features with a typical amplitude over 100 km s-1 in the central region of M31 (4.6 kpc × 2.3 kpc, or $20^{\prime} \times 10^{\prime} $ ). We also simulate gas morphology and kinematics in barred M31 potentials and find that the bar-induced shocks can produce velocity jumps similar to those in [O III]. The identified shock features in both [O III] and H I are broadly consistent, and they are found mainly on the leading sides of the bar/bulge, following a hallmark pattern expected from the bar-driven gas inflow. Shock features on the far side of the disk are clearer than those on the near side, possibly due to limited data coverage on the near side, as well as to obscuration by the warped gas and dust layers. Further hydrodynamical simulations with more sophisticated physics are desired to fully understand the observed gas features and to better constrain the parameters of the bar in M31.


(840)The velocity structure of the intracluster medium during a major merger: Simulated microcalorimeter observations
  • Veronica Biffi,
  • John A. ZuHone,
  • Tony Mroczkowski,
  • Esra Bulbul,
  • William Forman
Astronomy and Astrophysics, 663, p22 (07/2022) doi:10.1051/0004-6361/202142764
abstract + abstract -

Major mergers between galaxy clusters can produce large turbulent and bulk flow velocities in the intracluster medium (ICM) and thus imprint useful diagnostic features in X-ray spectral emission lines from heavy ions. As successfully achieved by Hitomi in observations of the Perseus cluster, measurements of gas velocities in clusters from high-resolution X-ray spectra will be achievable with upcoming X-ray calorimeters such as those on board XRISM, Athena, or a Lynx like mission. An interesting application to clusters involves detecting multiple velocity components or velocity gradients from diagnostic observations of specific interesting locations across the cluster. To explore this possibility in the case of a major head-on cluster merger, we performed velocity analyzes of a cluster-cluster merger from a hydrodynamical simulation by means of X-ray synthetic spectra with a spectral resolution on the order of a few eV. We observed the system along two extreme line-of-sight directions: (1) perpendicular to the plane of the merger and (2) along the merger axis. In these geometrical configurations, we found that clear non-Gaussian shapes of the iron He-like Kα line at 6.7 keV are expected. While the velocity dispersion predicted from the simulations can be retrieved for the brightest 100 ks pointings with XRISM Resolve, some discrepancy with respect to the expected value is noted and can be attributed to the complex non-Gaussian line shapes. Measurements in low surface brightness regions, especially when multiple velocity components are present along the line of sight, require high signal-to-noise ratio and the larger collecting area of the Athena X-IFU calorimeter is therefore required. With the latter, we also investigated the ICM temperature and velocity gradient across the merger bow shock edge, from 20″-wide annuli extracted from a single 1 Ms X-IFU observation. For both temperature and velocity dispersion, we found best-fit values that are consistent with predictions from the simulations within 1-σ. The uncertainties on the inferred velocity dispersion are, however, too large to place any stringent constraints on the shallow gradient downstream of the shock. Additionally, we present simulated images of the thermal and kinetic Sunyaev-Zeldovich effects from this merging system, using the above viewing configurations and compare the results at angular resolutions appropriate for future observatories such as CMB-S4 and the Atacama Large Aperture Submillimeter Telescope (AtLAST).


(839)Chromo-electric screening length in 2+1 flavor QCD
  • P. Petreczky,
  • J. H. W. Sebastian Steinbeisser
The 38th International Symposium on Lattice Field Theory (07/2022)
abstract + abstract -

We study Polyakov loop as well as correlators of real and imaginary parts of the Polyakov loop in 2+1 flavor QCD at finite temperature. We use hypercubic (HYP) smearing to improve the signal in the lattice calculations and to obtain reliable results for the correlators at large distances. From the large distance behavior of the correlators we estimate the chromo-electric screening length to be (0.38-44)/T. Furthermore, we show that the short distance distortions due to HYP smearing do not affect the physics of interest


(838)DustPy -- A Python Package for Dust Evolution in Protoplanetary Disks
  • Sebastian Markus Stammler,
  • Tilman Birnstiel
arXiv e-prints (07/2022) e-Print:2207.00322
abstract + abstract -

Many processes during the evolution of protoplanetary disks and during planet formation are highly sensitive to the sizes of dust particles that are present in the disk: The efficiency of dust accretion in the disk and volatile transport on dust particles, gravoturbulent instabilities leading to the formation of planetesimals, or the accretion of pebbles onto large planetary embryos to form giant planets are typical examples of processes that depend on the sizes of the dust particles involved. Furthermore, radiative properties like absorption or scattering opacities depend on the particle sizes. To interpret observations of dust in protoplanetary disks, a proper estimate of the dust particle sizes is needed. We present DustPy - A Python package to simulate dust evolution in protoplanetary disks. DustPy solves gas and dust transport including viscous advection and diffusion as well as collisional growth of dust particles. DustPy is written with a modular concept, such that every aspect of the model can be easily modified or extended to allow for a multitude of research opportunities.


(837)Core-collapse Supernova Constraint on the Origin of Sterile Neutrino Dark Matter via Neutrino Self-interactions
  • Yu-Ming Chen,
  • Manibrata Sen,
  • Walter Tangarife,
  • Douglas Tuckler,
  • Yue Zhang
arXiv e-prints (07/2022) e-Print:2207.14300
abstract + abstract -

Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S$\nu$DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S$\nu$DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes.


(836)The static energy in 2+1+1-flavor QCD
  • S. Steinbeisser,
  • N. Brambilla,
  • R. L. Delgado,
  • A. Kronfeld,
  • V. Leino
  • +3
  • P. Petreczky,
  • A. Vairo,
  • J. H. Weber
  • (less)
The 38th International Symposium on Lattice Field Theory (07/2022)
abstract + abstract -

We report on the status of the analysis of the static energy in $2+1+1$-flavor QCD. The static energy is obtained by measuring Wilson line correlators in Coulomb gauge using the HISQ action, yielding the scales $r_{0}/a$, $r_{1}/a$, $r_{2}/a$, their ratios, and the string tension $\sigma r_{i}^{2}$. We put emphasis on the possible effects due to the dynamical charm-quark by comparing the lattice results to continuum results of the static energy with and without a massive flavor at two-loop accuracy. We employ gauge-field ensembles from the HotQCD and MILC Collaborations.


(835)Chromoelectric and chromomagnetic correlators at high temperature from gradient flow
  • J. Mayer-Steudte,
  • N. Brambilla,
  • V. Leino,
  • P. Petreczky
The 38th International Symposium on Lattice Field Theory (07/2022)
abstract + abstract -

The heavy quark diffusion coefficient is encoded in the spectral functions of the chromoelectric and the chromomagnetic correlators that are calculable on the lattice. We study the chromoelectric and the chromomagnetic correlator in the deconfined phase of SU(3) gauge theory using Symanzik flow at two temperatures $1.5T_c$ and $10000 T_c$, with $T_c$ being the phase transition temperature. To control the lattice discretization errors and perform the continuum limit we use several temporal lattice extents $N_t=16,20,24$ and 28. We observe that the flow time dependence of the chromomagnetic correlator is quite different from chromoelectric correlator most likely due to the anomalous dimension of the former as has been pointed out recently in the literature.


(834)Impact of H<SUB>2</SUB>-driven star formation and stellar feedback from low-enrichment environments on the formation of spiral galaxies
  • Milena Valentini,
  • Klaus Dolag,
  • Stefano Borgani,
  • Giuseppe Murante,
  • Umberto Maio
  • +6
  • Luca Tornatore,
  • Gian Luigi Granato,
  • Cinthia Ragone-Figueroa,
  • Andreas Burkert,
  • Antonio Ragagnin,
  • Elena Rasia
  • (less)
Monthly Notices of the Royal Astronomical Society (07/2022) doi:10.1093/mnras/stac2110
abstract + abstract -

The reservoir of molecular gas (H2) represents the fuel for the star formation (SF) of a galaxy. Connecting the star formation rate (SFR) to the available H2 is key to accurately model SF in cosmological simulations of galaxy formation. We investigate how modifying the underlying modelling of H2 and the description of stellar feedback in low-metallicity environments (LMF, i.e. low-metallicity stellar feedback) in cosmological, zoomed-in simulations of a Milky Way-size halo influences the formation history of the forming, spiral galaxy and its final properties. We exploit two different models to compute the molecular fraction of cold gas (f$_{\rm H_{\rm 2}}$): i) the theoretical model by Krumholz et al. (2009b) and ii) the phenomenological prescription by Blitz & Rosolowsky (2006). We find that the model adopted to estimate f$_{\rm H_{\rm 2}}$ plays a key role in determining final properties and in shaping the morphology of the galaxy. The clumpier interstellar medium (ISM) and the more complex H2 distribution that the Krumholz et al. (2009b) model predicts result in better agreement with observations of nearby disc galaxies. This shows how crucial it is to link the SFR to the physical properties of the star-forming, molecular ISM. The additional source of energy that LMF supplies in a metal-poor ISM is key in controlling SF at high redshift and in regulating the reservoir of SF across cosmic time. Not only is LMF able to regulate cooling properties of the ISM, but it also reduces the stellar mass of the galaxy bulge. These findings can foster the improvement of the numerical modelling of SF in cosmological simulations.


(833)Toward a Population Synthesis of Disks and Planets I. Evolution of Dust with Entrainment in Winds and Radiation Pressure
  • Remo Burn,
  • Alexandre Emsenhuber,
  • Jesse Weder,
  • Oliver Völkel,
  • Hubert Klahr
  • +3
  • Til Birnstiel,
  • Barbara Ercolano,
  • Christoph Mordasini
  • (less)
arXiv e-prints (07/2022) e-Print:2207.08600
abstract + abstract -

Millimeter astronomy provides valuable information on the birthplaces of planetary systems. In order to compare theoretical models with observations, the dust component has to be carefully calculated. Here, we aim to study the effects of dust entrainment in photoevaporative winds and the ejection and drag of dust due to effects caused by radiation from the central star. We improved and extended the existing implementation of a two-population dust and pebble description in the global Bern/Heidelberg planet formation and evolution model. Modern prescriptions for photoevaporative winds were used and we account for settling and advection of dust when calculating entrainment rates. In order to prepare for future population studies with varying conditions, we explore a wide range of disk-, photoevaporation-, and dust-parameters. We find that if dust can grow to pebble sizes, that is, if they are resistant to fragmentation or turbulence is weak, drift dominates and the entrained mass is small but larger than under the assumption of no vertical advection of grains with the gas flow. For the case of fragile dust shattering at velocities of 1 m/s - as indicated in laboratory experiments -, an order of magnitude more dust is entrained which becomes the main dust removal process. Radiation pressure effects disperse massive, dusty disks on timescales of a few 100 Myr. These results highlight the importance of dust entrainment in winds as a solid mass removal process. Furthermore, this model extension lies the basis for future statistical studies of planet formation in their birth environment.


(832)Asymptotic symmetries and memories of gauge theories in FLRW spacetimes
  • Martin Enriquez-Rojo,
  • Tobias Schroeder
arXiv e-prints (07/2022) e-Print:2207.13726
abstract + abstract -

In this paper, we investigate the asymptotic structure of gauge theories in decelerating and spatially flat Friedmann-Lemaître-Robertson-Walker universes. Firstly, we thoroughly explore the asymptotic symmetries of electrodynamics in this background, which reveals a major inconsistency already present in the flat case. Taking advantage of this treatment, we derive the associated memory effects, discussing their regime of validity and differences with respect to their flat counterparts. Next, we extend our analysis to non-Abelian Yang-Mills, coupling it dynamically and simultaneously to a Dirac spinor and a complex scalar field. Within this novel setting, we examine the (in-)compatibility of the covariant phase space formalism and the use of Poisson superbrackets.


(831)The Uchuu-SDSS galaxy lightcones: a clustering, RSD and BAO study
  • C. A. Dong-Páez,
  • A. Smith,
  • A. O. Szewciw,
  • J. Ereza,
  • M. H. Abdullah
  • +9
  • C. Hernández-Aguayo,
  • S. Trusov,
  • F. Prada,
  • A. Klypin,
  • T. Ishiyama,
  • A. Berlind,
  • P. Zarrouk,
  • J. López Cacheiro,
  • J. Ruedas
  • (less)
arXiv e-prints (07/2022) e-Print:2208.00540
abstract + abstract -

We present the data release of the Uchuu-SDSS galaxies: a set of 32 high-fidelity galaxy lightcones constructed from the large Uchuu 2.1 trillion particle $N$-body simulation using Planck cosmology. We adopt subhalo abundance matching to populate the Uchuu-box halo catalogues with SDSS galaxy luminosities. These cubic box galaxy catalogues generated at several redshifts are combined to create the set of lightcones with redshift-evolving galaxy properties. The Uchuu-SDSS galaxy lightcones are built to reproduce the footprint and statistical properties of the SDSS main galaxy survey, along with stellar masses and star formation rates. This facilitates direct comparison of the observed SDSS and simulated Uchuu-SDSS data. Our lightcones reproduce a large number of observational results, such as the distribution of galaxy properties, the galaxy clustering, the stellar mass functions, and the halo occupation distributions. Using the simulated and real data we select samples of bright red galaxies at $z_\mathrm{eff}=0.15$ to explore Redshift Space Distortions and Baryon Acoustic Oscillations (BAO) utilizing a full-shape analytical model of the two-point correlation function. We create a set of 5100 galaxy lightcones using GLAM N-body simulations to compute covariance errors. We report a $\sim 30\%$ precision increase on $f\sigma_8$, due to our better estimate of the covariance matrix. From our BAO-inferred $\alpha_{\parallel}$ and $\alpha_{\perp}$ parameters, we obtain the first SDSS measurements of the Hubble and angular diameter distances $D_\mathrm{H}(z=0.15) / r_d = 27.9^{+3.1}_{-2.7}$, $D_\mathrm{M}(z=0.15) / r_d = 5.1^{+0.4}_{-0.4}$. Overall, we conclude that the Planck LCDM cosmology nicely explains the observed large-scale structure statistics of SDSS. All data sets are made publicly available.


(830)Endpoint factorization and next-to-leading power resummation of gluon thrust
  • Martin Beneke,
  • Mathias Garny,
  • Sebastian Jaskiewicz,
  • Julian Strohm,
  • Robert Szafron
  • +2
PoS, LL2022, p068 (07/2022) e-Print:2207.14199 doi:10.22323/1.416.0068
abstract + abstract -

Endpoint divergences in the convolution integrals appearing in

next-to-leading-power factorization theorems prevent a straightforward application of standard methods to resum large

logarithmic power-suppressed corrections in collider physics.

