Dark matter (DM) self-interactions alter the matter distribution on galactic scales and alleviate tensions with observations. A feature of the self-interaction cross section is its angular dependence, influencing offsets between galaxies and DM halos in merging galaxy clusters. While algorithms for modelling mostly forward-dominated or mostly large-angle scatterings exist, incorporating realistic angular dependencies, such as light mediator models, within $N$-body simulations remains challenging. We develop, validate and apply a novel and efficient method, combining existing approaches to describe small- and large-angle scattering regimes within a hybrid scheme. Below a critical angle the effective description via a drag force combined with transverse momentum diffusion is used, while above the angle-dependence is sampled explicitly. First, we verify the scheme using a test set-up with known analytical solutions, and check that our results are insensitive to the choice of the critical angle within an expected range. Next, we demonstrate that our scheme speeds up the computations by multiple orders of magnitude for realistic light mediator models. Finally, we apply the method to galaxy cluster mergers and discuss the sensitivity of the offset between galaxies and DM to the angle-dependence of the cross section. Our scheme ensures accurate offsets for mediator mass $m_\phi$ and DM mass $m_\chi$ within the range $0.1v/c\lesssim m_\phi/m_\chi\lesssim v/c$, while for larger (smaller) mass ratios the offsets obtained for isotropic (forward-dominated) self-scattering are approached. Here $v$ is the typical velocity scale. Equivalently, the upper condition can be expressed as $1.1\lesssim \sigma_{\rm tot}/\sigma_{\mathrm{\widetilde{T}}}\lesssim 10$ for the ratio of total and momentum transfer cross sections, with the ratio being $1$ ($\infty$) in the isotropic (forward-dominated) limits.
Context. Despite being one of the most fundamental properties of galaxies that dictate the form of the potential, the 3D shapes are intrinsically difficult to determine from observations. The improving quality of triaxial modeling methods in recent years has made it possible to measure these shapes more accurately. Aims. This study provides a comprehensive understanding of the stellar and dark matter (DM) shapes of galaxies and the connection between them. As these shapes are the result of the formation history of a galaxy, we investigate which galaxy properties they are correlated with, which will be especially useful for interpreting the results from dynamical modeling. Methods. Using the hydrodynamical cosmological simulation Magneticum Pathfinder Box4 (uhr), we computed the stellar and DM intrinsic shapes of 690 simulated galaxies with stellar masses above 2 × 1010 M⊙ at three different radii with an iterative unweighted method. We also determined their morphologies, their projected morphological and kinematic parameters, and their fractions of in situ formed stars. Results. The DM follows the stellar component in shape and orientation at three half-mass radii, indicating that DM is heavily influenced by the baryonic potential in the inner parts of the halo. The outer DM halo is independent of the inner properties such as the DM shape or galaxy morphology, however, and is more closely related to the large-scale anisotropy of the gas inflow. Overall, DM halo shapes are prolate, consistent with previous literature. The stellar shapes of galaxies are correlated with their morphology, with early-type galaxies featuring more spherical and prolate shapes than late-type galaxies out to 3 R1/2. Galaxies with more rotational support are flatter, and the stellar shapes are connected to the mass distribution, though not to the mass itself. In particular, more extended early-type galaxies have larger triaxialities at a given mass. Finally, the shapes can be used to better constrain the in situ fraction of stars when combined with the stellar mass. Conclusions. The relations between shape, mass distribution, and in situ formed star fraction of galaxies show that the shapes depend on the details of the accretion history through which the galaxies are formed. The similarities between DM and stellar shapes in the inner regions of galaxy halos signal the importance of baryonic matter for the behavior of DM in galaxies and will be of use for improving the underlying assumptions of dynamical models for galaxies in the future. However, at large radii the shapes of the DM are completely decoupled from the central galaxy, and their shapes and spin are coupled more to the large scale inflow than to the galaxy in the center.
The holographic principle suggests that regions of space contain fewer physical degrees of freedom than would be implied by conventional quantum field theory. Meanwhile, in Hilbert spaces of large dimension 2n, it is possible to define [ image ] Pauli algebras that are nearly anti-commuting (but not quite) and which can be thought of as 'overlapping degrees of freedom'. We propose to model the phenomenology of holographic theories by allowing field-theory modes to be overlapping, and derive potential observational consequences. In particular, we build a Fermionic quantum field whose effective degrees of freedom approximately obey area scaling and satisfy a cosmic Bekenstein bound, and compare predictions of that model to cosmic neutrino observations. Our implementation of holography implies a finite lifetime of plane waves, which depends on the overall UV cutoff of the theory. To allow for neutrino flux from blazar TXS 0506+056 to be observable, our model needs to have a cutoff [ image ]. This is broadly consistent with current bounds on the energy spectrum of cosmic neutrinos from IceCube, but high energy neutrinos are a potential challenge for our model of holography. We motivate our construction via quantum mereology, i.e. using the idea that EFT degrees of freedom should emerge from an abstract theory of quantum gravity by finding quasi-classical Hilbert space decompositions. We also discuss how to extend the framework to Bosons. Finally, using results from random matrix theory we derive an analytical understanding of the energy spectrum of our theory. The numerical tools used in this work are publicly available within the GPUniverse package, github.com/OliverFHD/GPUniverse.
Using stacked emission-line flux measurements of cool circumgalactic gas (CGM) in lower-mass galaxies (109.0 ≤ M */M ⊙ ≤ 1010.2), we measure the dependence of the emission characteristics on orientation relative to the disk plane as a function of radius and compare to what we found previously for massive (M * > 1010.4 M ⊙) early-type galaxies. Although the line ratios (the lower [N II]/Hα and [O III]/Hβ) suggest an overall softer ionizing source than in the more massive galaxies, consistent with previous findings, we find the same ionization hardening signature (a higher [N II]/Hα ratio in the inner polar region) along the polar direction at small radii that we found for the more massive galaxies. The line ratio in the inner polar bin is distinct from that measured for the inner planar bin with 99.99%, confidence and with >99.9% confidence we conclude that it lies outside the star formation regime. The effective hardening of the ionization of the CGM along the polar axis, at small radii, could indicate either relic effects of active galactic nucleus activity or shock ionization. In either case, this signature appears to be ubiquitous across the stellar mass range we are able to explore with our spectral stacking technique and currently available archival data.
Context. Merging compact objects such as binary black holes provide a promising probe for the physics of dark matter (DM). The gravitational waves emitted during inspiral potentially allow one to detect DM spikes around black holes. This is because the dynamical friction force experienced by the inspiralling black hole alters the orbital period and thus the gravitational wave signal. Aims. The dynamical friction arising from DM can potentially differ from the collisionless case when DM is subject to self-interactions. This paper aims to understand how self-interactions impact dynamical friction. Methods. To study the dynamical friction force, we use idealised N-body simulations, where we include self-interacting dark matter. Results. We find that the dynamical friction force for inspiralling black holes would be typically enhanced by DM self-interactions compared to a collisionless medium (ignoring differences in the DM density). At lower velocities below the sound speed, we find that the dynamical friction force can be reduced by the presence of self-interactions. Conclusions. DM self-interactions have a significant effect on the dynamical friction for black hole mergers. Assuming the Chandrasekhar formula may underpredict the deceleration due to dynamical friction.