We study the power-suppressed configuration of the thrust

distribution in the two-jet region, where a gluon-initiated jet recoils against

a quark-antiquark pair. With the aid

of operatorial endpoint factorization conditions, we derive

a factorization formula where the individual terms are free from

endpoint divergences and can be written in

terms of renormalized hard, (anti) collinear, and soft functions in four

dimensions. This framework enables us to perform the

first resummation of the

endpoint-divergent SCET$_{\rm I}$ observables at the leading

logarithmic accuracy using

exclusively renormalization-group methods.


(829)The Uchuu-SDSS galaxy lightcones: a clustering, RSD and BAO study
  • C.A. Dong-Páez,
  • A. Smith,
  • A.O. Szewciw,
  • J. Ereza,
  • M.H. Abdullah
  • +9
  • C. Hernández-Aguayo,
  • S. Trusov,
  • F. Prada,
  • A. Klypin,
  • T. Ishiyama,
  • A. Berlind,
  • P. Zarrouk,
  • J. López Cacheiro,
  • J. Ruedas
  • (less)
(07/2022) e-Print:2208.00540
abstract + abstract -

We present the data release of the Uchuu-SDSS galaxies: a set of 32 high-fidelity galaxy lightcones constructed from the large Uchuu 2.1 trillion particle $N$-body simulation using Planck cosmology. We adopt subhalo abundance matching to populate the Uchuu-box halo catalogues with SDSS galaxy luminosities. These cubic box galaxy catalogues generated at several redshifts are combined to create the set of lightcones with redshift-evolving galaxy properties. The Uchuu-SDSS galaxy lightcones are built to reproduce the footprint and statistical properties of the SDSS main galaxy survey, along with stellar masses and star formation rates. This facilitates direct comparison of the observed SDSS and simulated Uchuu-SDSS data. Our lightcones reproduce a large number of observational results, such as the distribution of galaxy properties, the galaxy clustering, the stellar mass functions, and the halo occupation distributions. Using the simulated and real data we select samples of bright red galaxies at $z_\mathrm{eff}=0.15$ to explore Redshift Space Distortions and Baryon Acoustic Oscillations (BAO) utilizing a full-shape analytical model of the two-point correlation function. We create a set of 5100 galaxy lightcones using GLAM N-body simulations to compute covariance errors. We report a $\sim 30\%$ precision increase on $f\sigma_8$, due to our better estimate of the covariance matrix. From our BAO-inferred $\alpha_{\parallel}$ and $\alpha_{\perp}$ parameters, we obtain the first SDSS measurements of the Hubble and angular diameter distances $D_\mathrm{H}(z=0.15) / r_d = 27.9^{+3.1}_{-2.7}$, $D_\mathrm{M}(z=0.15) / r_d = 5.1^{+0.4}_{-0.4}$. Overall, we conclude that the Planck LCDM cosmology nicely explains the observed large-scale structure statistics of SDSS. All data sets are made publicly available.


(828)Impact of H$_{\rm 2}$-driven star formation and stellar feedback from low-enrichment environments on the formation of spiral galaxies
  • Milena Valentini,
  • Klaus Dolag,
  • Stefano Borgani,
  • Giuseppe Murante,
  • Umberto Maio
  • +6
  • Luca Tornatore,
  • Gian Luigi Granato,
  • Cinthia Ragone-Figueroa,
  • Andreas Burkert,
  • Antonio Ragagnin,
  • Elena Rasia
  • (less)
abstract + abstract -

The reservoir of molecular gas (H$_{\rm 2}$) represents the fuel for the star formation (SF) of a galaxy. Connecting the star formation rate (SFR) to the available H$_{\rm 2}$ is key to accurately model SF in cosmological simulations of galaxy formation. We investigate how modifying the underlying modelling of H$_{\rm 2}$ and the description of stellar feedback in low-metallicity environments (LMF, i.e. low-metallicity stellar feedback) in cosmological, zoomed-in simulations of a Milky Way-size halo influences the formation history of the forming, spiral galaxy and its final properties. We exploit two different models to compute the molecular fraction of cold gas (f$_{\rm H_{\rm 2}}$): $i)$ the theoretical model by Krumholz et al. (2009b) and $ii)$ the phenomenological prescription by Blitz & Rosolowsky (2006). We find that the model adopted to estimate f$_{\rm H_{\rm 2}}$ plays a key role in determining final properties and in shaping the morphology of the galaxy. The clumpier interstellar medium (ISM) and the more complex H$_{\rm 2}$ distribution that the Krumholz et al. (2009b) model predicts result in better agreement with observations of nearby disc galaxies. This shows how crucial it is to link the SFR to the physical properties of the star-forming, molecular ISM. The additional source of energy that LMF supplies in a metal-poor ISM is key in controlling SF at high redshift and in regulating the reservoir of SF across cosmic time. Not only is LMF able to regulate cooling properties of the ISM, but it also reduces the stellar mass of the galaxy bulge. These findings can foster the improvement of the numerical modelling of SF in cosmological simulations.


(827)A measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and DES
  • E. Schiappucci,
  • F. Bianchini,
  • M. Aguena,
  • M. Archipley,
  • L. Balkenhol
  • +137
  • L.E. Bleem,
  • P. Chaubal,
  • T.M. Crawford,
  • S. Grandis,
  • Y. Omori,
  • C.L. Reichardt,
  • E. Rozo,
  • E.S. Rykoff,
  • C. To,
  • T.M.C. Abbott,
  • P.A.R. Ade,
  • O. Alves,
  • A.J. Anderson,
  • F. Andrade-Oliveira,
  • J. Annis,
  • J.S. Avva,
  • D. Bacon,
  • K. Benabed,
  • A.N. Bender,
  • B.A. Benson,
  • G.M. Bernstein,
  • E. Bertin,
  • S. Bocquet,
  • F.R. Bouchet,
  • D. Brooks,
  • D.L. Burke,
  • J.E. Carlstrom,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • T.W. Cecil,
  • C.L. Chang,
  • P.M. Chichura,
  • T.-L. Chou,
  • M. Costanzi,
  • A. Cukierman,
  • L.N. da Costa,
  • C. Daley,
  • T. de Haan,
  • S. Desai,
  • K.R. Dibert,
  • H.T. Diehl,
  • M.A. Dobbs,
  • P. Doel,
  • C. Doux,
  • D. Dutcher,
  • S. Everett,
  • W. Everett,
  • C. Feng,
  • K.R. Ferguson,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • A. Foster,
  • J. Frieman,
  • S. Galli,
  • A.E. Gambrel,
  • J. García-Bellido,
  • R.W. Gardner,
  • M. Gatti,
  • T. Giannantonio,
  • N. Goeckner-Wald,
  • D. Gruen,
  • R. Gualtieri,
  • S. Guns,
  • G. Gutierrez,
  • N.W. Halverson,
  • S.R. Hinton,
  • E. Hivon,
  • G.P. Holder,
  • D.L. Hollowood,
  • W.L. Holzapfel,
  • K. Honscheid,
  • J.C. Hood,
  • N. Huang,
  • D.J. James,
  • L. Knox,
  • M. Korman,
  • K. Kuehn,
  • C.-L. Kuo,
  • O. Lahav,
  • A.T. Lee,
  • C. Lidman,
  • M. Lima,
  • A.E. Lowitz,
  • C. Lu,
  • M. March,
  • J. Mena-Fernández,
  • F. Menanteau,
  • M. Millea,
  • R. Miquel,
  • J.J. Mohr,
  • J. Montgomery,
  • J. Muir,
  • T. Natoli,
  • G.I. Noble,
  • V. Novosad,
  • R.L.C. Ogando,
  • S. Padin,
  • Z. Pan,
  • F. Paz-Chinchón,
  • M.E.S. Pereira,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • K. Prabhu,
  • J. Prat,
  • W. Quan,
  • A. Rahlin,
  • M. Raveri,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • M. Rouble,
  • J.E. Ruhl,
  • E. Sanchez,
  • V. Scarpine,
  • M. Schubnell,
  • G. Smecher,
  • M. Smith,
  • M. Soares-Santos,
  • J.A. Sobrin,
  • E. Suchyta,
  • A. Suzuki,
  • G. Tarle,
  • D. Thomas,
  • K.L. Thompson,
  • B. Thorne,
  • C. Tucker,
  • C. Umilta,
  • J.D. Vieira,
  • M. Vincenzi,
  • G. Wang,
  • N. Weaverdyck,
  • J. Weller,
  • N. Whitehorn,
  • W.L.K. Wu,
  • V. Yefremenko,
  • M.R. Young
  • (less)
(07/2022) e-Print:2207.11937
abstract + abstract -

We infer the mean optical depth of a sample of optically-selected galaxy clusters from the Dark Energy Survey (DES) via the pairwise kinematic Sunyaev-Zel'dovich (kSZ) effect. The pairwise kSZ signal between pairs of clusters drawn from the DES Year-3 cluster catalog is detected at $4.1 \sigma$ in cosmic microwave background (CMB) temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the $\sim 1,400$ deg$^2$ of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise kSZ signal is $\bar{\tau}_e = (2.97 \pm 0.73) \times 10^{-3}$, while that inferred from the thermal SZ signal is $\bar{\tau}_e = (2.51 \pm 0.55) \times 10^{-3}$. The two measures agree at $0.6 \sigma$. We perform a suite of systematic checks to test the robustness of the analysis.


(826)Revisiting constraints on WIMPs around primordial black holes
  • Estanis Utrilla Ginés,
  • Samuel J. Witte,
  • Olga Mena
(07/2022) e-Print:2207.09481
abstract + abstract -

While Primordial Black Holes (PBHs) with masses $M_{\rm PBH} \gtrsim 10^{-11} \, M_\odot$ cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A sub-dominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of Weakly Interacting Massive Particles (WIMPs) with a small sub-dominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the Cosmic Microwave Background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that $\sim \mathcal{O}(M_\odot)$ PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.


(825)Core-collapse Supernovae in the Dark Energy Survey: Luminosity Functions and Host Galaxy Demographics
  • M. Grayling,
  • C.P. Gutiérrez,
  • M. Sullivan,
  • P. Wiseman,
  • M. Vincenzi
  • +71
  • L. Galbany,
  • A. Möller,
  • D. Brout,
  • T.M. Davis,
  • C. Frohmaier,
  • O. Graur,
  • L. Kelsey,
  • C. Lidman,
  • B. Popovic,
  • M. Smith,
  • M. Toy,
  • B.E. Tucker,
  • Z. Zontou,
  • T.M.C. Abbott,
  • M. Aguena,
  • S. Allam,
  • F. Andrade-Oliveira,
  • J. Annis,
  • J. Asorey,
  • D. Bacon,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • A. Carnero Rosell,
  • D. Carollo,
  • M. Carrasco Kind,
  • J. Carretero,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • H.T. Diehl,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • K. Kuehn,
  • N. Kuropatkin,
  • G.F. Lewis,
  • U. Malik,
  • M. March,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • R.L.C. Ogando,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • A. Roodman,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • D.L. Tucker,
  • T.N. Varga
  • (less)
(07/2022) e-Print:2207.08520
abstract + abstract -

We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically-confirmed supernovae over a redshift range $0.045<z<0.25$. We fit the observed DES $griz$ CCSN light-curves and K-correct to produce rest-frame $R$-band light curves. We compare the sample with lower-redshift CCSN samples from Zwicky Transient Facility (ZTF) and Lick Observatory Supernova Search (LOSS). Comparing luminosity functions, the DES and ZTF samples of SNe II are brighter than that of LOSS with significances of 3.0$\sigma$ and 2.5$\sigma$ respectively. While this difference could be caused by redshift evolution in the luminosity function, simpler explanations such as differing levels of host extinction remain a possibility. We find that the host galaxies of SNe II in DES are on average bluer than in ZTF, despite having consistent stellar mass distributions. We consider a number of possibilities to explain this -- including galaxy evolution with redshift, selection biases in either the DES or ZTF samples, and systematic differences due to the different photometric bands available -- but find that none can easily reconcile the differences in host colour between the two samples and thus its cause remains uncertain.


(824)A galaxy-driven model of type Ia supernova luminosity variations
  • P. Wiseman,
  • M. Vincenzi,
  • M. Sullivan,
  • L. Kelsey,
  • B. Popovic
  • +57
  • B. Rose,
  • D. Brout,
  • T.M. Davis,
  • C. Frohmaier,
  • L. Galbany,
  • C. Lidman,
  • A. Möller,
  • D. Scolnic,
  • M. Smith,
  • M. Aguena,
  • S. Allam,
  • F. Andrade-Oliveira,
  • J. Annis,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • F.J. Castander,
  • M. Costanzi,
  • M.E.S. Pereira,
  • S. Desai,
  • H.T. Diehl,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. Gaztanaga,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • M. March,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • A.K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Soares-Santos,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T.N. Varga
  • (less)
Mon.Not.Roy.Astron.Soc., 515, p4587 (07/2022) e-Print:2207.05583 doi:10.1093/mnras/stac1984
abstract + abstract -

Type Ia supernovae (SNe Ia) are used as standardizable candles to measure cosmological distances, but differences remain in their corrected luminosities which display a magnitude step as a function of host galaxy properties such as stellar mass and rest-frame U−R colour. Identifying the cause of these steps is key to cosmological analyses and provides insight into SN physics. Here we investigate the effects of SN progenitor ages on their light-curve properties using a galaxy-based forward model that we compare to the Dark Energy Survey 5-yr SN Ia sample. We trace SN Ia progenitors through time and draw their light-curve width parameters from a bimodal distribution according to their age. We find that an intrinsic luminosity difference between SNe of different ages cannot explain the observed trend between step size and SN colour. The data split by stellar mass are better reproduced by following recent work implementing a step in total-to-selective dust extinction ratio () between low- and high-mass hosts, although an additional intrinsic luminosity step is still required to explain the data split by host galaxy U−R. Modelling the R_V step as a function of galaxy age provides a better match overall. Additional age versus luminosity steps marginally improve the match to the data, although most of the step is absorbed by the width versus luminosity coefficient α. Furthermore, we find no evidence that α varies with SN age.


(823)Updated bounds on axion-like particles from X-ray observations
  • Simon Schallmoser,
  • Sven Krippendorf,
  • Francesca Chadha-Day,
  • Jochen Weller
Monthly Notices of the Royal Astronomical Society, 514, p13 (07/2022) doi:10.1093/mnras/stac1224
abstract + abstract -

In this work, we revisit five different point sources within or behind galaxy clusters to constrain the coupling constant between axion-like particles (ALPs) and photons. We use three distinct machine learning (ML) techniques and compare our results with a standard χ2 analysis. For the first time, we apply approximate Bayesian computation to search for ALPs and find consistently good performance across ML classifiers. Further, we apply more realistic 3D magnetic field simulations of galaxy clusters and compare our results with previously used 1D simulations. We find constraints on the ALP-photon coupling at the level of state-of-the-art bounds with $g_{a\gamma \gamma } \lesssim 0.6 \times 10^{-12} \, \rm{GeV}^{-1}$, hence improving on previous constraints obtained from the same observations.


(822)Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS
  • Agne Semenaite,
  • Ariel G. Sánchez,
  • Andrea Pezzotta,
  • Jiamin Hou,
  • Roman Scoccimarro
  • +8
  • Alexander Eggemeier,
  • Martin Crocce,
  • Chia-Hsun Chuang,
  • Alexander Smith,
  • Cheng Zhao,
  • Joel R. Brownstein,
  • Graziano Rossi,
  • Donald P. Schneider
  • (less)
Monthly Notices of the Royal Astronomical Society, 512, p14 (06/2022) doi:10.1093/mnras/stac829
abstract + abstract -

We present the analysis of the full shape of anisotropic clustering measurement from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) quasar sample together with the combined galaxy sample from the Baryon Oscillation Spectroscopic Survey (BOSS), re-analysed using an updated recipe for the non-linear matter power spectrum and the non-local bias parameters. We obtain constraints for flat Lambda cold dark matter cosmologies, focusing on the cosmological parameters that are independent of the Hubble parameter h. Our recovered value for the Root Mean Square (RMS) linear perturbation theory variance as measured on the scale of $12\, {\rm Mpc}$ is σ12 = 0.805 ± 0.049, while using the traditional reference scale of $8\, h^{-1}\, {\rm Mpc}$ gives σ8 = 0.815 ± 0.044. We quantify the agreement between our measurements and the latest cosmic microwave background data from Planck using the suspiciousness metric, and find them to be consistent within 0.64 ± 0.03σ. Combining our clustering constraints with the 3 × 2pt data sample from the Dark Energy Survey Year 1 release slightly degrades this agreement to the level of 1.54 ± 0.08σ, while still showing an overall consistency with Planck. We furthermore study the effect of imposing a Planck - like prior on the parameters that define the shape of the linear matter power spectrum, and find significantly tighter constraints on the parameters that control the evolution of density fluctuations. In particular, the combination of low-redshift data sets prefers a value of the physical dark energy density ωDE = 0.335 ± 0.011, which is 1.7σ higher than the one preferred by Planck.


(821)Low-Energy Supernovae Severely Constrain Radiative Particle Decays
  • Andrea Caputo,
  • Hans-Thomas Janka,
  • Georg Raffelt,
  • Edoardo Vitagliano
Physical Review Letters, 128 (06/2022) doi:10.1103/PhysRevLett.128.221103
abstract + abstract -

The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly interacting particles such as sterile neutrinos, dark photons, axionlike particles (ALPs), and others. Radiative decays such as a →2 γ deposit this energy in the surrounding material if the mean free path is less than the radius of the progenitor star. For the first time, we use a supernova (SN) population with particularly low explosion energies as the most sensitive calorimeters to constrain this possibility. These SNe are observationally identified as low-luminosity events with low ejecta velocities and low masses of ejected 56Ni. Their low energies limit the energy deposition from particle decays to less than about 0.1 B, where 1 B (bethe)=1051 erg . For 1-500 MeV-mass ALPs, this generic argument excludes ALP-photon couplings Ga γ γ in the 10-10−10-8 GeV-1 range.


(820)Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution
  • Mark A. Hutchison,
  • Jean-David Bodénan,
  • Lucio Mayer,
  • Maria Schönbächler
Monthly Notices of the Royal Astronomical Society, 512, p21 (06/2022) doi:10.1093/mnras/stac765
abstract + abstract -

Meteoritic studies of Solar system objects show evidence of nucleosynthetic heterogeneities that are inherited from small presolar grains ($\lt 10\,\, \mu {\mathrm{m}}$) formed in stellar environments external to our own. The initial distribution and subsequent evolution of these grains are currently unconstrained. Using 3D, gas-dust simulations, we find that isotopic variations on the order of those observed in the Solar system can be generated and maintained by drag and viscosity. Small grains are dragged radially outwards without size/density sorting by viscous expansion and backreaction, enriching the outer disc with presolar grains. Meanwhile large aggregates composed primarily of silicates drift radially inwards due to drag, further enriching the relative portion of presolar grains in the outer disc and diluting the inner disc. The late accumulation of enriched aggregates outside Jupiter could explain some of the isotopic variations observed in Solar system bodies, such as the enrichment of supernovae derived material in carbonaceous chondrites. We also see evidence for isotopic variations in the inner disc that may hold implications for enstatite and ordinary chondrites that formed closer to the Sun. Initial heterogeneities in the presolar grain distribution that are not continuously reinforced are dispersed by diffusion, radial surface flows, and/or planetary interactions over the entire lifetime of the disc. For younger, more massive discs we expect turbulent diffusion to be even more homogenizing, suggesting that dust evolution played a more central role in forming the isotopic anomalies in the Solar system than originally thought.


(819)Rare radiative decays of charm baryons
  • Nico Adolph,
  • Gudrun Hiller
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.116001
abstract + abstract -

We study weak radiative |Δ c |=|Δ u |=1 decays of the charmed antitriplet (Λc, Ξc+, Ξc0) and sextet (Σc++, Σc+, Σc0, Ξc'+, Ξc'0, Ωc) baryons in the standard model (SM) and beyond. We work out S U (2 )- and S U (3 )F-symmetry relations. We propose to study self-analyzing decay chains such as Ξc+→Σ+(→p π0)γ and Ξc0→Λ (→p π-)γ , which enable new physics sensitive polarization studies. SM contributions can be controlled by a corresponding analysis of the Cabibbo-favored decays Λc+→Σ+(→p π0)γ and Ξc0→Ξ0(→Λ π0)γ . Further tests of the SM are available with initially polarized baryons including Λc→p γ together with Λc→Σ+γ decays, or Ωc→Ξ0γ together with Ωc→(Λ ,Σ0)γ . In addition, C P -violating new physics contributions to dipole operators can enhance C P asymmetries up to a few percent.


(818)Static Energy in ($2+1+1$)-Flavor Lattice QCD: Scale Setting and Charm Effects
  • TUMQCD Collaboration,
  • Nora Brambilla,
  • Rafael L. Delgado,
  • Andreas S. Kronfeld,
  • Viljami Leino
  • +4
  • Peter Petreczky,
  • Sebastian Steinbeißer,
  • Antonio Vairo,
  • Johannes H. Weber
  • (less)
arXiv e-prints (06/2022) e-Print:2206.03156
abstract + abstract -

We present results for the static energy in ($2+1+1$)-flavor QCD over a wide range of lattice spacings and several quark masses, including the physical quark mass, with ensembles of lattice-gauge-field configurations made available by the MILC Collaboration. We obtain results for the static energy out to distances of nearly $1$~fm, allowing us to perform a simultaneous determination of the scales $r_{1}$ and $r_{0}$ as well as the string tension, $\sigma$. For the smallest three lattice spacings we also determine the scale $r_{2}$. Our results for $r_{0}/r_{1}$ and $r_{0}\sqrt{\sigma}$ agree with published ($2+1$)-flavor results. However, our result for $r_{1}/r_{2}$ differs significantly from the value obtained in the ($2+1$)-flavor case, which is most likely due to the effect of the charm quark. We also report results for $r_{0}$, $r_{1}$, and $r_{2}$ in~fm, with the former two being slightly lower than published ($2+1$)-flavor results. We study in detail the effect of the charm quark on the static energy by comparing our results on the finest two lattices with the previously published ($2+1$)-flavor QCD results at similar lattice spacing. We find that for $r > 0.2$~fm our results on the static energy agree with the ($2+1$)-flavor result, implying the decoupling of the charm quark for these distances. For smaller distances, on the other hand, we find that the effect of the dynamical charm quark is noticeable. The lattice results agree well with the two-loop perturbative expression of the static energy incorporating finite charm mass effects. This is the first time that the decoupling of the charm quark is observed and quantitatively analyzed on lattice data of the static energy.


(817)Effects of boosting on extragalactic components: methods and statistical studies
  • William Coulton,
  • Sydney Feldman,
  • Karime Maamari,
  • Elena Pierpaoli,
  • Siavash Yasini
  • +1
Monthly Notices of the Royal Astronomical Society, 513, p19 (06/2022) doi:10.1093/mnras/stac1017
abstract + abstract -

In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and Sunyaev-Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by ${\sim}30{{\ \rm per\ cent}}$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $O(1){{\ \rm per\ cent}}$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky - in practice this anisotropy comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods.


(816)HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program
  • Yiping Shu,
  • Raoul Cañameras,
  • Stefan Schuldt,
  • Sherry H. Suyu,
  • Stefan Taubenberger
  • +2
  • Kaiki Taro Inoue,
  • Anton T. Jaelani
  • (less)
Astronomy and Astrophysics, 662, p22 (06/2022) doi:10.1051/0004-6361/202243203
abstract + abstract -

We carry out a search for strong-lens systems containing high-redshift lens galaxies with the goal of extending strong-lensing-assisted galaxy evolutionary studies to earlier cosmic time. Two strong-lens classifiers are constructed from a deep residual network and trained with datasets of different lens-redshift and brightness distributions. We classify a sample of 5 356 628 pre-selected objects from the Wide-layer fields in the second public data release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) by applying the two classifiers to their HSC gri-filter cutouts. Cutting off at thresholds that correspond to a false positive rate of 10−3 on our test set, the two classifiers identify 5468 and 6119 strong-lens candidates. Visually inspecting the cutouts of those candidates results in 735 grade-A or B strong-lens candidates in total, of which 277 candidates are discovered for the first time. This is the single largest set of galaxy-scale strong-lens candidates discovered with HSC data to date, and nearly half of it (331/735) contains lens galaxies with photometric redshifts above 0.6. Our discoveries will serve as a valuable target list for ongoing and scheduled spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, the Subaru Prime Focus Spectrograph project, and the Maunakea Spectroscopic Explorer.

Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/662/A4


(815)SHARP - VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging
  • Geoff C. -F. Chen,
  • Christopher D. Fassnacht,
  • Sherry H. Suyu,
  • Léon V. E. Koopmans,
  • David J. Lagattuta
  • +4
  • John P. McKean,
  • Matt W. Auger,
  • Simona Vegetti,
  • Tommaso Treu
  • (less)
Monthly Notices of the Royal Astronomical Society, 513, p11 (06/2022) doi:10.1093/mnras/stac1081
abstract + abstract -

Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131-1231, HE 0435-1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ~15 per cent precision.


(814)Heavy quark diffusion coefficient with gradient flow
  • Nora Brambilla,
  • Viljami Leino,
  • Julian Mayer-Steudte,
  • Peter Petreczky
arXiv e-prints (06/2022) e-Print:2206.02861
abstract + abstract -

We calculate chromo-electric and chromo-magnetic correlators in quenched QCD at $1.5T_c$ and $10^4 T_c$ with the aim to estimate the heavy quark diffusion coefficient at leading order in the inverse heavy quark mass expansion, $\kappa_E$, as well as the coefficient of first mass suppressed correction, $\kappa_B$. We use gradient flow for noise reduction. At $1.5T_c$ we obtain: $1.70 \le \kappa_E/T^3 \le 3.12$ and $1.23< \kappa_B/T^3 < 2.74$. The latter implies that the mass suppressed effects in the heavy quark diffusion coefficient are 20% for bottom quarks and 34% for charm quark at this temperature.


(813)Low-luminosity type IIP supernovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions
  • Alexandra Kozyreva,
  • Hans-Thomas Janka,
  • Daniel Kresse,
  • Stefan Taubenberger,
  • Petr Baklanov
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1518
abstract + abstract -

SN 2020cxd is a representative of the family of low-energy, underluminous Type IIP supernovae (SNe), whose observations and analysis were recently reported by Yang et al. (2021). Here we re-evaluate the observational data for the diagnostic SN properties by employing the hydrodynamic explosion model of a 9 M red supergiant progenitor with an iron core and a pre-collapse mass of 8.75 M. The explosion of the star was obtained by the neutrino-driven mechanism in a fully self-consistent simulation in three dimensions (3D). Multi-band light curves and photospheric velocities for the plateau phase are computed with the one-dimensional radiation-hydrodynamics code STELLA, applied to the spherically averaged 3D explosion model as well as sphericized radial profiles in different directions of the 3D model. We find that the overall evolution of the bolometric light curve, duration of the plateau phase, and basic properties of the multi-band emission can be well reproduced by our SN model with its explosion energy of only 0.7 × 1050 erg and an ejecta mass of 7.4 M. These values are considerably lower than the previously reported numbers, but they are compatible with those needed to explain the fundamental observational properties of the prototype low-luminosity SN 2005cs. Because of the good compatibility of our photospheric velocities with line velocities determined for SN 2005cs, we conclude that the line velocities of SN 2020cxd are probably overestimated by up to a factor of about 3. The evolution of the line velocities of SN 2005cs compared to photospheric velocities in different explosion directions might point to intrinsic asymmetries in the SN ejecta.


(812)Spin fields for the spinning particle
  • E. Boffo,
  • I. Sachs
arXiv e-prints (06/2022) e-Print:2206.03243
abstract + abstract -

We propose an analogue of spin fields for the relativistic RNS-particle in 4 dimensions, in order to describe Ramond-Ramond states as "two-particle" excitations on the world line. On a natural representation space we identify a differential whose cohomology agrees with RR-fields equations. We then discuss the non-linear theory encoded in deformations of the latter by background fields. We also formulate a sigma model for this spin field from which we recover the RNS-formulation by imposing suitable constraints.