One necessary step for probing the nature of self-interacting dark matter (SIDM) particles with astrophysical observations is to pin down any possible velocity dependence in the SIDM cross-section. Major challenges for achieving this goal include eliminating, or mitigating, the impact of the baryonic components and tidal effects within the dark matter halos of interest - the effects of these processes can be highly degenerate with those of dark matter self-interactions at small scales. In this work, we select 9 isolated galaxies and brightest cluster galaxies (BCGs) with baryonic components small enough such that the baryonic gravitational potentials do not significantly influence the halo gravothermal evolution processes. We then constrain the parameters of Rutherford and Møller scattering cross-section models with the measured rotation curves and stellar kinematics through the gravothermal fluid formalism and isothermal method. Cross-sections constrained by the two methods are consistent at <inline-formula><tex-math id="TM0001" notation="LaTeX">$1\sigma$</tex-math></inline-formula> confidence level, but the isothermal method prefers cross-sections greater than the gravothermal approach constraints by a factor of <inline-formula><tex-math id="TM0002" notation="LaTeX">$\sim 3$</tex-math></inline-formula>.
Context. Classical Cepheids (DCEPs) are crucial for calibrating the extragalactic distance ladder, ultimately enabling the determination of the Hubble constant through the period-luminosity (PL) and period-Wesenheit (PW) relations that they exhibit. Hence, it is vital to understand how the PL and PW relations depend on metallicity. This is the purpose of the C-MetaLL survey, within which this work is situated. The DCEPs are also very important tracers of the young populations placed along the Galactic disc. Aims. We aim to enlarge the sample of DCEPs with accurate abundances from high-resolution spectroscopy. In particular, our goal is to extend the range of measured metallicities towards the metal-poor regime to better cover the parameter space. To this end, we observed objects in a wide range of Galactocentric radii, allowing us to study in detail the abundance gradients present in the Galactic disc. Methods. We present the results of the analysis of 331 spectra obtained for 180 individual DCEPs with a variety of high-resolution spectrographs. For each target, we derived accurate atmospheric parameters, radial velocities, and abundances for up to 29 different species. The iron abundances range between 0.5 and ‑1 dex with a rather homogeneous distribution in metallicity. Results. The sample presented in this paper was complemented with that already published in the context of the C-MetaLL survey, resulting in a total of 292 pulsators whose spectra have been analysed in a homogeneous way. These data were used to study the abundance gradients of the Galactic disc in a range of Galactocentric radii (RGC) spanning the range of 5–20 kpc. Conclusions. For most of the elements, we have found a clear negative gradient, with a slope of ‑0.064 ± 0.003 dex kpc‑1 for [Fe/H] case. Through a qualitative fit with the Galactic spiral arms, we show how our farthest targets (RGC > 10 kpc) trace both the Outer and Outer Scutum-Centaurus arms. The homogeneity of the sample will be of pivotal importance for the study of the metallicity dependence of the DCEP PL relations.
The main goal of the CRESST-III experiment is the direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors. In this work we present the results of a silicon-on-sapphire (SOS) detector with a mass of 0.6 g and an energy threshold of <inline-formula><mml:math display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>6.7</mml:mn><mml:mo>±</mml:mo><mml:mn>0.2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>eV</mml:mi></mml:mrow></mml:math></inline-formula> with a baseline energy resolution of <inline-formula><mml:math display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1.0</mml:mn><mml:mo>±</mml:mo><mml:mn>0.2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>eV</mml:mi></mml:mrow></mml:math></inline-formula>. This allowed for a calibration via the detection of single luminescence photons in the eV-range, which could be observed in CRESST for the first time. We present new exclusion limits on the spin-independent and spin-dependent dark matter-nucleon cross section that extend to dark matter particle masses of less than <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>100</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>MeV</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></inline-formula>.
We present an analysis of the cold gas phase in a low-metallicity starburst generated in a high-resolution hydrodynamical simulation of a gas-rich dwarf galaxy merger as part of the GRIFFIN project. The simulations resolve (4 M<inline-formula><tex-math id="TM0001" notation="LaTeX">$_\odot$</tex-math></inline-formula> gas phase mass resolution, <inline-formula><tex-math id="TM0002" notation="LaTeX">$\sim$</tex-math></inline-formula>0.1 pc spatial resolution) the multiphase interstellar medium with a non-equilibrium chemical heating/cooling network at temperatures below 10<inline-formula><tex-math id="TM0003" notation="LaTeX">$^4$</tex-math></inline-formula> K. Massive stars are sampled individually and interact with the interstellar medium (ISM) through the formation of H II regions and supernova explosions. In the extended starburst phase, the ISM is dominated by cold (<inline-formula><tex-math id="TM0004" notation="LaTeX">$T_\mathrm{gas} < 300$</tex-math></inline-formula> K) filamentary clouds with self-similar internal structures. The clouds have masses of <inline-formula><tex-math id="TM0005" notation="LaTeX">$10^{2.6}$</tex-math></inline-formula>-<inline-formula><tex-math id="TM0006" notation="LaTeX">$10^{5.6}$</tex-math></inline-formula> M<inline-formula><tex-math id="TM0007" notation="LaTeX">$_\odot$</tex-math></inline-formula> with a power-law mass function, <inline-formula><tex-math id="TM0008" notation="LaTeX">$\mathrm{ d}N/\mathrm{ d}M \propto M^\alpha$</tex-math></inline-formula> with <inline-formula><tex-math id="TM0009" notation="LaTeX">$\alpha = -1.78 (\,\pm \,0.08)$</tex-math></inline-formula>. They also follow the Larson relations, in good agreement with observations. We trace the lifecycle of the cold clouds and find that they follow an exponential lifetime distribution and an e-folding time of <inline-formula><tex-math id="TM0010" notation="LaTeX">$\sim$</tex-math></inline-formula>3.5 Myr. Clouds with peak masses below <inline-formula><tex-math id="TM0011" notation="LaTeX">$10^4$</tex-math></inline-formula> M<inline-formula><tex-math id="TM0012" notation="LaTeX">$_\odot$</tex-math></inline-formula> follow a power-law relation with their average lifetime <inline-formula><tex-math id="TM0013" notation="LaTeX">$\tau _\mathrm{life} \propto M^{0.3}_\mathrm{max}$</tex-math></inline-formula> which flattens out for higher cloud masses at <inline-formula><tex-math id="TM0014" notation="LaTeX">$< 10$</tex-math></inline-formula> Myr. A similar relation exists between cloud size at peak mass and lifetime. This simulation of the evolution of a realistic galactic cold cloud population supports the rapid formation and disruption of star-forming clouds by stellar radiation and supernovae on a time-scale less than 10 Myr.
We describe a general method for constructing a minimal basis of transcendental functions tailored to a scattering amplitude. Starting with formal solutions for all master integral topologies, we grade the appearing functions by properties such as their symbol alphabet or letter adjacency. We rotate the basis such that functions with spurious features appear in the least possible number of basis elements. Since their coefficients must vanish for physical quantities, this approach avoids complex cancellations. As a first application, we evaluate all integral topologies relevant to the three-loop $Hggg$ and $Hgq\bar{q}$ amplitudes in the leading-colour approximation and heavy-top limit. We describe the derivation of canonical differential equation systems and present a method for fixing boundary conditions without the need for a full functional representation. Using multiple numerical reductions, we test the maximal transcendentality conjecture for $Hggg$ and identify a new letter which appears in functions of weight 4 and 5. In addition, we provide the first direct analytic computation of a three-point form factor of the operator $\mathrm{Tr}(\phi^2)$ in planar $\mathcal{N}=4$ sYM and find agreement with numerical and bootstrapped results.
The statistical analysis of cosmic large-scale structure is most often based on simple two-point summary statistics, like the power spectrum or the two-point correlation function of a sample of galaxies or other types of tracers. In contrast, topological measures of clustering are also sensitive to higher-order correlations and thus offer the prospect to access additional information that may harbor important constraining power. We here revisit one such geometric measure of the cosmic web in the form of the so-called percolation analysis, using the recent MillenniumTNG simulation suite of the ΛCDM paradigm. We analyze continuum percolation statistics both for high-resolution dark matter particle distributions and for galaxy mock catalogs from a semianalytic galaxy formation model within a periodic simulation volume of 3000 Mpc on a side. For comparison, we also investigate the percolation statistics of random particle sets and neutrino distributions with two different summed particle masses. We find that the percolation statistics of the dark matter distribution evolves strongly with redshift and thus clustering strength, yielding a progressively lower percolation threshold toward later times. However, there is a sizable residual dependence on numerical resolution, which we interpret as a residual influence of different levels of shot noise. This is corroborated by our analysis of galaxy mock catalogs, whose results depend on sampling density more strongly than on galaxy selection criteria. While this limits the discriminative power of percolation statistics, our results suggest that it still remains useful as a complementary cosmological test when controlled for sampling density.