(811){\Lambda}CDM with baryons vs. MOND: the time evolution of the universal acceleration scale in the Magneticum simulations
  • Alexander C. Mayer,
  • Adelheid F. Teklu,
  • Klaus Dolag,
  • Rhea-Silvia Remus
arXiv e-prints (06/2022) e-Print:2206.04333
abstract + abstract -

MOdified Newtonian Dynamics (MOND) is an alternative to the standard Cold Dark Matter (CDM) paradigm which proposes an alteration of Newton's laws of motion at low accelerations, characterized by a universal acceleration scale a_0. It attempts to explain observations of galactic rotation curves and predicts a specific scaling relation of the baryonic and total acceleration in galaxies, referred to as the Rotational Acceleration Relation (RAR), which can be equivalently formulated as a Mass Discrepancy Acceleration Relation (MDAR). The appearance of these relations in observational data such as SPARC has lead to investigations into the existence of similar relations in cosmological simulations using the standard {\Lambda}CDM model. Here, we report the existence of an RAR and MDAR similar to that predicted by MOND in {\Lambda}CDM using a large sample of galaxies extracted from a cosmological, hydrodynamical simulation (Magneticum). Furthermore, by using galaxies in Magneticum at different redshifts, a prediction for the evolution of the inferred acceleration parameter a_0 with cosmic time is derived by fitting a MOND force law to these galaxies. In Magneticum, the best fit for a_0 is found to increase by a factor of approximately 3 from redshift z = 0 to z = 2. This offers a powerful test from cosmological simulations to distinguish between MOND and {\Lambda}CDM observationally.


(810)Improved Theory Predictions and Global Analysis of Exclusive $\boldsymbol{b\to s\mu^+\mu^-}$ Processes
  • Nico Gubernari,
  • Méril Reboud,
  • Danny van Dyk,
  • Javier Virto
arXiv e-prints (06/2022) e-Print:2206.03797
abstract + abstract -

We provide improved Standard Model theory predictions for the exclusive rare semimuonic processes $B\to K^{(*)}\mu^+\mu^-$ and $B_s\to\phi\mu^+\mu^-$. Our results are based on a novel parametrization of the non-local form factors, which manifestly respects a recently developed dispersive bound. We critically compare our predictions to those obtained in the framework of QCD factorization. Our predictions provide, for the first time, parametric estimates of the systematic uncertainties due to non-local contributions. Comparing our predictions within the Standard Model to available experimental data, we find a large tension for $B\to K\mu^+\mu^-$. A simple model-independent analysis of potential effects beyond the Standard Model yields results compatible with other approaches, albeit with larger uncertainties for the $B\to K^*\mu^+\mu^-$ and $B_s\to \phi\mu^+\mu^-$ decays. Our approach yields systematically improvable predictions, and we look forward to its application in further analyses beyond the Standard Model.


(809)AAfrag 2.01: Interpolation routines for Monte Carlo results on secondary production including light antinuclei in hadronic interactions
  • M. Kachelriess,
  • S. Ostapchenko,
  • J. Tjemsland
arXiv e-prints (06/2022) e-Print:2206.00998
abstract + abstract -

Light antinuclei, like antideuteron and antihelium-3, are ideal probes for new, exotic physics because their astrophysical backgrounds are suppressed at low energies. In order to exploit fully the inherent discovery potential of light antinuclei, a reliable description of their production cross sections in cosmic ray interactions is crucial. We provide therefore the cross sections of antideuteron and antihelium-3 production in $pp$, $p$He, He$p$, HeHe, $\bar pp$ and $\bar p$He collisions at energies relevant for secondary production in the Milky Way, in a tabulated form which is convinient to use. These predictions are based on QGSJET-II-04m and the state of the art coalescence model WiFunC, which evaluates the coalesence probability on an event-by-event basis, including both momentum correlations and the dependence on the emission volume. In addition, we comment on the importance of a Monte Carlo description of the antideuteron production and on the use of event generators in general. In particular, we discuss the effect of two-particle momentum correlations provided by Monte Carlo event generators on antinuclei production.


(808)Radioactive Decay
  • Roland Diehl
arXiv e-prints (06/2022) e-Print:2206.03193
abstract + abstract -

Radioactive decay of unstable atomic nuclei leads to liberation of nuclear binding energy in the forms of gamma-ray photons and secondary particles (electrons, positrons); their energy then energises surrounding matter. Unstable nuclei are formed in nuclear reactions, which can occur either in hot and dense extremes of stellar interiors or explosions, or from cosmic-ray collisions. In high-energy astronomy, direct observations of characteristic gamma-ray lines from the decay of radioactive isotopes are important tools to study the process of cosmic nucleosynthesis and its sources, as well as tracing the flows of ejecta from such sources of nucleosynthesis. These observations provide a valuable complement to indirect observations of radioactive energy deposits, such as the measurement of supernova light in the optical. Here we present basics of radioactive decay in astrophysical context, and how gamma-ray lines reveal details about stellar interiors, about explosions on stellar surfaces or of entire stars, and about the interstellar-medium processes that direct the flow and cooling of nucleosynthesis ashes once having left their sources. We address radioisotopes such as $^{56}$Ni, $^{44}$Ti, $^{26}$Al, $^{60}$Fe, $^{22}$Na, $^{7}$Be, and also how characteristic gamma-ray emission from the annihilation of positrons is connected to these.


(807)STRIDES: Automated uniform models for 30 quadruply imaged quasars
  • T. Schmidt,
  • T. Treu,
  • S. Birrer,
  • A. J. Shajib,
  • C. Lemon
  • +66
  • M. Millon,
  • D. Sluse,
  • A. Agnello,
  • T. Anguita,
  • M. W. Auger-Williams,
  • R. G. McMahon,
  • V. Motta,
  • P. Schechter,
  • C. Spiniello,
  • I. Kayo,
  • F. Courbin,
  • S. Ertl,
  • C. D. Fassnacht,
  • J. A. Frieman,
  • A. More,
  • S. Schuldt,
  • S. H. Suyu,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • D. L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L. N. da Costa,
  • M. E. S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • S. R. Hinton,
  • D. L. Hollowood,
  • K. Honscheid,
  • D. J. James,
  • K. Kuehn,
  • O. Lahav,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A. K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T. N. Varga
  • (less)
arXiv e-prints (06/2022) e-Print:2206.04696
abstract + abstract -

Gravitational time delays provide a powerful one step measurement of $H_0$, independent of all other probes. One key ingredient in time delay cosmography are high accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (10$^{5-6}$ CPU hours and $\sim$ 0.5-1 year, respectively). Major improvements in modeling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, building on the work by Shajib et al. (2019), we develop an automated modeling pipeline and apply it to a sample of 30 quadruply imaged quasars and one lensed compact galaxy, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in Fermat potential (proportional to time delay) w.r.t. modeling choices. We find that for 10/30 lenses our models are cosmography or nearly cosmography grade (<3% and 3-5% variations). For 6/30 lenses the models are close to cosmography grade (5-10%). These results are based on informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modeling sequence and options. In conclusion, we show that uniform cosmography grade modeling of large strong lens samples is within reach.


(806)A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback
  • P. Barrère,
  • J. Guilet,
  • A. Reboul-Salze,
  • R. Raynaud,
  • H. -T. Janka
arXiv e-prints (06/2022) e-Print:2206.01269
abstract + abstract -

Magnetars are isolated young neutron stars characterized by the most intense magnetic fields known in the universe. The origin of their magnetic field is still a challenging question. In situ magnetic field amplification by dynamo action is a promising process to generate ultra-strong magnetic fields in fast-rotating progenitors. However, it is unclear whether the fraction of progenitors harboring fast core rotation is sufficient to explain the entire magnetar population. To address this point, we propose a new scenario for magnetar formation, in which a slow-rotating proto-neutron star is spun up by the supernova fallback. We argue that this can trigger the development of the Tayler-Spruit dynamo while other dynamo processes are disfavored. Using previous works done on this dynamo and simulations to characterize the fallback, we derive equations modelling the coupled evolution of the proto-neutron star rotation and magnetic field. Their time integration for different fallback masses is successfully compared with analytical estimates of the amplification timescales and saturation value of the magnetic field. We find that the magnetic field is amplified within $20$ to $40$s after the core bounce, and that the radial magnetic field saturates at intensities $10^{14}-10^{15}$G, therefore spanning the full range of magnetar's dipolar magnetic fields. We also compare predictions of two proposed saturation mechanisms showing that magnetar-like magnetic fields can be generated for neutron star spun up to rotation periods $\lesssim8$ms and $\lesssim28$ms, corresponding to fallback masses $\gtrsim4\times10^{-2}{\rm M}_{\odot}$ and $\gtrsim10^{-2}{\rm M}_{\odot}$. Thus, our results suggest that magnetars can be formed from slow-rotating progenitors for fallback masses compatible with recent supernova simulations and leading to plausible initial rotation periods of the proto-neutron star.


(805)CO and [CII] line emission of molecular clouds -- the impact of stellar feedback and non-equilibrium chemistry
  • S. Ebagezio,
  • D. Seifried,
  • S. Walch,
  • P. C. Nürnberger,
  • T. E. Rathjen
  • +1
arXiv e-prints (06/2022) e-Print:2206.06393
abstract + abstract -

We analyse synthetic $^{12}$CO, $^{13}$CO, and [CII] emission maps of simulated molecular clouds of the SILCC-Zoom project, which include an on-the-fly evolution of H$_2$, CO, and C$^+$. We use simulations of hydrodynamical and magnetohydrodynamical clouds, both with and without stellar feedback. We introduce a novel post-processing of the C$^+$ abundance using CLOUDY, to account for further ionization states of carbon due to stellar radiation. We report the first self-consistent synthetic emission maps of [CII] in feedback bubbles, largely devoid of emission inside them, as recently found in observations. The C$^+$ mass is only poorly affected by stellar feedback but the [CII] luminosity increases by $50 - 85$ per cent compared to runs without feedback. Furthermore, we investigate the capability of the CO/[CII] line ratio as a tracer of the amount of H$_2$ in the clouds and their evolutionary stage. We obtain, for both $^{12}$CO and $^{13}$CO, no clear trend of the luminosity ratio, $L_\mathrm{CO}/L_\mathrm{[CII]}$. It can therefore \textit{not} be used as a reliable measure of the H$_2$ mass fraction. We note a monotonic relation between $L_\mathrm{CO}/L_\mathrm{[CII]}$ and the H$_2$ fraction when considering the ratio for individual pixels of our synthetic maps, but with large scatter. Moreover, we show that assuming chemical equilibrium results in an overestimation of H$_2$ and CO masses of up to 110 and 30 per cent, respectively, and in an underestimation of H and C$^+$ masses of 65 and 7 per cent, respectively. In consequence, $L_\mathrm{CO}$ would be overestimated by up to 50 per cent, and $L_\mathrm{C[II]}$ be underestimated by up to 35 per cent. Hence, the assumption of chemical equilibrium in molecular cloud simulations introduces intrinsic errors of a factor of up to $\sim2$ in chemical abundances, luminosities and luminosity ratios.


(804)The PEPSI exoplanet transit survey (PETS) I: investigating the presence of a silicate atmosphere on the super-earth 55 Cnc e
  • Engin Keles,
  • Matthias Mallonn,
  • Daniel Kitzmann,
  • Katja Poppenhaeger,
  • H. Jens Hoeijmakers
  • +24
  • Ilya Ilyin,
  • Xanthippi Alexoudi,
  • Thorsten A. Carroll,
  • Julian Alvarado-Gomez,
  • Laura Ketzer,
  • Aldo S. Bonomo,
  • Francesco Borsa,
  • B. Scott Gaudi,
  • Thomas Henning,
  • Luca Malavolta,
  • Karan Molaverdikhani,
  • Valerio Nascimbeni,
  • Jennifer Patience,
  • Lorenzo Pino,
  • Gaetano Scandariato,
  • Everett Schlawin,
  • Evgenya Shkolnik,
  • Daniela Sicilia,
  • Alessandro Sozzetti,
  • Mary G. Foster,
  • Christian Veillet,
  • Ji Wang,
  • Fei Yan,
  • Klaus G. Strassmeier
  • (less)
Monthly Notices of the Royal Astronomical Society, 513, p13 (06/2022) doi:10.1093/mnras/stac810
abstract + abstract -

The study of exoplanets and especially their atmospheres can reveal key insights on their evolution by identifying specific atmospheric species. For such atmospheric investigations, high-resolution transmission spectroscopy has shown great success, especially for Jupiter-type planets. Towards the atmospheric characterization of smaller planets, the super-Earth exoplanet 55 Cnc e is one of the most promising terrestrial exoplanets studied to date. Here, we present a high-resolution spectroscopic transit observation of this planet, acquired with the PEPSI instrument at the Large Binocular Telescope. Assuming the presence of Earth-like crust species on the surface of 55 Cnc e, from which a possible silicate-vapor atmosphere could have originated, we search in its transmission spectrum for absorption of various atomic and ionized species such as Fe , Fe +, Ca , Ca +, Mg, and K , among others. Not finding absorption for any of the investigated species, we are able to set absorption limits with a median value of 1.9 × RP. In conclusion, we do not find evidence of a widely extended silicate envelope on this super-Earth reaching several planetary radii.


(803)LYRA - II. Cosmological dwarf galaxy formation with inhomogeneous Population III enrichment
  • Thales A. Gutcke,
  • Rüdiger Pakmor,
  • Thorsten Naab,
  • Volker Springel
Monthly Notices of the Royal Astronomical Society, 513, p14 (06/2022) doi:10.1093/mnras/stac867
abstract + abstract -

We present the simulation of a $2\times 10^{9}\, \mathrm{M}_{\odot }$ halo mass cosmological dwarf galaxy run to z = 0 at 4 solar mass gas resolution with resolved supernova feedback. We compare three simple subgrid implementations for the inhomogeneous chemical enrichment from Population III stars and compare them to constraints from Local Group dwarf galaxies. The employed model, LYRA, is a novel high-resolution galaxy formation model built for the moving mesh code AREPO, which is marked by a resolved multiphase interstellar medium, single stars, and individual supernova events. The resulting reionization relic is characterized by a short (<1.5 Gyr) star formation history that is repeatedly brought to a standstill by violent bursts of feedback. Star formation is reignited for a short duration due to a merger at z ≍ 4 and then again at z ≍ 0.2-0 after sustained gas accretion. Our model z = 0 galaxy matches the stellar mass, size, stellar kinematics, and metallicity relations of Local Group dwarf galaxies well. The dark matter profile does not exhibit a core in any version of the model. We show that the host halo masses of Population III stars affect the assembly history of dwarf galaxies. This manifests itself through the initial gaseous collapse in the progenitor haloes, affecting the central density of the stellar component and through the accretion of luminous substructure.


(802)SN 2016dsg: A Thermonuclear Explosion Involving A Thick Helium Shell
  • Yize Dong,
  • Stefano Valenti,
  • Abigail Polin,
  • Aoife Boyle,
  • andreas flörs
  • +27
  • Christian Vogl,
  • Wolfgang Kerzendorf,
  • David Sand,
  • Saurabh Jha,
  • Lukasz Wyrzykowski,
  • K. Bostroem,
  • Jeniveve Pearson,
  • Curtis McCully,
  • Jennifer Andrew,
  • Stefano Benettii,
  • Stephane Blondin,
  • Lluís Galbany,
  • Mariusz Gromadzki,
  • Griffin Hosseinzadeh,
  • D. Andrew Howell,
  • Cosimo Inserra,
  • Jacob Jencson,
  • M. Lundquist,
  • Joseph Lyman,
  • Mark Magee,
  • Kate Maguire,
  • Nicolas Meza,
  • Shubham Srivastav,
  • Stefan Taubenberger,
  • J Terwel,
  • Samuel Wyatt,
  • David Young
  • (less)
arXiv e-prints (06/2022) e-Print:2206.07065
abstract + abstract -

A thermonuclear explosion triggered by a helium-shell detonation on a carbon-oxygen white dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during helium-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a sub-luminous peculiar Type I SN consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the $i$-band peak absolute magnitude is derived to be around -17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O I $\lambda$7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700-10500 Åis detected in the near-infrared spectrum and is likely from the unburnt helium in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar mass white dwarf with a thick helium shell, while the photometric evolution is not well described by existing models.


(801)Production and polarization of S -wave quarkonia in potential nonrelativistic QCD
  • Nora Brambilla,
  • Hee Sok Chung,
  • Antonio Vairo,
  • Xiang-Peng Wang
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.L111503
abstract + abstract -

Based on the potential nonrelativistic QCD formalism, we compute the nonrelativistic QCD long-distance matrix elements (LDMEs) for inclusive production of S -wave heavy quarkonia. This greatly reduces the number of nonperturbative unknowns and brings in a substantial enhancement in the predictive power of the nonrelativistic QCD factorization formalism. We obtain improved determinations of the LDMEs and find cross sections and polarizations of J /ψ , ψ (2 S ), and excited ϒ states that agree well with LHC data. Our results may have important implications in pinning down the heavy quarkonium production mechanism.


(800)Unusual gas structure in an otherwise normal spiral galaxy hosting GRB 171205A / SN 2017iuk
  • M. Arabsalmani,
  • S. Roychowdhury,
  • F. Renaud,
  • A. Burkert,
  • E. Emsellem
  • +2
arXiv e-prints (06/2022) e-Print:2206.07060
abstract + abstract -

We study the structure of atomic hydrogen (HI) in the host galaxy of GRB 171205A / SN 2017iuk at z=0.037 through HI 21cm emission line observations with the Karl G. Jansky Very Large Array. These observations reveal unusual morphology and kinematics of the HI in this otherwise apparently normal galaxy. High column density, cold HI is absent from an extended North-South region passing by the optical centre of the galaxy, but instead is extended towards the South, on both sides of the galaxy. Moreover, the HI kinematics do not show a continuous change along the major axis of the galaxy as expected in a classical rotating disk. We explore several scenarios to explain the HI structure and kinematics in the galaxy: feedback from a central starburst and/or an active galactic nucleus, ram pressure stripping, accretion, and tidal interaction from a companion galaxy. All of these options are ruled out. The most viable remaining explanation is the penetrating passage of a satellite through the disk only a few Myr ago, redistributing the HI in the GRB host without yet affecting its stellar distribution. It can also lead to the rapid formation of peculiar stars due to a violent induced shock. The location of GRB 171205A in the vicinity of the distorted area suggests that its progenitor star(s) originated in extreme conditions that share the same origin as the peculiarities in HI. This could explain the atypical location of GRB 171205A in its host galaxy.


(799)Lattice simulations of Abelian gauge fields coupled to axions during inflation
  • Angelo Caravano,
  • Eiichiro Komatsu,
  • Kaloian D. Lozanov,
  • Jochen Weller
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.123530
abstract + abstract -

We use a lattice simulation to study a model of axion inflation where the inflaton is coupled to a U(1) gauge field through Chern-Simons interaction. These kinds of models have already been studied with a lattice simulation in the context of reheating. In this work, we focus on the deep inflationary phase and discuss the new aspects that need to be considered in order to simulate gauge fields in this regime. Our main result is reproducing with precision the growth of the gauge field on the lattice induced by the rolling of the axion on its potential, thus recovering the results of linear perturbation theory for this model. In order to do so, we study in detail how the spatial discretization, through the choice of the spatial derivatives on the lattice, influences the dynamics of the gauge field. We find that the evolution of the gauge field is highly sensitive to the choice of the spatial discretization scheme. Nevertheless, we are able to identify a discretization scheme for which the growth of the gauge field on the lattice reproduces the one of continuous space with good precision.


(798)EOS: a software for flavor physics phenomenology
  • D. van Dyk,
  • F. Beaujean,
  • T. Blake,
  • C. Bobeth,
  • M. Bordone
  • +16
  • K. Dugic,
  • E. Eberhard,
  • N. Gubernari,
  • E. Graverini,
  • M. Jung,
  • A. Kokulu,
  • S. Kürten,
  • D. Leljak,
  • P. Lüghausen,
  • S. Meiser,
  • M. Rahimi,
  • M. Reboud,
  • R. Silva Coutinho,
  • J. Virto,
  • K. K. Vos,
  • EOS Authors
  • (less)
European Physical Journal C, 82 (06/2022) doi:10.1140/epjc/s10052-022-10177-4
abstract + abstract -

EOS is an open-source software for a variety of computational tasks in flavor physics. Its use cases include theory predictions within and beyond the Standard Model of particle physics, Bayesian inference of theory parameters from experimental and theoretical likelihoods, and simulation of pseudo events for a number of signal processes. EOS ensures high-performance computations through a C++ back-end and ease of usability through a Python front-end. To achieve this flexibility, EOS enables the user to select from a variety of implementations of the relevant decay processes and hadronic matrix elements at run time. In this article, we describe the general structure of the software framework and provide basic examples. Further details and in-depth interactive examples are provided as part of the EOS online documentation.


(797)STRIDES: Automated uniform models for 30 quadruply imaged quasars
  • T. Schmidt,
  • T. Treu,
  • S. Birrer,
  • A.J. Shajib,
  • C. Lemon
  • +66
  • M. Millon,
  • D. Sluse,
  • A. Agnello,
  • T. Anguita,
  • M.W. Auger-Williams,
  • R.G. McMahon,
  • V. Motta,
  • P. Schechter,
  • C. Spiniello,
  • I. Kayo,
  • F. Courbin,
  • S. Ertl,
  • C.D. Fassnacht,
  • J.A. Frieman,
  • A. More,
  • S. Schuldt,
  • S.H. Suyu,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • D.L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • K. Kuehn,
  • O. Lahav,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T.N. Varga
  • (less)
(06/2022) e-Print:2206.04696
abstract + abstract -

Gravitational time delays provide a powerful one step measurement of $H_0$, independent of all other probes. One key ingredient in time delay cosmography are high accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (10$^{5-6}$ CPU hours and $\sim$ 0.5-1 year, respectively). Major improvements in modeling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, building on the work by Shajib et al. (2019), we develop an automated modeling pipeline and apply it to a sample of 30 quadruply imaged quasars and one lensed compact galaxy, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in Fermat potential (proportional to time delay) w.r.t. modeling choices. We find that for 10/30 lenses our models are cosmography or nearly cosmography grade (<3% and 3-5% variations). For 6/30 lenses the models are close to cosmography grade (5-10%). These results are based on informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modeling sequence and options. In conclusion, we show that uniform cosmography grade modeling of large strong lens samples is within reach.


(796)Toward RNA Life on Early Earth: From Atmospheric HCN to Biomolecule Production in Warm Little Ponds
  • Ben K. D. Pearce,
  • Karan Molaverdikhani,
  • Ralph E. Pudritz,
  • Thomas Henning,
  • Kaitlin E. Cerrillo
The Astrophysical Journal, 932, p21 (06/2022) doi:10.3847/1538-4357/ac47a1
abstract + abstract -

The origin of life on Earth involves the early appearance of an information-containing molecule such as RNA. The basic building blocks of RNA could have been delivered by carbon-rich meteorites or produced in situ by processes beginning with the synthesis of hydrogen cyanide (HCN) in the early Earth's atmosphere. Here, we construct a robust physical and nonequilibrium chemical model of the early Earth's atmosphere. The atmosphere is supplied with hydrogen from impact degassing of meteorites, water evaporated from the oceans, carbon dioxide from volcanoes, and methane from undersea hydrothermal vents, and in it lightning and external UV-driven chemistry produce HCN. This allows us to calculate the rain-out of HCN into warm little ponds (WLPs). We then use a comprehensive numerical model of sources and sinks to compute the resulting abundances of nucleobases, ribose, and nucleotide precursors such as 2-aminooxazole resulting from aqueous and UV-driven chemistry within them. We find that 4.4 billion years ago the limit of adenine concentrations in ponds for habitable surfaces is 0.05 μM in the absence of seepage. Meteorite delivery of adenine to WLPs can provide boosts in concentration by 2-3 orders of magnitude, but these boosts deplete within months by UV photodissociation, seepage, and hydrolysis. The early evolution of the atmosphere is dominated by the decrease in hydrogen due to falling impact rates and atmospheric escape, and the rise of oxygenated species such as OH from H2O photolysis. The source of HCN is predominantly from UV radiation rather than lightning. Our work points to an early origin of RNA on Earth within ~200 Myr of the Moon-forming impact.


(795)Mapping "out-of-the-box" the properties of the baryons in massive halos
  • M. Angelinelli,
  • S. Ettori,
  • K. Dolag,
  • F. Vazza,
  • A. Ragagnin
arXiv e-prints (06/2022) e-Print:2206.08382
abstract + abstract -

We study the distributions of the baryons in massive halos ($M_{vir} > 10^{13} \ h^{-1}M_{\odot}$) in the $Magneticum$ suite of Smoothed Particle Hydrodynamical cosmological simulations, out to the unprecedented radial extent of $10 R_{500,\mathrm c}$. We confirm that, under the action of non-gravitational physical phenomena, the baryon mass fraction is lower in the inner regions ($<R_{500,\mathrm c}$) of increasingly less massive halos, and rises moving outwards, with values that spans from 51% (87%) in the regions around $R_{500,\mathrm c}$ to 95% (100%) at $10R_{500,\mathrm c}$ of the cosmological value in the systems with the lowest (highest; $M_{vir} \sim 5 \times 10^{14} \ h^{-1}M_{\odot}$) masses. The galaxy groups almost match the gas (and baryon) fraction measured in the most massive halos only at very large radii ($r>6 R_{500,\mathrm c}$), where the baryon depletion factor $Y_{\rm bar} = f_{\rm bar} / (\Omega_{\rm b}/\Omega_{\rm m})$ approaches the value of unity, expected for "closed-box" systems. We find that both the radial and mass dependency of the baryon, gas, and hot depletion factors are predictable and follow a simple functional form. The star mass fraction is higher in less massive systems, decreases systematically with increasing radii, and reaches a constant value of $Y_{\rm star} \approx 0.09$, where also the gas metallicity is constant, regardless of the host halo mass, as a result of the early ($z>2$) enrichment process.


(794)A detailed analysis of the Gl 486 planetary system
  • J. A. Caballero,
  • E. Gonzalez-Alvarez,
  • M. Brady,
  • T. Trifonov,
  • T. G. Ellis
  • +62
  • C. Dorn,
  • C. Cifuentes,
  • K. Molaverdikhani,
  • J. L. Bean,
  • T. Boyajian,
  • E. Rodriguez,
  • J. Sanz-Forcada,
  • M. R. Zapatero Osorio,
  • C. Abia,
  • P. J. Amado,
  • N. Anugu,
  • V. J. S. Bejar,
  • C. L. Davies,
  • S. Dreizler,
  • F. Dubois,
  • J. Ennis,
  • N. Espinoza,
  • C. D. Farrington,
  • A. Garcia Lopez,
  • T. Gardner,
  • A. P. Hatzes,
  • Th. Henning,
  • E. Herrero,
  • E. Herrero-Cisneros,
  • A. Kaminski,
  • D. Kasper,
  • R. Klement,
  • S. Kraus,
  • A. Labdon,
  • C. Lanthermann,
  • J. -B. Le Bouquin,
  • M. J. Lopez Gonzalez,
  • R. Luque,
  • A. W. Mann,
  • E. Marfil,
  • J. D. Monnier,
  • D. Montes,
  • J. C. Morales,
  • E. Palle,
  • S. Pedraz,
  • A. Quirrenbach,
  • S. Reffert,
  • A. Reiners,
  • I. Ribas,
  • C. Rodriguez-Lopez,
  • G. Schaefer,
  • A. Schweitzer,
  • A. Seifahrt,
  • B. R. Setterholm,
  • Y. Shan,
  • D. Shulyak,
  • E. Solano,
  • K. R. Sreenivas,
  • G. Stefansson,
  • J. Stuermer,
  • H. M. Tabernero,
  • L. Tal-Or,
  • T. ten Brummelaar,
  • S. Vanaverbeke,
  • K. von Braun,
  • A. Youngblood,
  • M. Zechmeister
  • (less)
arXiv e-prints (06/2022) e-Print:2206.09990
abstract + abstract -

The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R_Terra and 3.0 M_Terra that is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. To prepare for future studies, we collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X/Gemini North and CARMENES/Calar Alto telescopes, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes. From interferometry, we measure a limb-darkened disc angular size of the star Gl 486. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius. We also measure a stellar rotation period at P_rot ~ 49.9 d, an upper limit to its XUV (5-920 AA) flux with new Hubble/STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Besides, we impose restrictive constraints on the presence of additional components, either stellar or substellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R_p = 1.343+/0.063 R_Terra and M_p = 3.00+/-0.13 M_Terra. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope observations (abridged).


(793)Large-scale Hydrodynamical Shocks as the Smoking Gun Evidence for a Bar in M31
  • Zi-Xuan Feng,
  • Zhi Li,
  • Juntai Shen,
  • Ortwin Gerhard,
  • Roberto Saglia
  • +1
arXiv e-prints (06/2022) e-Print:2206.10026
abstract + abstract -

The formation and evolutionary history of M31 are closely related to its dynamical structures, which remain unclear due to its high inclination. Gas kinematics could provide crucial evidence for the existence of a rotating bar in M31. Using the position-velocity diagram of [OIII] and HI, we are able to identify clear sharp velocity jump (shock) features with a typical amplitude over 100 km/s in the central region of M31 (4.6 kpc X 2.3 kpc, or 20 arcmin X 10 arcmin). We also simulate gas morphology and kinematics in barred M31 potentials and find that the bar-induced shocks can produce velocity jumps similar to those in [OIII]. The identified shock features in both [OIII] and HI are broadly consistent, and they are found mainly on the leading sides of the bar/bulge, following a hallmark pattern expected from the bar-driven gas inflow. Shock features on the far side of the disk are clearer than those on the near side, possibly due to limited data coverage on the near side, as well as obscuration by the warped gas and dust layers. Further hydrodynamical simulations with more sophisticated physics are desired to fully understand the observed gas features and to better constrain the parameters of the bar in M31.