So far, even the highest resolution galaxy formation simulations with gravitational softening have failed to reproduce realistic life cycles of star clusters. We present the first star-by-star galaxy models of star cluster formation to account for hydrodynamics, star formation, stellar evolution and collisional gravitational interactions between stars and compact remnants using the updated SPHGAL+KETJU code, part of the GRIFFIN-project. Gravitational dynamics in the vicinity of $>3$ M$_\odot$ stars and their remnants are solved with a regularised integrator (KETJU) without gravitational softening. Comparisons of idealised star cluster evolution with SPHGAL+KETJU and direct N-body show broad agreement and the failure of simulations that use gravitational softening. In the hydrodynamical dwarf galaxy simulations run with SPHGAL+KETJU, clusters up to $\sim900$ M$_\odot$ are formed compact (effective radii $0.1-1$ pc) and their sizes increase by up to a factor of ten in agreement with previous N-body simulations and the observed sizes of exposed star clusters. The sizes increase rapidly once the clusters become exposed due to photoionising radiation. On average $63\%$ of the gravitationally bound clusters disrupt during the first $100$ Myr of evolution in the galactic tidal field. The addition of collisional dynamics reduces the fraction of supernovae in bound clusters by a factor of $\sim 2.6$, however the global star formation and outflow histories change by less than $30\%$. We demonstrate that the accurate treatment of gravitational encounters with massive stars enables more realistic star cluster life cycles from the earliest stages of cluster formation until disruption in simulated low-mass galaxies.
Context. Analysis of several spectroscopic surveys indicates the presence of a bimodality between the disc stars in the abundance ratio space of [α/Fe] versus [Fe/H]. The two stellar groups are commonly referred to as the high-α and low-α sequences. Some models capable of reproducing such a bimodality invoke the presence of a hiatus in the star formation history in our Galaxy, whereas other models explain the two sequences by means of stellar migration. Aims. Our aim is to show that the existence of the gap in the star formation rate between high-α and low-α is evident in the stars of APOGEE DR17, if one plots [Fe/α] versus [α/H], confirming previous suggestions. We then try to interpret the data by means of detailed chemical models. Methods. We compare the APOGEE DR17 red giant stars with the predictions of a detailed chemical evolution model based on the two-infall paradigm, taking into account also the possible accretion of dwarf satellites. Results. The APOGEE DR17 abundance ratios [Fe/α] versus [α/H] exhibit a sharp increase in [Fe/α] at a nearly constant [α/H] (where α elements considered are Mg, Si, O) during the transition between the two disc phases. This observation strongly supports the hypothesis that a hiatus in star formation occurred during this evolutionary phase. Notably, the most pronounced growth in the [Fe/α] versus [α/H] relation is observed for oxygen, as this element is exclusively synthesised in core-collapse supernovae. The revised version of the two-infall chemical evolution model proposed in this study reproduces the APOGEE DR17 abundance ratios better than before. Particularly noteworthy is the model's ability to predict the hiatus in the star formation between the two infalls of gas, which form the thick and thin disc, respectively, and thus generate abundance ratios compatible with APOGEE DR17 data. Conclusions. We show that the signature of a hiatus in the star formation is imprinted in the APOGEE DR17 abundance ratios. A chemical model predicting a pause in the star formation of a duration of roughly 3.5 Gyr, and in which the high-α disc starts forming from pre-enriched gas by a previous encounter with a dwarf galaxy, could well explain the observations
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range 0.25–1.78 over a total sky area of <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>5200</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mrow><mml:msup><mml:mrow><mml:mi>deg</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></inline-formula>. We use DES Year 3 weak-lensing data for 688 clusters with redshifts <inline-formula><mml:math display="inline"><mml:mi>z</mml:mi><mml:mo><</mml:mo><mml:mn>0.95</mml:mn></mml:math></inline-formula> and HST weak-lensing data for 39 clusters with <inline-formula><mml:math display="inline"><mml:mn>0.6</mml:mn><mml:mo><</mml:mo><mml:mi>z</mml:mi><mml:mo><</mml:mo><mml:mn>1.7</mml:mn></mml:math></inline-formula>. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable-mass relation without having to make strong assumptions about, e.g., the hydrodynamical state of the clusters. For a flat <inline-formula><mml:math display="inline"><mml:mi mathvariant="normal">Λ</mml:mi><mml:mi>CDM</mml:mi></mml:math></inline-formula> cosmology, and marginalizing over the sum of massive neutrinos, we measure <inline-formula><mml:math display="inline"><mml:msub><mml:mi mathvariant="normal">Ω</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>0.286</mml:mn><mml:mo>±</mml:mo><mml:mn>0.032</mml:mn></mml:math></inline-formula>, <inline-formula><mml:math display="inline"><mml:msub><mml:mi>σ</mml:mi><mml:mn>8</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0.817</mml:mn><mml:mo>±</mml:mo><mml:mn>0.026</mml:mn></mml:math></inline-formula>, and the parameter combination <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mn>8</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ω</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:msub><mml:mo>/</mml:mo><mml:mn>0.3</mml:mn><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mn>0.25</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>0.805</mml:mn><mml:mo>±</mml:mo><mml:mn>0.016</mml:mn></mml:mrow></mml:math></inline-formula>. Our measurement of <inline-formula><mml:math display="inline"><mml:msub><mml:mi>S</mml:mi><mml:mn>8</mml:mn></mml:msub><mml:mo>≡</mml:mo><mml:msub><mml:mi>σ</mml:mi><mml:mn>8</mml:mn></mml:msub><mml:msqrt><mml:mrow><mml:msub><mml:mi mathvariant="normal">Ω</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mn>0.3</mml:mn></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>0.795</mml:mn><mml:mo>±</mml:mo><mml:mn>0.029</mml:mn></mml:math></inline-formula> and the constraint from Planck CMB anisotropies (2018 TT, TE, <inline-formula><mml:math display="inline"><mml:mrow><mml:mi>EE</mml:mi><mml:mo>+</mml:mo><mml:mi>lowE</mml:mi></mml:mrow></mml:math></inline-formula>) differ by <inline-formula><mml:math display="inline"><mml:mn>1.1</mml:mn><mml:mi>σ</mml:mi></mml:math></inline-formula>. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses <inline-formula><mml:math display="inline"><mml:mo>∑</mml:mo><mml:msub><mml:mi>m</mml:mi><mml:mi>ν</mml:mi></mml:msub><mml:mo><</mml:mo><mml:mn>0.18</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>eV</mml:mi></mml:math></inline-formula>. When additionally allowing the dark energy equation of state parameter <inline-formula><mml:math display="inline"><mml:mi>w</mml:mi></mml:math></inline-formula> to vary, we obtain <inline-formula><mml:math display="inline"><mml:mi>w</mml:mi><mml:mo>=</mml:mo><mml:mo>-</mml:mo><mml:mn>1.45</mml:mn><mml:mo>±</mml:mo><mml:mn>0.31</mml:mn></mml:math></inline-formula> from our cluster-based analysis. In combination with Planck data, we measure <inline-formula><mml:math display="inline"><mml:mi>w</mml:mi><mml:mo>=</mml:mo><mml:mo>-</mml:mo><mml:mn>1.3</mml:mn><mml:msubsup><mml:mn>4</mml:mn><mml:mrow><mml:mo>-</mml:mo><mml:mn>0.15</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.22</mml:mn></mml:mrow></mml:msubsup></mml:math></inline-formula>, or a <inline-formula><mml:math display="inline"><mml:mn>2.2</mml:mn><mml:mi>σ</mml:mi></mml:math></inline-formula> difference with a cosmological constant. We use the cluster abundance to measure <inline-formula><mml:math display="inline"><mml:msub><mml:mi>σ</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math></inline-formula> in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the <inline-formula><mml:math display="inline"><mml:mi mathvariant="normal">Λ</mml:mi><mml:mi>CDM</mml:mi></mml:math></inline-formula> model fit to Planck primary CMB data.
Aims. In this Letter we investigate the origin of the Oosterhoff dichotomy in light of recent discoveries related to several ancient merging events of external galaxies with the Milky Way (MW). In particular, we aim to clarify if the subdivision in terms of the Oosterhoff type between Galactic globular clusters (GGCs) and field RR Lyrae (RRLs) can be traced back to one or more ancient galaxies that merged with the MW in its past. Methods. We first explored the association of GGCs with the past merging events according to different literature studies. Subsequently, we compiled the positions, proper motions, and radial velocities of 10 138 field RRL variables from Gaia Data Release 3. To infer the distances, we adopted the MG–[Fe/H] relation, with [Fe/H] values estimated via empirical relationships involving individual periods and Fourier parameters. We then calculated the orbits and the integrals of motion using the Python library Galpy for the whole sample. By comparing the location of the field RRLs in the energy–angular momentum diagram with that of the GGCs, we determined their likely origin. Finally, using GaiaG-band light curves, we determined the Oosterhoff types of our RRL stars based on their location in the Bailey diagram. Results. The analysis of the Bailey diagrams for Galactic RRL stars and GGCs associated with an 'in situ' versus 'accreted' halo origin shows remarkable differences. The in situ sample shows a wide range of metallicities with a continuous distribution and no sign of the Oosterhoff dichotomy. Conversely, the accreted RRLs clearly show the Oosterhoff dichotomy and a significantly smaller dispersion in metallicity. Conclusions. Our results suggest that the Oosterhoff dichotomy was imported into the MW by the merging events that shaped the Galaxy.
Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of $\sim$9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor an equilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the interstellar medium for long, which causes the ratio of star formation to accretion, $\dot{\Sigma}_\star / \dot{\Sigma}_\text{in}$, to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on $\sim$Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining $\dot{\Sigma}_\star / \dot{\Sigma}_\text{in}$ with increasing Galactocentric radius.
Low-metallicity environments are subject to inefficient cooling. They also have low dust-to-gas ratios and therefore less efficient photoelectric (PE) heating than in solar-neighbourhood conditions, where PE heating is one of the most important heating processes in the warm neutral interstellar medium (ISM). We perform magneto-hydrodynamic simulations of stratified ISM patches with a gas metallicity of 0.02 Z$_\odot$ as part of the SILCC project. The simulations include non-equilibrium chemistry, heating, and cooling of the low-temperature ISM as well as anisotropic cosmic ray (CR) transport, and stellar tracks. We include stellar feedback in the form of far-UV and ionising (FUV and EUV) radiation, massive star winds, supernovae, and CR injection. From the local CR energy density, we compute a CR heating rate that is variable in space and time. In this way, we can compare the relative impact of PE and CR heating on the metal-poor ISM and find that CR heating can dominate over PE heating. Models with a uniform CR ionisation rate suppress or severely delay star formation, since they provide a larger amount of energy to the ISM due to CR heating. Models with a variable CR ionisation rate form stars predominantly in pristine regions with low PE heating and CR ionisation rates where the metal-poor gas is able to cool efficiently. Because of the low metallicity, the amount of formed stars in all runs is not enough to trigger outflows of gas from the mid-plane.
We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at <inline-formula><mml:math display="inline"><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>0.25</mml:mn></mml:math></inline-formula> to 10% at <inline-formula><mml:math display="inline"><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>0.95</mml:mn></mml:math></inline-formula>, to which we add 2% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multiobservable likelihood for the Sunyaev-Zel'dovich effect, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol ECS, and SPTpol 500d surveys and the DES Year 3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset.
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the $\Omega_{m}$ and $S_8$ better agree with the cosmic microwave background. Mitigating IA with sample selection, instead of flexible model choices, can reduce uncertainty in $S_8$ by a factor of 1.5.
Very compact (Re ≲ 1 kpc) massive quiescent galaxies (red nuggets) are more abundant in the high-redshift Universe (z ~ 2-3) than today. Their size evolution can be explained by collisionless dynamical processes in galaxy mergers which, however, fail to reproduce the diffuse low-density central cores in the local massive early-type galaxies (ETGs). We use sequences of major and minor merger N-body simulations starting with compact spherical and disk-like progenitor models to investigate the impact of supermassive black holes (SMBHs) on the evolution of the galaxies. With the KETJU code we accurately follow the collisional interaction of the SMBHs with the nearby stellar population and the collisionless evolution of the galaxies and their dark matter halos. We show that only models including SMBHs can simultaneously explain the formation of low-density cores up to sizes of Rb ~ 1.3 kpc with mass deficits in the observed range and the rapid half-mass size evolution. In addition, the orbital structure in the core region (tangentially biased orbits) is consistent with observation-based results for local cored ETGs. The displacement of stars by the SMBHs boost the half-mass size evolution by up to a factor of two and even fast rotating progenitors (compact quiescent disks) lose their rotational support after 6-8 mergers. We conclude that the presence of SMBHs is required for merger driven evolution models of high redshift red nuggets into local ETGs.
Analysis of pre-explosion imaging has confirmed red supergiants (RSGs) as the progenitors to Type II-P supernovae (SNe). However, extracting the RSG's luminosity requires assumptions regarding the star's temperature or spectral type and the corresponding bolometric correction, circumstellar extinction, and possible variability. The robustness of these assumptions is difficult to test, since we cannot go back in time and obtain additional pre-explosion imaging. Here, we perform a simple test using the RSGs in M31, which have been well observed from optical to mid-IR. We ask the following: By treating each star as if we only had single-band photometry and making assumptions typically used in SN progenitor studies, what bolometric luminosity would we infer for each star? How close is this to the bolometric luminosity for that same star inferred from the full optical-to-IR spectral energy distribution (SED)? We find common assumptions adopted in progenitor studies systematically underestimate the bolometric luminosity by a factor of 2, typically leading to inferred progenitor masses that are systematically too low. Additionally, we find a much larger spread in luminosity derived from single-filter photometry compared to SED-derived luminosities, indicating uncertainties in progenitor luminosities are also underestimated. When these corrections and larger uncertainties are included in the analysis, even the most luminous known RSGs are not ruled out at the 3$\sigma$ level, indicating there is currently no statistically significant evidence that the most luminous RSGs are missing from the observed sample of II-P progenitors. The proposed correction also alleviates the problem of having progenitors with masses below the expected lower-mass bound for core-collapse.
Collisionless low-Mach-number shocks are abundant in astrophysical and space plasma environments, exhibiting complex wave activity and wave–particle interactions. In this paper, we present 2D Particle-in-Cell (PIC) simulations of quasi-perpendicular nonrelativistic (v sh ≈ (5500–22000) km s‑1) low-Mach-number shocks, with a specific focus on studying electrostatic waves in the shock ramp and precursor regions. In these shocks, an ion-scale oblique whistler wave creates a configuration with two hot counterstreaming electron beams, which drive unstable electron acoustic waves (EAWs) that can turn into electrostatic solitary waves (ESWs) at the late stage of their evolution. By conducting simulations with periodic boundaries, we show that the EAW properties agree with linear dispersion analysis. The characteristics of ESWs in shock simulations, including their wavelength and amplitude, depend on the shock velocity. When extrapolated to shocks with realistic velocities (v sh ≈ 300 km s‑1), the ESW wavelength is reduced to one-tenth of the electron skin depth and the ESW amplitude is anticipated to surpass that of the quasi-static electric field by more than a factor of 100. These theoretical predictions may explain a discrepancy, between PIC and satellite measurements, in the relative amplitude of high- and low-frequency electric field fluctuations.