(792)Super-resolution trends in the ALMA Taurus survey: Structured inner discs and compact discs
  • Jeff Jennings,
  • Marco Tazzari,
  • Cathie J. Clarke,
  • Richard A. Booth,
  • Giovanni P. Rosotti
arXiv e-prints (06/2022) e-Print:2206.11308
abstract + abstract -

The 1.33 mm survey of protoplanetary discs in the Taurus molecular cloud found annular gaps and rings to be common in extended sources (>~55 au), when their 1D visibility distributions were fit parametrically. We first demonstrate the advantages and limitations of nonparametric visibility fits for data at the survey's 0.12" resolution. Then we use the nonparametric model in Frankenstein ('frank') to identify new substructure in three compact and seven extended sources. Among the new features we identify three trends: a higher occurrence rate of substructure in the survey's compact discs than previously seen, underresolved (potentially azimuthally asymmetric) substructure in the innermost disc of extended sources, and a 'shoulder' on the trailing edge of a ring in discs with strong depletion at small radii. Noting the shoulder morphology is present in multiple discs observed at higher resolution, we postulate it is tracing a common physical mechanism. We further demonstrate how a super-resolution frank brightness profile is useful in motivating an accurate parametric model, using the highly structured source DL Tau in which frank finds two new rings. Finally we show that sparse (u, v) plane sampling may be masking the presence of substructure in several additional compact survey sources.


(791)Dark Matter Dilution Mechanism through the Lens of Large Scale Structure
  • Miha Nemevšek,
  • Yue Zhang
arXiv e-prints (06/2022) e-Print:2206.11293
abstract + abstract -

Entropy production is a necessary ingredient for addressing the over-population of thermal relics. It is widely employed in particle physics models for explaining the origin of dark matter. A long-lived particle that decays to the known particles, while dominating the universe, plays the role of the dilutor. We point out the impact of its partial decay to dark matter on the primordial matter power spectrum. For the first time, we derive a stringent limit on the branching ratio of the dilutor to dark matter from large scale structure observation using the SDSS data. This offers a novel tool for testing models with a dark matter dilution mechanism. We apply it to the left-right symmetric model and show that it firmly excludes a large portion of parameter space for right-handed neutrino warm dark matter.


(790)Implications for the $\Delta A_{FB}$ anomaly in ${\bar B}^0\to D^{*+}\ell^- {\bar\nu}$ using a new Monte Carlo Event Generator
  • Bhubanjyoti Bhattacharya,
  • Thomas E. Browder,
  • Quinn Campagna,
  • Alakabha Datta,
  • Shawn Dubey
  • +2
  • Lopamudra Mukherjee,
  • Alexei Sibidanov
  • (less)
arXiv e-prints (06/2022) e-Print:2206.11283
abstract + abstract -

Recent experimental results in $B$ physics from Belle, BaBar and LHCb suggest new physics (NP) in the weak $b\to c$ charged-current and the $b\to s$ neutral-current processes. Here we focus on the charged-current case and specifically on the decay modes $\overline{B}^0\to D^{*+}\ell^- \bar{\nu}$ with $\ell = e$ and $\mu$. The world averages of the ratios $R_D$ and $R_D^{*}$ currently differ from the Standard Model (SM) predictions by $3.4\sigma$ while recently a new anomaly has been observed in the forward-backward asymmetry measurement, $A_{FB}$, in $ \overline{B}^0\to D^{*+}\mu^- \bar{\nu}$ decay. It is found that $\Delta A_{FB} = A_{FB}(B\to D^{*} \mu\nu) - A_{FB} (B\to D^{*} e \nu)$ is around $4.1\sigma$ away from the SM prediction in an analysis of 2019 Belle data. In this work we explore possible solutions to the $\Delta A_{FB}$ anomaly and point out correlated NP signals in other angular observables. These correlations between angular observables must be present in the case of beyond the Standard Model physics. We stress the importance of $\Delta$ type observables that are obtained by taking the difference of the observable for the muon and the electron mode. These quantities cancel form factor uncertainties in the SM and allow for clean tests of NP. These intriguing results also suggest an urgent need for improved simulation and analysis techniques in $\overline{B}^0\to D^{*+}\ell^- \bar{\nu}$ decays. Here we also describe a new Monte Carlo Event-generator tool based on EVTGEN that we developed to allow simulation of the NP signatures in $\overline{B}^0\to D^{*+}\ell^- \nu$, which arise due to the interference between the SM and NP amplitudes. We then discuss prospects for improved observables sensitive to NP couplings with 1, 5, 50, and 250 ab$^{-1}$ of Belle II data, which seem to be ideally suited for this class of measurements.


(789)Is cosmic birefringence due to dark energy or dark matter? A tomographic approach
  • Hiromasa Nakatsuka,
  • Toshiya Namikawa,
  • Eiichiro Komatsu
Physical Review D, 105 (06/2022) doi:10.1103/PhysRevD.105.123509
abstract + abstract -

A pseudoscalar "axionlike" field, ϕ , may explain the 3 σ hint of cosmic birefringence observed in the E B power spectrum of the cosmic microwave background polarization data. Is ϕ dark energy or dark matter? A tomographic approach can answer this question. The effective mass of dark energy field responsible for the accelerated expansion of the Universe today must be smaller than mϕ≃10-33 eV . If mϕ≳10-32 eV , ϕ starts evolving before the epoch of reionization and we should observe different amounts of birefringence from the E B power spectrum at low (l ≲10 ) and high multipoles. Such an observation, which requires a full-sky satellite mission, would rule out ϕ being dark energy. If mϕ≳10-28 eV , ϕ starts oscillating during the epoch of recombination, leaving a distinct signature in the E B power spectrum at high multipoles, which can be measured precisely by ground-based cosmic microwave background observations. Our tomographic approach relies on the shape of the E B power spectrum and is less sensitive to miscalibration of polarization angles.


(788)A Spectroscopic Study of Blue Supergiant Stars in Local Group Spiral Galaxies: Andromeda and Triangulum
  • Cheng Liu,
  • Rolf-Peter Kudritzki,
  • Gang Zhao,
  • Miguel A. Urbaneja,
  • Yang Huang
  • +2
The Astrophysical Journal, 932, p17 (06/2022) doi:10.3847/1538-4357/ac69cc
abstract + abstract -

Low-resolution LAMOST and Keck spectra of blue supergiant stars distributed over the disks of the Local Group spiral galaxies M31 and M33 are analyzed to determine stellar effective temperatures, gravities, metallicities, and reddening. Logarithmic metallicities at the center of the galaxies (in solar units) of 0.30 ± 0.09 and 0.11 ± 0.04 and metallicity gradients of -0.37 ± 0.13 dex/R 25 and -0.36 ± 0.16 dex/R 25 are measured for M31 and M33, respectively. For M33 the 2D distribution of metallicity indicates a deviation from azimuthal symmetry with an off-center peak. The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars is used to determine a distance modulus of 24.51 ± 0.13 mag for M31 and 24.93 ± 0.07 mag for M33. For M31 the FGLR distance agrees well with other methods. For M33 the FGLR-based distance is larger than the distances from Cepheids studies, but it is in good agreement with work on eclipsing binaries, planetary nebulae, long-period variables, and the tip of the red giant branch.


(787)Cosmic nucleosynthesis: a multi-messenger challenge
  • Roland Diehl,
  • Andreas Korn,
  • Bruno Leibundgut,
  • Maria Lugaro,
  • Anton Wallner
arXiv e-prints (06/2022) e-Print:2206.12246
abstract + abstract -

The origins of the elements and isotopes of cosmic material is a critical aspect of understanding the evolution of the universe. Nucleosynthesis typically requires physical conditions of high temperatures and densities. These are found in the Big Bang, in the interiors of stars, and in explosions with their compressional shocks and high neutrino and neutron fluxes. Many different tools are available to disentangle the composition of cosmic matter, in material of extraterrestrial origins such as cosmic rays, meteorites, stardust grains, lunar and terrestrial sediments, and through astronomical observations across the electromagnetic spectrum. Understanding cosmic abundances and their evolution requires combining such measurements with approaches of astrophysical, nuclear theories and laboratory experiments, and exploiting additional cosmic messengers, such as neutrinos and gravitational waves. Recent years have seen significant progress in almost all these fields; they are presented in this review. Models are required to explore nuclear fusion of heavier elements. These have been confirmed by observations of nucleosynthesis products in the ejecta of stars and supernovae, as captured by stardust grains and by characteristic lines in spectra seen from these objects, and also by ejecta material captured by Earth over millions of years in sediments. All these help to piece together how cosmic materials are transported in interstellar space and re-cycled into and between generations of stars. Our description of cosmic compositional evolution needs observational support, as it rests on several assumptions that appear challenged. This overview presents the flow of cosmic matter and the various sites of nucleosynthesis, as understood from combining many techniques and observations, towards the current knowledge of how the universe is enriched with elements.


(786)$B$-meson decay into a proton and dark antibaryon from QCD light-cone sum rules
  • Alexander Khodjamirian,
  • Marcel Wald
arXiv e-prints (06/2022) e-Print:2206.11601
abstract + abstract -

The recently developed $B$-Mesogenesis scenario predicts decays of $B$ mesons into a baryon and hypothetical dark antibaryon $\Psi$. We suggest a method to calculate the amplitude of the simplest exclusive decay mode $B^+\to p \Psi$. Considering two models of $B$-Mesogenesis, we obtain the $B\to p$ hadronic matrix elements by applying QCD light-cone sum rules with the proton light-cone distribution amplitudes. We estimate the $B^+\to p \Psi$ decay width as a function of the mass and effective coupling of the dark antibaryon.


(785)Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck III: Combined cosmological constraints
  • T. M. C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +166
  • F. Andrade-Oliveira,
  • J. Annis,
  • B. Ansarinejad,
  • S. Avila,
  • D. Bacon,
  • E. J. Baxter,
  • K. Bechtol,
  • M. R. Becker,
  • B. A. Benson,
  • G. M. Bernstein,
  • E. Bertin,
  • J. Blazek,
  • L. E. Bleem,
  • S. Bocquet,
  • D. Brooks,
  • E. Buckley-Geer,
  • D. L. Burke,
  • H. Camacho,
  • A. Campos,
  • J. E. Carlstrom,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • R. Cawthon,
  • C. Chang,
  • C. L. Chang,
  • R. Chen,
  • A. Choi,
  • R. Chown,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • T. Crawford,
  • A. T. Crites,
  • M. Crocce,
  • L. N. da Costa,
  • C. Davis,
  • T. M. Davis,
  • T. de Haan,
  • J. De Vicente,
  • J. DeRose,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • W. Everett,
  • X. Fang,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. M. George,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N. W. Halverson,
  • I. Harrison,
  • K. Herner,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • B. Jain,
  • D. J. James,
  • M. Jarvis,
  • T. Jeltema,
  • S. Kent,
  • L. Knox,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • A. T. Lee,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • C. Lidman,
  • D. Luong-Van,
  • J. J. McMahon,
  • N. MacCrann,
  • M. March,
  • J. L. Marshall,
  • P. Martini,
  • J. McCullough,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • J. Muir,
  • J. Myles,
  • T. Natoli,
  • A. Navarro-Alsina,
  • R. C. Nichol,
  • Y. Omori,
  • S. Padin,
  • S. Pandey,
  • Y. Park,
  • F. Paz-Chinchón,
  • M. E. S. Pereira,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • C. Pryke,
  • M. Raveri,
  • C. L. Reichardt,
  • R. P. Rollins,
  • A. K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • J. E. Ruhl,
  • E. S. Rykoff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • K. K. Schaffer,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • M. E. C. Swanson,
  • G. Tarle,
  • C. To,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • J. D. Vieira,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • J. Weller,
  • R. Williamson,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz
  • (less)
arXiv e-prints (06/2022) e-Print:2206.10824
abstract + abstract -

We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find $\Omega_{\rm m} = 0.344\pm 0.030$ and $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.773\pm 0.016$, assuming $\Lambda$CDM. When additionally combining with measurements of the CMB lensing autospectrum, we find $\Omega_{\rm m} = 0.306^{+0.018}_{-0.021}$ and $S_8 = 0.792\pm 0.012$. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redMaGiC galaxies and high-redshift MagLim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems.


(784)HOLISMOKES -- IX. Neural network inference of strong-lens parameters and uncertainties from ground-based images
  • S. Schuldt,
  • R. Cañameras,
  • Y. Shu,
  • S. H. Suyu,
  • S. Taubenberger
  • +2
arXiv e-prints (06/2022) e-Print:2206.11279
abstract + abstract -

Modeling of strong gravitational lenses is a necessity for further applications in astrophysics and cosmology. Especially with the large number of detections in current and upcoming surveys such as the Rubin Legacy Survey of Space and Time (LSST), it is timely to investigate in automated and fast analysis techniques beyond the traditional and time consuming Markov chain Monte Carlo sampling methods. Building upon our convolutional neural network (CNN) presented in Schuldt et al. (2021b), we present here another CNN, specifically a residual neural network (ResNet), that predicts the five mass parameters of a Singular Isothermal Ellipsoid (SIE) profile (lens center $x$ and $y$, ellipticity $e_x$ and $e_y$, Einstein radius $\theta_E$) and the external shear ($\gamma_{ext,1}$, $\gamma_{ext,2}$) from ground-based imaging data. In contrast to our CNN, this ResNet further predicts a 1$\sigma$ uncertainty for each parameter. To train our network, we use our improved pipeline from Schuldt et al. (2021b) to simulate lens images using real images of galaxies from the Hyper Suprime-Cam Survey (HSC) and from the Hubble Ultra Deep Field as lens galaxies and background sources, respectively. We find overall very good recoveries for the SIE parameters, while differences remain in predicting the external shear. From our tests, most likely the low image resolution is the limiting factor for predicting the external shear. Given the run time of milli-seconds per system, our network is perfectly suited to predict the next appearing image and time delays of lensed transients in time. Therefore, we also present the performance of the network on these quantities in comparison to our simulations. Our ResNet is able to predict the SIE and shear parameter values in fractions of a second on a single CPU such that we are able to process efficiently the huge amount of expected galaxy-scale lenses in the near future.


(783)A panchromatic view of star cluster formation in a simulated dwarf galaxy starburst
  • Natalia Lahén,
  • Thorsten Naab,
  • Guinevere Kauffmann
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1594
abstract + abstract -

We present a photometric analysis of star and star cluster (SC) formation in a high-resolution simulation of a dwarf galaxy starburst that allows the formation of individual stars to be followed. Previous work demonstrated that the properties of the SCs formed in the simulation are in good agreement with observations. In this paper, we create mock spectral energy distributions and broad-band photometric images using the radiative transfer code SKIRT 9. We test several observational star formation rate (SFR) tracers and find that 24 μm, total infrared and Hα trace the underlying SFR during the (post)starburst phase, while UV tracers yield a more accurate picture of star formation during quiescent phases prior to and after the merger. We then place the simulated galaxy at distances of 10 and 50 Mpc and use aperture photometry at Hubble Space Telescope resolution to analyse the simulated SC population. During the starburst phase, a hierarchically forming set of SCs leads inaccurate source separation because of crowding. This results in estimated SC mass function slopes that are up to ~0.3 shallower than the true slope of ~-1.9 to -2 found for the bound clusters identified from the particle data in the simulation. The masses of the largest clusters are overestimated by a factor of up to 2.9 due to unresolved clusters within the apertures. The aperture-based analysis also produces a relation between cluster formation efficiency and SFR surface density that is slightly flatter than that recovered from bound clusters. The differences are strongest in quiescent SF environments.


(782)QFT with stubs
  • Christoph Chiaffrino,
  • Ivo Sachs
Journal of High Energy Physics, 2022 (06/2022) doi:10.1007/JHEP06(2022)120
abstract + abstract -

The BV-Laplacian ∆ in quantum field theory is singular, by construction, but can be regularized by deforming the classical BV-action. Taking inspiration from string theory we describe a non-local deformation of the latter by adding stubs to the interaction vertices while keeping classical BV-invariance manifest. This is achieved using a version of homotopy transfer resulting in a non-polynomial action for which the quantum master equation is now well defined and will be satisfied by adding additional vertices at loop level. The latter can be defined with the help of standard regularization schemes and is independent of the definition of ∆. In particular, the determination of anomalies reduces to the standard text-book calculation. Finally, we describe how the deformed (quantum) action can be obtained as a canonical transformation. As an example, we illustrate this procedure for quantum electrodynamics.


(781)Euclid: Forecasts from the void-lensing cross-correlation
  • M. Bonici,
  • C. Carbone,
  • P. Vielzeuf,
  • L. Paganin,
  • V. Cardone
  • +126
  • N. Hamaus,
  • A. Pisani,
  • A. J. Hawken,
  • A. Kovacs,
  • S. Nadathur,
  • S. Contarini,
  • G. Verza,
  • I. Tutusaus,
  • F. Marulli,
  • L. Moscardini,
  • M. Aubert,
  • C. Giocoli,
  • A. Pourtsidou,
  • S. Camera,
  • S. Escoffier,
  • A. Caminata,
  • M. Martinelli,
  • M. Pallavicini,
  • V. Pettorino,
  • Z. Sakr,
  • D. Sapone,
  • G. Testera,
  • S. Tosi,
  • V. Yankelevich,
  • A. Amara,
  • N. Auricchio,
  • M. Baldi,
  • D. Bonino,
  • E. Branchini,
  • M. Brescia,
  • J. Brinchmann,
  • V. Capobianco,
  • J. Carretero,
  • M. Castellano,
  • S. Cavuoti,
  • R. Cledassou,
  • G. Congedo,
  • L. Conversi,
  • Y. Copin,
  • L. Corcione,
  • F. Courbin,
  • M. Cropper,
  • A. Da Silva,
  • H. Degaudenzi,
  • M. Douspis,
  • F. Dubath,
  • C. A. J. Duncan,
  • X. Dupac,
  • S. Dusini,
  • A. Ealet,
  • S. Farrens,
  • S. Ferriol,
  • P. Fosalba,
  • M. Frailis,
  • E. Franceschi,
  • M. Fumana,
  • P. Gomez-Alvarez,
  • B. Garilli,
  • B. Gillis,
  • A. Grazian,
  • F. Grupp,
  • L. Guzzo,
  • S. V. H. Haugan,
  • W. Holmes,
  • F. Hormuth,
  • A. Hornstrup,
  • K. Jahnke,
  • M. Kummel,
  • S. Kermiche,
  • A. Kiessling,
  • M. Kilbinger,
  • M. Kunz,
  • H. Kurki-Suonio,
  • R. Laureijs,
  • S. Ligori,
  • P. B. Lilje,
  • I. Lloro,
  • E. Maiorano,
  • O. Mansutti,
  • O. Marggraf,
  • K. Markovic,
  • R. Massey,
  • E. Medinaceli,
  • M. Melchior,
  • M. Meneghetti,
  • G. Meylan,
  • M. Moresco,
  • E. Munari,
  • S. M. Niemi,
  • C. Padilla,
  • S. Paltani,
  • F. Pasian,
  • K. Pedersen,
  • W. J. Percival,
  • S. Pires,
  • G. Polenta,
  • M. Poncet,
  • L. Popa,
  • F. Raison,
  • R. Rebolo,
  • A. Renzi,
  • J. Rhodes,
  • E. Rossetti,
  • R. Saglia,
  • B. Sartoris,
  • M. Scodeggio,
  • A. Secroun,
  • G. Seidel,
  • C. Sirignano,
  • G. Sirri,
  • L. Stanco,
  • J. -L. Starck,
  • C. Surace,
  • P. Tallada-Crespi,
  • D. Tavagnacco,
  • A. N. Taylor,
  • I. Tereno,
  • R. Toledo-Moreo,
  • F. Torradeflot,
  • E. A. Valentijn,
  • L. Valenziano,
  • Y. Wang,
  • J. Weller,
  • G. Zamorani,
  • J. Zoubian,
  • S. Andreon
  • (less)
arXiv e-prints (06/2022) e-Print:2206.14211
abstract + abstract -

The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing and their cross-correlation. To this aim, we implement a Fisher matrix approach tailored for voids from the Euclid photometric dataset and present the first forecasts on cosmological parameters that include the void-lensing correlation. We examine two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carry out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, $M_\nu$, and a dynamical dark energy (DE) equation of state, $w(z)$, described by the CPL parametrisation. We find that void clustering constraints on $h$ and $\Omega_b$ are competitive with galaxy lensing alone, while errors on $n_s$ decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by $10-15\%$, and enhances the joint void clustering and galaxy lensing Figure of Merit (FoM) by $10\%$ and $25\%$, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void-clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on $h$, $\Omega_b$, the neutrino mass, and the DE evolution.


(780)Evolution mapping: a new approach to describe matter clustering in the non-linear regime
  • Ariel G. Sánchez,
  • Andrés N. Ruiz,
  • Jenny Gonzalez Jara,
  • Nelson D. Padilla
Monthly Notices of the Royal Astronomical Society (06/2022) doi:10.1093/mnras/stac1656
abstract + abstract -

We present a new approach to describe statistics of the non-linear matter density field that exploits a degeneracy in the impact of different cosmological parameters on the linear dimensionless matter power spectrum, $\Delta ^2_{\rm L}(k)$. We classify all cosmological parameters into two groups, shape parameters, which determine the shape of $\Delta ^2_{\rm L}(k)$, and evolution parameters, which only affect its amplitude at any given redshift. With this definition, the time evolution of $\Delta ^2_{\rm L}(k)$ in models with identical shape parameters but different evolution parameters can be mapped from one to the other by relabelling the redshifts that correspond to the same clustering amplitude, which we characterize by the linear mass fluctuation in spheres of radius 12 Mpc, σ12(z). We use N-body simulations to show that the same evolution mapping relation gives a good description of the non-linear power spectrum, the halo mass function, or the full density field. The deviations from the exact degeneracy are the result of the different structure formation histories experienced by each model to reach the same clustering amplitude and can be accurately described in terms of differences in the suppression factor g(a) = D(a)/a. These relations can be used to drastically reduce the number of parameters required to describe the cosmology dependence of the power spectrum. We show how this can help to speed up the inference of parameter constraints from cosmological observations. We also present a new design of an emulator of the non-linear power spectrum whose predictions can be adapted to an arbitrary choice of evolution parameters and redshift.


(779)Stellar labels for hot stars from low-resolution spectra. I. The HotPayne method and results for 330 000 stars from LAMOST DR6
  • Maosheng Xiang,
  • Hans-Walter Rix,
  • Yuan-Sen Ting,
  • Rolf-Peter Kudritzki,
  • Charlie Conroy
  • +7
  • Eleonora Zari,
  • Jian-Rong Shi,
  • Norbert Przybilla,
  • Maria Ramirez-Tannus,
  • Andrew Tkachenko,
  • Sarah Gebruers,
  • Xiao-Wei Liu
  • (less)
Astronomy and Astrophysics, 662, p30 (06/2022) doi:10.1051/0004-6361/202141570
abstract + abstract -

We set out to determine stellar labels from low-resolution survey spectra of hot stars, specifically OBA stars with Teff ≳ 7500 K. This fills a gap in the scientific analysis of large spectroscopic stellar surveys such as LAMOST, which offers spectra for millions of stars at R ~ 1800 and covers 3800 Å ≤ λ ≤ 9000 Å. We first explore the theoretical information content of such spectra to determine stellar labels via the Cramér-Rao bound. We show that in the limit of perfect model spectra and observed spectra with signal-to-noise ratio ~50-100, precise estimates are possible for a wide range of stellar labels: not only the effective temperature, Teff, surface gravity, log g, and projected rotation velocity, vsin i, but also the micro-turbulence velocity,vmic, helium abundance, NHe/Ntot, and the elemental abundances [C/H], [N/H], [O/H], [Si/H], [S/H], and [Fe/H]. Our analysis illustrates that the temperature regime of Teff ~ 9500 K is challenging as the dominant Balmer and Paschen line strengths vary little with Teff. We implement the simultaneous fitting of these 11 stellar labels to LAMOST hot-star spectra using the Payne approach, drawing on Kurucz's ATLAS12/SYNTHE local thermodynamic equilibrium spectra as the underlying models. We then obtain stellar parameter estimates for a sample of about 330 000 hot stars with LAMOST spectra, an increase by about two orders of magnitude in sample size. Among them, about 260 000 have good Gaia parallaxes (ω/σω > 5), and their luminosities imply that ≳95% of them are luminous stars, mostly on the main sequence; the rest are evolved lower luminosity stars, such as hot subdwarfs and white dwarfs. We show that the fidelity of the results, particularly for the abundance estimates, is limited by the systematics of the underlying models as they do not account for nonlocal thermodynamic equilibrium effects. Finally, we show the detailed distribution of vsin i of stars with 8000-15 000 K, illustrating that it extends to a sharp cutoff at the critical rotation velocity, vcrit, across a wide range of temperatures.

The catalog is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/662/A66


(778)Two-loop mixed QCD-EW corrections to q q ¯ → Hg, qg → Hq, and q ¯g → H q ¯
  • Marco Bonetti,
  • Erik Panzer,
  • Lorenzo Tancredi
Journal of High Energy Physics, 2022 (06/2022) doi:10.1007/JHEP06(2022)115
abstract + abstract -

We compute the two-loop mixed QCD-Electroweak corrections to q q ¯→ Hg and its crossed channels qg → Hq, q ¯g →H q ¯, limiting ourselves to the contribution of light virtual quarks. We compute the independent helicity amplitudes as well as the form factors for this process, expressing them in terms of hyperlogarithms with algebraic arguments. The Feynman integrals are computed by direct integration over Feynman parameters and the results are expressed in terms of a basis of rational prefactors.


(777)Using Host Galaxy Spectroscopy to Explore Systematics in the Standardisation of Type Ia Supernovae
  • M. Dixon,
  • C. Lidman,
  • J. Mould,
  • L. Kelsey,
  • D. Brout
  • +73
  • A. Möller,
  • P. Wiseman,
  • M. Sullivan,
  • L. Galbany,
  • T.M. Davis,
  • M. Vincenzi,
  • D. Scolnic,
  • G.F. Lewis,
  • M. Smith,
  • R. Kessler,
  • A. Duffy,
  • E. Taylor,
  • C. Flynn,
  • T.M.C. Abbott,
  • M. Aguena,
  • S. Allam,
  • F. Andrade-Oliveira,
  • J. Annis,
  • J. Asorey,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • A. Carnero Rosell,
  • D. Carollo,
  • M. Carrasco Kind,
  • J. Carretero,
  • M. Costanzi,
  • L.N. da Costa,
  • M.E.S. Pereira,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • D.W. Gerdes,
  • K. Glazebrook,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D. Huterer,
  • D.J. James,
  • K. Kuehn,
  • N. Kuropatkin,
  • U. Malik,
  • M. March,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • B. Nichol,
  • R.L.C. Ogando,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • M. Rodriguez-Monroy,
  • A.K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Soares-Santos,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • B.E. Tucker,
  • D.L. Tucker,
  • T.N. Varga
  • (less)
(06/2022) e-Print:2206.12085
abstract + abstract -

We use stacked spectra of the host galaxies of photometrically identified type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) to search for correlations between Hubble diagram residuals and the spectral properties of the host galaxies. Utilising full spectrum fitting techniques on stacked spectra binned by Hubble residual, we find no evidence for trends between Hubble residuals and properties of the host galaxies that rely on spectral absorption features ($< 1.3{\sigma}$), such as stellar population age, metallicity, and mass-to-light ratio. However, we find significant trends between the Hubble residuals and the strengths of [OII] ($4.4{\sigma}$) and the Balmer emission lines ($3{\sigma}$). These trends are weaker than the well known trend between Hubble residuals and host galaxy stellar mass ($7.2{\sigma}$) that is derived from broad band photometry. After light curve corrections, we see fainter SNe Ia residing in galaxies with larger line strengths. We also find a trend ($3{\sigma}$) between Hubble residual and the Balmer decrement (a measure of reddening by dust) using $H{\beta}$ and $H{\gamma}$. The trend is only present in the redder SNe Ia, suggesting that bluer SNe Ia are relatively unaffected by dust in the interstellar medium of the host and that dust contributes to current Hubble diagram scatter impacting the measurement of cosmological parameters.