We use the dispersion measure (DM) of localised Fast Radio Bursts (FRBs) to constrain cosmological and host galaxy parameters using simulation-based inference (SBI) for the first time. By simulating the large-scale structure of the electron density with the Generator for Large-Scale Structure (GLASS), we generate log-normal realisations of the free electron density field, accurately capturing the correlations between different FRBs. For the host galaxy contribution, we rigorously test various models, including log-normal, truncated Gaussian and Gamma distributions, while modelling the Milky Way component using pulsar data. Through these simulations, we employ the truncated sequential neural posterior estimation method to obtain the posterior. Using current observational data, we successfully recover the amplitude of the DM-redshift relation, consistent with Planck, while also fitting both the mean host contribution and its shape. Notably, we find no clear preference for a specific model of the host galaxy contribution. Although SBI may not yet be strictly necessary for FRB inference, this work lays the groundwork for the future, as the increasing volume of FRB data will demand precise modelling of both the host and large-scale structure components. Our modular simulation pipeline offers flexibility, allowing for easy integration of improved models as they become available, ensuring scalability and adaptability for upcoming analyses using FRBs. The pipeline is made publicly available under github.com/koustav-konar/FastNeuralBurst.
Numerous protoplanetary disks exhibit shadows in scattered light observations. These shadows are typically cast by misaligned inner disks and are associated with observable structures in the outer disk such as bright arcs and spirals. Investigating the dynamics of the shadowed outer disk is therefore essential in understanding the formation and evolution of these structures. We carry out twodimensional radiation hydrodynamics simulations that include radiative diffusion and dust-gas dynamics to study the formation of substructure in shadowed disks. We find that spiral arms are launched at the edge of each shadow, permeating the entire disk. The local dissipation of these spirals results in an angular momentum flux, opening multiple gaps and leading to a series of concentric, regularly-spaced rings We find that ring formation is favored in weakly turbulent disks where dust growth is taking place. These conditions are met for typical class-II disks, in which bright rings should form well within a fraction of their lifetime (0.1-0.2 Myr). For hotter disks gap opening is more efficient, such that the gap edges quickly collapse into vortices that can appear as bright arcs in continuum emission before decaying into rings or merging into massive, long-lived structures. Synthetic observations show that these structures should be observable in scattered light and millimeter continuum emission, providing a new way to probe the presence of substructure in protoplanetary disks. Our results suggest that the formation of rings and gaps is a common process in shadowed disks, and can explain the rich radial substructure observed in several protoplanetary disks.
Cold dark matter axions produced in the post-inflationary Peccei-Quinn symmetry breaking scenario serve as clear targets for their experimental detection, since it is in principle possible to give a sharp prediction for their mass once we understand precisely how they are produced from the decay of global cosmic strings in the early Universe. In this paper, we perform a dedicated analysis of the spectrum of axions radiated from strings based on large scale numerical simulations of the cosmological evolution of the Peccei-Quinn field on a static lattice. Making full use of the massively parallel code and computing resources, we executed the simulations with up to 112643 lattice sites, which allows us to improve our understanding of the dependence on the parameter controlling the string tension and thus give a more accurate extrapolation of the numerical results. We found that there are several systematic effects that have been overlooked in previous works, such as the dependence on the initial conditions, contaminations due to oscillations in the spectrum, and discretisation effects, some of which could explain the discrepancy in the literature. We confirmed the trend that the spectral index of the axion emission spectrum increases with the string tension, but did not find a clear evidence of whether it continues to increase or saturates to a constant at larger values of the string tension due to the severe discretisation effects. Taking this uncertainty into account and performing the extrapolation with a simple power law assumption on the spectrum, we find that the dark matter mass is predicted in the range of m a ≈ 95–450 μeV.
Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation algorithms employed in astrophysics are dominated by the numerical overdiffusion problem - particularly in three-dimensional hydrodynamic simulations where the discrete resolution of the mass-density distribution tends to be highly limited. With this in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy of <inline-formula><tex-math id="TM0001" notation="LaTeX">$0.1{\!-\!}1~{{\ \rm per\ cent}}$</tex-math></inline-formula> is reached with 20 dust bins spanning a mass range of 9 orders of magnitude.
Star-galaxy separation is a crucial step in creating target catalogues for extragalactic spectroscopic surveys. A classifier biased towards inclusivity risks including high numbers of stars, wasting fibre hours, while a more conservative classifier might overlook galaxies, compromising completeness and hence survey objectives. To avoid bias introduced by a training set in supervised methods, we employ an unsupervised machine learning approach. Using photometry from the Wide Area VISTA Extragalactic Survey (WAVES)-Wide catalogue comprising 9-band u - Ks data, we create a feature space with colours, fluxes, and apparent size information extracted by PROFOUND. We apply the non-linear dimensionality reduction method UMAP (Uniform Manifold Approximation and Projection) combined with the classifier HDBSCAN to classify stars and galaxies. Our method is verified against a baseline colour and morphological method using a truth catalogue from Gaia, SDSS, GAMA, and DESI. We correctly identify 99.75% of galaxies within the AB magnitude limit of Z = 21.2, with an F1 score of 0.9971 ± 0.0018 across the entire ground truth sample, compared to 0.9879 ± 0.0088 from the baseline method. Our method's higher purity (0.9967 ± 0.0021) compared to the baseline (0.9795 ± 0.0172) increases efficiency, identifying 11% fewer galaxy or ambiguous sources, saving approximately 70,000 fibre hours on the 4MOST instrument. We achieve reliable classification statistics for challenging sources including quasars, compact galaxies, and low surface brightness galaxies, retrieving 92.7%, 84.6%, and 99.5% of them respectively. Angular clustering analysis validates our classifications, showing consistency with expected galaxy clustering, regardless of the baseline classification.
High-cadence high-resolution spectroscopic observations of infant Type II supernovae (SNe) represent an exquisite probe of the atmospheres and winds of exploding red-supergiant (RSG) stars. Using radiation hydrodynamics and radiative transfer, we study the gas and radiation properties during and after the phase of shock breakout, considering RSG progenitors enshrouded within a circumstellar material (CSM) that varies in extent, density, and velocity profile. In all cases, the original, unadulterated CSM structure is probed only at the onset of shock breakout, visible in high-resolution spectra as narrow, often blueshifted emission, possibly with an absorption trough. As the SN luminosity rises during breakout, radiative acceleration of the unshocked CSM starts, leading to a broadening of the ``narrow'' lines by ~100 and up to ~1000km/s, depending on CSM properties. This acceleration is maximum close to the shock, where the radiative flux is greater, and thus typically masked by optical-depth effects. Generally, narrow-line broadening is greater for more compact, tenuous CSM because of the proximity to the shock where the flux is born, and smaller in denser and more extended CSM. Narrow-line emission should show a broadening that slowly increases first (the line forms further out in the original wind), then sharply rises (the line forms in a region that is radiatively accelerated), before decreasing until late times (the line forms further away in regions more weakly accelerated). Radiative acceleration should inhibit X-ray emission during the early, IIn phase. Although high spectral resolution is critical at the earliest times to probe the original slow wind, radiative acceleration and associated line broadening may be captured with medium resolution allowing a simultaneous view of narrow, Doppler-broadened as well as extended, electron-scattering broadened line emission.