(776)Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck III: Combined cosmological constraints
  • T.M.C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +166
  • F. Andrade-Oliveira,
  • J. Annis,
  • B. Ansarinejad,
  • S. Avila,
  • D. Bacon,
  • E.J. Baxter,
  • K. Bechtol,
  • M.R. Becker,
  • B.A. Benson,
  • G.M. Bernstein,
  • E. Bertin,
  • J. Blazek,
  • L.E. Bleem,
  • S. Bocquet,
  • D. Brooks,
  • E. Buckley-Geer,
  • D.L. Burke,
  • H. Camacho,
  • A. Campos,
  • J.E. Carlstrom,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • R. Cawthon,
  • C. Chang,
  • C.L. Chang,
  • R. Chen,
  • A. Choi,
  • R. Chown,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • T. Crawford,
  • A.T. Crites,
  • M. Crocce,
  • L.N. da Costa,
  • C. Davis,
  • T.M. Davis,
  • T. de Haan,
  • J. De Vicente,
  • J. DeRose,
  • S. Desai,
  • H.T. Diehl,
  • M.A. Dobbs,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T.F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • W. Everett,
  • X. Fang,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E.M. George,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R.A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N.W. Halverson,
  • I. Harrison,
  • K. Herner,
  • S.R. Hinton,
  • G.P. Holder,
  • D.L. Hollowood,
  • W.L. Holzapfel,
  • K. Honscheid,
  • J.D. Hrubes,
  • H. Huang,
  • E.M. Huff,
  • D. Huterer,
  • B. Jain,
  • D.J. James,
  • M. Jarvis,
  • T. Jeltema,
  • S. Kent,
  • L. Knox,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • A.T. Lee,
  • P.-F. Leget,
  • P. Lemos,
  • A.R. Liddle,
  • C. Lidman,
  • D. Luong-Van,
  • J.J. McMahon,
  • N. MacCrann,
  • M. March,
  • J.L. Marshall,
  • P. Martini,
  • J. McCullough,
  • P. Melchior,
  • F. Menanteau,
  • S.S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J.J. Mohr,
  • R. Morgan,
  • J. Muir,
  • J. Myles,
  • T. Natoli,
  • A. Navarro-Alsina,
  • R.C. Nichol,
  • Y. Omori,
  • S. Padin,
  • S. Pandey,
  • Y. Park,
  • F. Paz-Chinchón,
  • M.E.S. Pereira,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • C. Pryke,
  • M. Raveri,
  • C.L. Reichardt,
  • R.P. Rollins,
  • A.K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A.J. Ross,
  • J.E. Ruhl,
  • E.S. Rykoff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • K.K. Schaffer,
  • L.F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A.A. Stark,
  • E. Suchyta,
  • M.E.C. Swanson,
  • G. Tarle,
  • C. To,
  • M.A. Troxel,
  • I. Tutusaus,
  • T.N. Varga,
  • J.D. Vieira,
  • N. Weaverdyck,
  • R.H. Wechsler,
  • J. Weller,
  • R. Williamson,
  • W.L.K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz
  • (less)
(06/2022) e-Print:2206.10824
abstract + abstract -

We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find $\Omega_{\rm m} = 0.344\pm 0.030$ and $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.773\pm 0.016$, assuming $\Lambda$CDM. When additionally combining with measurements of the CMB lensing autospectrum, we find $\Omega_{\rm m} = 0.306^{+0.018}_{-0.021}$ and $S_8 = 0.792\pm 0.012$. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redMaGiC galaxies and high-redshift MagLim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems.


(775)Runaway relaxion from finite density
  • Reuven Balkin,
  • Javi Serra,
  • Konstantin Springmann,
  • Stefan Stelzl,
  • Andreas Weiler
Journal of High Energy Physics, 2022 (06/2022) doi:10.1007/JHEP06(2022)023
abstract + abstract -

Finite density effects can destabilize the metastable vacua in relaxion models. Focusing on stars as nucleation seeds, we derive the conditions that lead to the formation and runaway of a relaxion bubble of a lower energy minimum than in vacuum. The resulting late-time phase transition in the universe allows us to set new constraints on the parameter space of relaxion models. We also find that similar instabilities can be triggered by the large electromagnetic fields around rotating neutron stars.


(774)Constraining the Baryonic Feedback with Cosmic Shear Using the DES Year-3 Small-Scale Measurements
  • A. Chen,
  • G. Aricò,
  • D. Huterer,
  • R. Angulo,
  • N. Weaverdyck
  • +137
  • O. Friedrich,
  • L.F. Secco,
  • C. Hernández-Monteagudo,
  • A. Alarcon,
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • E. Baxter,
  • K. Bechtol,
  • M.R. Becker,
  • G.M. Bernstein,
  • J. Blazek,
  • A. Brandao-Souza,
  • S.L. Bridle,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • C. Chang,
  • R. Chen,
  • P. Chintalapati,
  • A. Choi,
  • J. Cordero,
  • M. Crocce,
  • M.E.S. Pereira,
  • C. Davis,
  • J. DeRose,
  • E. Di Valentino,
  • H.T. Diehl,
  • S. Dodelson,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T.F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • M. Gatti,
  • E. Gaztanaga,
  • G. Giannini,
  • D. Gruen,
  • R.A. Gruendl,
  • I. Harrison,
  • W.G. Hartley,
  • K. Herner,
  • K. Hoffmann,
  • H. Huang,
  • E.M. Huff,
  • B. Jain,
  • M. Jarvis,
  • N. Jeffrey,
  • T. Kacprzak,
  • E. Krause,
  • N. Kuropatkin,
  • P.-F. Leget,
  • P. Lemos,
  • A.R. Liddle,
  • N. MacCrann,
  • J. McCullough,
  • J. Muir,
  • J. Myles,
  • A. Navarro-Alsina,
  • Y. Omori,
  • S. Pandey,
  • Y. Park,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • A. Refregier,
  • R.P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A.J. Ross,
  • E.S. Rykoff,
  • S. Samuroff,
  • C. Sánchez,
  • J. Sanchez,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • A. Troja,
  • M.A. Troxel,
  • I. Tutusaus,
  • T.N. Varga,
  • R.H. Wechsler,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • M. Aguena,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L.N. da Costa,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • I. Ferrero,
  • B. Flaugher,
  • J. Frieman,
  • J. García-Bellido,
  • D.W. Gerdes,
  • T. Giannantonio,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • K. Kuehn,
  • O. Lahav,
  • M. March,
  • J.L. Marshall,
  • P. Melchior,
  • F. Menanteau,
  • R. Miquel,
  • J.J. Mohr,
  • R. Morgan,
  • F. Paz-Chinchón,
  • A. Pieres,
  • E. Sanchez,
  • M. Smith,
  • E. Suchyta,
  • M.E.C. Swanson,
  • G. Tarle,
  • D. Thomas,
  • C. To
  • (less)
(06/2022) e-Print:2206.08591
abstract + abstract -

We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package \texttt{Baccoemu} to accelerate the evaluation of the baryonic nonlinear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a $\sim 2 \sigma$ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c > 10^{13.2} h^{-1} M_{\odot}$ (95% C.L.). The best-fit baryonic suppression is $\sim 5\%$ at $k=1.0 {\rm Mpc}\ h^{-1}$ and $\sim 15\%$ at $k=5.0 {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments.


(773)Rare decays of b and c hadrons
  • Wolfgang Altmannshofer,
  • Flavio Archilli
arXiv e-prints (06/2022) e-Print:2206.11331
abstract + abstract -

In this white paper for the Snowmass process, we review the status and prospects of the field of rare decays of b and c hadrons. The role that rare decays play in the search for physics beyond the Standard Model is emphasised. We stress the complementarity of a large set of relevant processes and outline the most promising directions. The experimental opportunities at Belle II, BES III, ATLAS, CMS, LHCb, and at future machines are discussed. We also summarize the challenges that need to be addressed on the theory side to achieve theory uncertainties for rare decays that match the expected experimental sensitivities.


(772)The Dark Energy Survey Supernova Program results: Type Ia Supernova brightness correlates with host galaxy dust
  • C. Meldorf,
  • A. Palmese,
  • D. Brout,
  • R. Chen,
  • D. Scolnic
  • +66
  • L. Kelsey,
  • L. Galbany,
  • W.G. Hartley,
  • T.M. Davis,
  • A. Drlica-Wagner,
  • M. Vincenzi,
  • J. Annis,
  • M. Dixon,
  • O. Graur,
  • C. Lidman,
  • A. Möller,
  • P. Nugent,
  • B. Rose,
  • M. Smith,
  • S. Allam,
  • D.L. Tucker,
  • J. Asorey,
  • J. Calcino,
  • D. Carollo,
  • K. Glazebrook,
  • G.F. Lewis,
  • G. Taylor,
  • B.E. Tucker,
  • A.G. Kim,
  • H.T. Diehl,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • D. Bacon,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • J. Carretero,
  • M. Carrasco Kind,
  • F.J. Castander,
  • M. Costanzi,
  • L.N. da Costa,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • D. Gruen,
  • J. Gschwend,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • K. Kuehn,
  • M. March,
  • J.L. Marshall,
  • F. Menanteau,
  • R. Miquel,
  • R. Morgan,
  • F. Paz-Chinchón,
  • M.E.S. Pereira,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • E. Suchyta,
  • G. Tarle,
  • T.N. Varga
  • (less)
(06/2022) e-Print:2206.06928
abstract + abstract -

Cosmological analyses with type Ia supernovae (SNe Ia) often assume a single empirical relation between color and luminosity ($\beta$) and do not account for varying host-galaxy dust properties. However, from studies of dust in large samples of galaxies, it is known that dust attenuation can vary significantly. Here we take advantage of state-of-the-art modeling of galaxy properties to characterize dust parameters (dust attenuation $A_V$, and a parameter describing the dust law slope $R_V$) for the Dark Energy Survey (DES) SN Ia host galaxies using the publicly available \texttt{BAGPIPES} code. Utilizing optical and infrared data of the hosts alone, we find three key aspects of host dust that impact SN Ia cosmology: 1) there exists a large range ($\sim1-6$) of host $R_V$ 2) high stellar mass hosts have $R_V$ on average $\sim0.7$ lower than that of low-mass hosts 3) there is a significant ($>3\sigma$) correlation between the Hubble diagram residuals of red SNe Ia that when corrected for reduces scatter by $\sim13\%$ and the significance of the ``mass step'' to $\sim1\sigma$. These represent independent confirmations of recent predictions based on dust that attempted to explain the puzzling ``mass step'' and intrinsic scatter ($\sigma_{\rm int}$) in SN Ia analyses. We also find that red-sequence galaxies have both lower and more peaked dust law slope distributions on average in comparison to non red-sequence galaxies. We find that the SN Ia $\beta$ and $\sigma_{\rm int}$ both differ by $>3\sigma$ when determined separately for red-sequence galaxy and all other galaxy hosts. The agreement between fitted host-$R_V$ and SN Ia $\beta$&$\sigma_{\rm int}$ suggests that host dust properties play a major role in SN Ia color-luminosity standardization and supports the claim that SN Ia intrinsic scatter is driven by $R_V$ variation.


(771)The Mechanism of Efficient Electron Acceleration at Parallel Nonrelativistic Shocks
  • Mohamad Shalaby,
  • Rouven Lemmerz,
  • Timon Thomas,
  • Christoph Pfrommer
The Astrophysical Journal, 932, p13 (06/2022) doi:10.3847/1538-4357/ac6ce7
abstract + abstract -

Thermal electrons cannot directly participate in the process of diffusive acceleration at electron-ion shocks because their Larmor radii are smaller than the shock transition width: this is the well-known electron injection problem of diffusive shock acceleration. Instead, an efficient pre-acceleration process must exist that scatters electrons off of electromagnetic fluctuations on scales much shorter than the ion gyroradius. The recently found intermediate-scale instability provides a natural way to produce such fluctuations in parallel shocks. The instability drives comoving (with the upstream plasma) ion-cyclotron waves at the shock front and only operates when the drift speed is smaller than half of the electron Alfvén speed. Here we perform particle-in-cell simulations with the SHARP code to study the impact of this instability on electron acceleration at parallel nonrelativistic, electron-ion shocks. To this end, we compare a shock simulation in which the intermediate-scale instability is expected to grow to simulations where it is suppressed. In particular, the simulation with an Alfvénic Mach number large enough to quench the intermediate instability shows a great reduction (by two orders of magnitude) of the electron acceleration efficiency. Moreover, the simulation with a reduced ion-to-electron mass ratio (where the intermediate instability is also suppressed) not only artificially precludes electron acceleration but also results in erroneous electron and ion heating in the downstream and shock transition regions. This finding opens up a promising route for a plasma physical understanding of diffusive shock acceleration of electrons, which necessarily requires realistic mass ratios in simulations of collisionless electron-ion shocks.


(770)Are the host galaxies of Long Gamma-Ray Bursts more compact than star-forming galaxies of the field?
  • B. Schneider,
  • E. Le Floc'h,
  • M. Arabsalmani,
  • S.D. Vergani,
  • J.T. Palmerio
(06/2022) e-Print:2206.14873
abstract + abstract -

(Abridged) Long Gamma-Ray Bursts (GRBs) offer a promising tool to trace the cosmic history of star formation, especially at high redshift where conventional methods are known to suffer from intrinsic biases. Previous studies of GRB host galaxies at low redshift showed that high surface densities of stellar mass and star formation rate (SFR) can potentially enhance the GRB production. We assess how the size, the stellar mass and SFR surface densities of distant galaxies affect their probability to host a long GRB, using a sample of GRB hosts at $z > 1$ and a control sample of star-forming sources from the field. We gather a sample of 45 GRB host galaxies at $1 < z < 3.1$ observed with the Hubble Space Telescope WFC3 camera in the near-infrared. Using the GALFIT parametric approach, we model the GRB host light profile and derive the half-light radius for 35 GRB hosts, which we use to estimate the SFR and stellar mass surface densities of each object. We compare the distribution of these physical quantities to the SFR-weighted properties of a complete sample of star-forming galaxies from the 3D-HST deep survey at comparable redshift and stellar mass. We show that, similarly to $z < 1$, GRB hosts are smaller in size and they have higher stellar mass and SFR surface densities than field galaxies at $1 < z < 2$. Interestingly, this result is robust even when considering separately the hosts of GRBs with optically-bright afterglows and the hosts of dark GRBs. At $z > 2$ though, GRB hosts appear to have sizes and stellar mass surface densities more consistent with those characterizing the field galaxies. In addition to a possible trend toward low metallicity environment, other environmental properties such as stellar density appears to play a role in the formation of long GRBs, at least up to $z \sim 2$. This might suggest that GRBs require special environments to be produced.