Abridged: The fortunate proximity of the SN2023ixf allowed astronomers to follow its evolution from almost the moment of the collapse of the progenitor's core. SN2023ixf can be explained as an explosion of a massive star with an energy of 0.7e51 erg, however with a greatly reduced envelope mass, probably because of binary interaction. In our radiative-transfer simulations, the SN ejecta of 6 Msun interact with circumstellar material (CSM) of ~0.6 Msun extending to 1.e15 cm, which results in a light curve (LC) peak matching that of SN2023ixf. The origin of this required CSM might be gravity waves originating from convective shell burning, which could enhance wind-like mass-loss during the late stages of stellar evolution. The steeply rising, low-luminosity flux during the first hours after observationally confirmed non-detection, however, cannot be explained by the collision of the energetic SN shock with the CSM. Instead, we considered it as a precursor that we could fit by the emission from ~0.5 Msun of matter that was ejected with an energy of 1.e49 erg a fraction of a day before the main shock of the SN explosion reached the surface of the progenitor. The source of this energy injection into the outermost shell of the stellar envelope could also be dynamical processes related to the convective activity in the progenitor's interior or envelope. Alternatively, the early rise of the LC could point to the initial breakout of a highly non-spherical SN shock or of fast-moving, asymmetrically ejected matter that was swept out well ahead of the SN shock, potentially in a low-energy, nearly relativistic jet. We also discuss that pre-SN outbursts and LC precursors can be used to study or to constrain energy deposition in the outermost stellar layers by the decay of exotic particles, such as axions, which could be produced simultaneously with neutrinos in the newly formed, hot neutron star.
Context. Recent evidence from spectroscopic surveys points towards the presence of a metal-poor, young stellar population in the low- α, chemically thin disk. In this context, the investigation of the spatial distribution and time evolution of precise, unbiased abundances is fundamental to disentangle the scenarios of formation and evolution of the Galaxy. Aims. We study the evolution of abundance gradients in the Milky Way by taking advantage of a large sample of open star clusters, which are among the best tracers for this purpose. In particular, we used data from the last release of the Gaia-ESO survey. Methods. We performed a careful selection of open cluster member stars, excluding those members that may be affected by biases in spectral analysis. We compared the cleaned open cluster sample with detailed chemical evolution models for the Milky Way, using well-tested stellar yields and prescription for radial migration. We tested different scenarios of Galaxy evolution to explain the data, namely, the two-infall and the three-infall frameworks, which suggest the chemical thin disk is formed by one or two subsequent gas accretion episodes, respectively. Results. With the performed selection in cluster member stars, we still find a metallicity decrease between intermediate-age (1 < Age/Gyr < 3) and young (Age < 1 Gyr) open clusters. This decrease cannot be explained in the context of the two-infall scenario, even by accounting for the effect of migration and yield prescriptions. The three-infall framework, with its late gas accretion in the last 3 Gyr, is able to explain the low metallic content in young clusters. However, we have invoked a milder metal dilution for this gas infall episode relative to previous findings. Conclusions. To explain the observed low metallic content in young clusters, we propose that a late gas accretion episode triggering a metal dilution would have taken place, extending the framework of the three-infall model for the first time to the entire Galactic disk.
In the quantum simulation of lattice gauge theories, gauge symmetry can be either fixed or encoded as a redundancy of the Hilbert space. While gauge-fixing reduces the number of qubits, keeping the gauge redundancy can provide code space to mitigate and correct quantum errors by checking and restoring Gauss's law. In this work, we consider the correctable errors for generic finite gauge groups and design the quantum circuits to detect and correct them. We calculate the error thresholds below which the gauge-redundant digitization with Gauss's law error correction has better fidelity than the gauge-fixed digitization involving only gauge-invariant states. Our results provide guidance for fault-tolerant quantum simulations of lattice gauge theories.
We explore the potential for improving constraints on gravity by leveraging correlations in the dispersion measure derived from Fast Radio Bursts (FRBs) in combination with cosmic shear. Specifically, we focus on Horndeski gravity, inferring the kinetic braiding and Planck mass run rate from a stage-4 cosmic shear mock survey alongside a survey comprising $10^4$ FRBs. For the inference pipeline, we utilise hi_class to predict the linear matter power spectrum in modified gravity scenarios, while non-linear corrections are modelled with HMcode, including feedback mechanisms. Our findings indicate that FRBs can disentangle degeneracies between baryonic feedback and cosmological parameters, as well as the mass of massive neutrinos. Since these parameters are also degenerate with modified gravity parameters, the inclusion of FRBs can enhance constraints on Horndeski parameters by up to $40$ percent, despite being a less significant measurement. Additionally, we apply our model to current FRB data and use the uncertainty in the $\mathrm{DM}-z$ relation to impose limits on gravity. However, due to the limited sample size of current data, constraints are predominantly influenced by theoretical priors. Despite this, our study demonstrates that FRBs will significantly augment the limited set of cosmological probes available, playing a critical role in providing alternative tests of feedback, cosmology, and gravity. All codes used in this work are made publically available.
It is well-known that all Feynman integrals within a given family can be expressed as a finite linear combination of master integrals. The master integrals naturally group into sectors. Starting from two loops, there can exist sectors made up of more than one master integral. In this paper we show that such sectors may have additional symmetries. First of all, self-duality, which was first observed in Feynman integrals related to Calabi-Yau geometries, often carries over to non-Calabi-Yau Feynman integrals. Secondly, we show that in addition there can exist Galois symmetries relating integrals. In the simplest case of two master integrals within a sector, whose definition involves a square root r, we may choose a basis (I1, I2) such that I2 is obtained from I1 by the substitution r → ‑r. This pattern also persists in sectors, which a priori are not related to any square root with dependence on the kinematic variables. We show in several examples that in such cases a suitable redefinition of the integrals introduces constant square roots like <inline-formula id="IEq1"><mml:math display="inline"><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt></mml:math></inline-formula>. The new master integrals are then again related by a Galois symmetry, for example the substitution <inline-formula id="IEq2"><mml:math display="inline"><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt></mml:math></inline-formula> → <inline-formula id="IEq3"><mml:math display="inline"><mml:mo>‑</mml:mo><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt></mml:math></inline-formula>. To handle the case where the argument of a square root would be a perfect square we introduce a limit Galois symmetry. Both self-duality and Galois symmetries constrain the differential equation.
The non-observation of baryon number violation suggests that the scale of baryon-number violating interactions at zero temperature is comparable to the GUT scale. However, the pertinent measurements involve hadrons made of the first-generation quarks, such as protons and neutrons. One may therefore entertain the idea that new flavour physics breaks baryon number at a much lower scale, but only in the coupling to a third generation quark, leading to observable baryon-number violating b-hadron decay rates. In this paper we show that indirect constraints on the new physics scale ΛBNV from the existing bounds on the proton lifetime do not allow for this possibility. For this purpose we consider the three dominant proton decay channels p → <inline-formula id="IEq1"><mml:math display="inline"><mml:msup><mml:mi>ℓ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msub><mml:mi>ν</mml:mi><mml:mi>ℓ</mml:mi></mml:msub><mml:mover accent="true"><mml:mi>ν</mml:mi><mml:mo stretchy="true">¯</mml:mo></mml:mover></mml:math></inline-formula>, p → <inline-formula id="IEq2"><mml:math display="inline"><mml:msup><mml:mi>π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mover accent="true"><mml:mi>ν</mml:mi><mml:mo stretchy="true">¯</mml:mo></mml:mover></mml:math></inline-formula> and p → π0ℓ+ mediated by a virtual bottom quark.
Weak gravitational lensing is a powerful tool for precision tests of cosmology. As the expected deflection angles are small, predictions based on non-linear N-body simulations are commonly computed with the Born approximation. Here, we examine this assumption using DORIAN, a newly developed full-sky ray-tracing scheme applied to high-resolution mass-shell outputs of the two largest simulations in the MillenniumTNG suite, each with a 3000 Mpc box containing almost 1.1 trillion cold dark matter particles in addition to 16.7 billion particles representing massive neutrinos. We examine simple two-point statistics like the angular power spectrum of the convergence field, as well as statistics sensitive to higher order correlations such as peak and minimum statistics, void statistics, and Minkowski functionals of the convergence maps. Overall, we find only small differences between the Born approximation and a full ray-tracing treatment. While these are negligibly small at power-spectrum level, some higher order statistics show more sizeable effects; ray-tracing is necessary to achieve per cent level precision. At the resolution reached here, full-sky maps with 0.8 billion pixels and an angular resolution of 0.43 arcmin, we find that interpolation accuracy can introduce appreciable errors in ray-tracing results. We therefore implemented an interpolation method based on non-uniform fast Fourier transforms (NUFFT) along with more traditional methods. Bilinear interpolation introduces significant smoothing, while nearest grid point sampling agrees well with NUFFT, at least for our fiducial source redshift, <inline-formula><tex-math id="TM0001" notation="LaTeX">$z_s=1.0$</tex-math></inline-formula>, and for the 1 arcmin smoothing we use for higher order statistics.
We study particular integrated correlation functions of two superconformal primary operators of the stress tensor multiplet in the presence of a half-BPS line defect labelled by electromagnetic charges $(p,q)$ in $\mathcal{N}=4$ supersymmetric Yang-Mills theory (SYM) with gauge group $SU(N)$. An important consequence of ${\rm SL}(2,\mathbb{Z})$ electromagnetic duality in $\mathcal{N}=4$ SYM is that correlators of line defect operators with different charges $(p,q)$ must be related in a non-trivial manner when the complex coupling $\tau=\theta/(2\pi)+4\pi i /g_{_{\rm YM}}^2$ is transformed appropriately. In this work we introduce a novel class of real-analytic functions whose automorphic properties with respect to ${\rm SL}(2,\mathbb{Z})$ match the expected transformations of line defect operators in $\mathcal{N}=4$ SYM under electromagnetic duality. At large $N$ and fixed $\tau$, the correlation functions we consider are related to scattering amplitudes of two gravitons from extended $(p,q)$-strings in the holographic dual type IIB superstring theory. We show that the large-$N$ expansion coefficients of the integrated two-point line defect correlators are given by finite linear combinations with rational coefficients of elements belonging to this class of automorphic functions. On the other hand, for any fixed value of $N$ we conjecture that the line defect integrated correlators can be expressed as formal infinite series over such automorphic functions. The resummation of this series produces a simple lattice sum representation for the integrated line defect correlator that manifests its automorphic properties. We explicitly demonstrate this construction for the cases with gauge group $SU(2)$ and $SU(3)$. Our results give direct access to non-perturbative integrated correlators in the presence of an 't Hooft-line defect, observables otherwise very difficult to compute by other means.
We describe a software package, TomOpt, developed to optimise the geometrical layout and specifications of detectors designed for tomography by scattering of cosmic-ray muons. The software exploits differentiable programming for the modeling of muon interactions with detectors and scanned volumes, the inference of volume properties, and the optimisation cycle performing the loss minimisation. In doing so, we provide the first demonstration of end-to-end-differentiable and inference-aware optimisation of particle physics instruments. We study the performance of the software on a relevant benchmark scenario and discuss its potential applications. Our code is available on Github (Strong et al 2024 available at: github.com/GilesStrong/tomopt).
The shape of 286No is investigated with the relativistic density functional theory on a three-dimensional lattice space without any symmetry restriction in a microscopic and self-consistent way. It is found that the ground state of 286No has a pure non-axial octupole shape and coexists with a tetrahedral isomeric state. The energy difference between the two states is only 0.12 MeV, and they are separated by a potential barrier of about 0.5 MeV. The occurrence of the octupole correlations is analyzed with the evolution of the single-particle levels near the Fermi surface driven by the octupole deformations.
Small-scale winds driven from accretion discs surrounding active galactic nuclei (AGN) are expected to launch kpc-scale outflows into their host galaxies. However, the ways in which the structure of the interstellar medium (ISM) affects the multiphase content and impact of the outflow remain uncertain. We present a series of numerical experiments featuring a realistic small-scale AGN wind with velocity $5\times 10^3 \!-\! 10^4\rm {\ km\ s^{-1}}$ interacting with an isolated galaxy disc with a manually controlled clumpy ISM, followed at sub-pc resolution. Our simulations are performed with AREPO and probe a wide range of AGN luminosities ($L_{\rm {AGN}}{=} 10^{43-47}\rm {\ erg\ s^{-1}}$) and ISM substructures. In homogeneous discs, the AGN wind sweeps up an outflowing, cooling shell, where the emerging cold phase dominates the mass and kinetic energy budgets, reaching a momentum flux $\dot{p} \approx 7\ L/c$. However, when the ISM is clumpy, outflow properties are profoundly different. They contain small, long-lived ($\gtrsim 5\ \rm {Myr}$), cold ($T{\lesssim }10^{4.5}{\rm {\ K}}$) cloudlets entrained in the faster, hot outflow phase, which are only present in the outflow if radiative cooling is included in the simulation. While the cold phase dominates the mass of the outflow, most of the kinetic luminosity is now carried by a tenuous, hot phase with $T \gtrsim 10^7 \, \rm K$. While the hot phases reach momentum fluxes $\dot{p} \approx (1 - 5)\ L/c$, energy-driven bubbles couple to the cold phase inefficiently, producing modest momentum fluxes $\dot{p} \lesssim L/c$ in the fast-outflowing cold gas. These low momentum fluxes could lead to the outflows being misclassified as momentum-driven using common observational diagnostics. We also show predictions for scaling relations between outflow properties and AGN luminosity and discuss the challenges in constraining outflow driving mechanisms and kinetic coupling efficiencies using observed quantities.
We study the generation of gravitational waves (GWs) during a first-order cosmological phase transition (PT) using the recently introduced Higgsless approach to numerically evaluate the fluid motion induced by the PT. We present for the first time spectra from strong first-order PTs ($\alpha = 0.5$), alongside weak ($\alpha = 0.0046$) and intermediate ($\alpha = 0.05$) transitions previously considered in the literature. We test the regime of applicability of the stationary source assumption, characteristic of the sound-shell model, and show that it agrees with our numerical results when the kinetic energy, sourcing GWs, does not decay with time. However, we find in general that for intermediate and strong PTs, the kinetic energy in our simulations decays following a power law in time, and provide a theoretical framework that extends the stationary assumption to one that allows to include the time evolution of the source. This decay of the kinetic energy, potentially determined by non-linear dynamics and hence, related to the production of vorticity, modifies the usually assumed linear growth with the source duration to an integral over time of the kinetic energy fraction, effectively reducing the growth rate. We validate the novel theoretical model with the results of our simulations covering a broad range of wall velocities. We provide templates for the GW amplitude and spectral shape for a broad range of PT parameters.
We investigate the redshift evolution of the concentration-mass relationship of dark matter haloes in state-of-the-art cosmological hydrodynamic simulations and their dark-matter-only counterparts. By combining the IllustrisTNG suite and the novel MillenniumTNG simulation, our analysis encompasses a wide range of box size ($50 - 740 \: \rm cMpc$) and mass resolution ($8.5 \times 10^4 - 3.1 \times 10^7 \: \rm M_{\odot}$ per baryonic mass element). This enables us to study the impact of baryons on the concentration-mass relationship in the redshift interval $0<z<7$ over an unprecedented halo mass range, extending from dwarf galaxies to superclusters ($\sim 10^{9.5}-10^{15.5} \, \rm M_{\odot}$). We find that the presence of baryons increases the steepness of the concentration-mass relationship at higher redshift, and demonstrate that this is driven by adiabatic contraction of the profile, due to gas accretion at early times, which promotes star formation in the inner regions of haloes. At lower redshift, when the effects of feedback start to become important, baryons decrease the concentration of haloes below the mass scale $\sim 10^{11.5} \, \rm M_{\odot}$. Through a rigorous information criterion test, we show that broken power-law models accurately represent the redshift evolution of the concentration-mass relationship, and of the relative difference in the total mass of haloes induced by the presence of baryons. We provide the best-fit parameters of our empirical formulae, enabling their application to models that mimic baryonic effects in dark-matter-only simulations over six decades in halo mass in the redshift range $0<z<7$.
We introduce the parity-odd power (POP) spectra, a novel set of observables for probing parity violation in cosmological N-point statistics. POP spectra are derived from composite fields obtained by applying non-linear transformations, involving also gradients, curls, and filtering functions, to a scalar field. This compresses the parity-odd trispectrum into a power spectrum. These new statistics offer several advantages: they are computationally fast to construct, estimating their covariance is less demanding compared to estimating that of the full parity-odd trispectrum, and they are simple to model theoretically. We measure the POP spectra on simulations of a scalar field with a specific parity-odd trispectrum shape. We compare these measurements to semi-analytic theoretical calculations and find agreement. We also explore extensions and generalizations of these parity-odd observables.
Understanding star formation in galaxies requires resolving the physical scale on which star formation often occurs: the scale of star clusters. We present a multiwavelength, eight-parsec resolution study of star formation in the circumnuclear star cluster and molecular gas rings of the early-type spiral NGC 1386. The cluster ring formed simultaneously ~4 Myr ago. The clusters have similar properties in terms of mass and star formation rate, resembling those of H II regions in the Milky Way disc. The molecular CO gas resolves into long filaments, which define a secondary ring detached from the cluster ring. Most clusters are in CO voids. Their separation with respect to the CO filaments is reminiscent of that seen in galaxy spiral arms. By analogy, we propose that a density wave through the disc of this galaxy may have produced this gap in the central kpc. The CO filaments fragment into strings of dense, unresolved clouds with no evidence of a stellar counterpart. These clouds may be the sites of a future population of clusters in the ring. The free-fall time of these clouds, ~10 Myr, is close to the orbital time of the CO ring. This coincidence could lead to a synchronous bursting ring, as is the case for the current ring. The inward spiralling morphology of the CO filaments and co-spatiality with equivalent kpc-scale dust filaments are suggestive of their role as matter carriers from the galaxy outskirts to feed the molecular ring and a moderately active nucleus.
To fulfil its science requirements, the Ariel space mission[1] has been specifically designed to have a stable payload and satellite platform optimised to provide a broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify/characterize clouds and monitor the stellar activity. The chosen wavelength range, from 0.5 to 7.8 µm, covers all the expected major atmospheric gases from, e.g. H2O, CO2, CH4, NH3, HCN, H2S, through to the more exotic metallic compounds, such as TiO, VO, and condensed species.In the frame of the "Spectral Data and databases" working group, 50+ members of the Ariel science team and colleagues were invited to contribute to a White Paper entitled: "Data availability and requirements relevant for the Ariel space mission and other exoplanet atmosphere applications"[2]. The goal of this 70-pages work submitted for a publication to RASTI is to provide a snapshot of the data availability and data needs primarily for the Ariel space mission, but also for related atmospheric studies of exoplanets and brown dwarfs in general. It covers the following data-related topics: molecular and atomic line lists, line profiles, computed cross-sections and opacities, collision-induced absorption and other continuum data, optical properties of aerosols and surfaces, atmospheric chemistry, UV photodissociation and photoabsorption cross-sections, and standards in the description and format of such data. These data aspects are discussed by addressing the following questions for each topic, based on the experience of the "data-provider" and "data-user" communities: (1) what are the types and sources of currently available data, (2) what work is currently in progress, and (3) what are the current and anticipated data needs. Our aim is to provide practical information on existing sources of data whether in databases, theoretical, or literature sources.In addition, a project on the GitHub platform - github.com/Ariel-data -has been created to foster collaboration between the communities. As an open access tool, GitHub provides huge advantages of forming direct dialogues and become a go-to place for both data users and data providers, even for those who are currently not directly involved in the Ariel consortium or in the field of exoplanetary science in general.References[1] G. Tinetti et al., ESA Definition Study Report},(2020) - sci.esa.int/documents/34022/36216/Ariel_Definition_Study_Report_2020.pdf[2] K.L. Chubb, S. Robert, C. Sousa-Silva, S.N. Yurchenko, et al., RAS Techniques and Instruments, submitted (2024) - arXiv:2404.02188.
We combine stellar orbits with the abundances of the heavy, r-process element europium and the light, $\alpha$-element, silicon to separate in situ and accreted populations in the Milky Way (MW) across all metallicities. At high orbital energy, the accretion-dominated halo shows elevated values of [Eu/Si], while at lower energies, where many of the stars were born in situ, the levels of [Eu/Si] are lower. These systematically different levels of [Eu/Si] in the MW and the accreted halo imply that the scatter in [Eu/$\alpha$] within a single galaxy is smaller than previously thought. At the lowest metallicities, we find that both accreted and in situ populations trend down in [Eu/Si], consistent with enrichment via neutron star mergers. Through compiling a large data set of abundances for 54 globular clusters (GCs), we show that differences in [Eu/Si] extend to populations of in situ/accreted GCs. We interpret this consistency as evidence that in r-process elements GCs trace the star formation history of their hosts, motivating their use as sub-Gyr timers of galactic evolution. Furthermore, fitting the trends in [Eu/Si] using a simple galactic chemical evolution model, we find that differences in [Eu/Si] between accreted and in situ MW field stars cannot be explained through star formation efficiency alone. Finally, we show that the use of [Eu/Si] as a chemical tag between GCs and their host galaxies extends beyond the Local Group, to the halo of M31 - potentially offering the opportunity to do Galactic Archaeology in an external galaxy.
This review describes the duality between color and kinematics and its applications, with the aim of gaining a deeper understanding of the perturbative structure of gauge and gravity theories. We emphasize, in particular, applications to loop-level calculations, the broad web of theories linked by the duality and the associated double-copy structure, and the issue of extending the duality and double copy beyond scattering amplitudes. The review is aimed at doctoral students and junior researchers both inside and outside the field of amplitudes and is accompanied by various exercises.
RR Lyrae stars (RRLs) are excellent tracers of stellar populations for old, metal-poor components in the the Milky Way and the Local Group. Their luminosities have a metallicity dependence, but determining spectroscopic [Fe/H] metallicities for RRLs, especially at distances outside the solar neighborhood, is challenging. Using 40 RRLs with metallicities derived from both Fe(II) and Fe(I) abundances, we verify the calibration between the [Fe/H] of RRLs from the calcium triplet. Our calibration is applied to all RRLs with Gaia Radial Velocity Spectrometer (RVS) spectra in Gaia DR3 and to 80 stars in the inner Galaxy from the BRAVA-RR survey. The coadded Gaia RVS RRL spectra provide RRL metallicities with an uncertainty of 0.25 dex, which is a factor of two improvement over the Gaia photometric RRL metallicities. Within our Galactic bulge RRL sample, we find a dominant fraction with low energies without a prominent rotating component. Due to the large fraction of such stars, we interpret these stars as belonging to the in situ metal-poor Galactic bulge component, although we cannot rule out that a fraction of these belong to an ancient accretion event such as Kraken/Heracles.
A central requirement for the faithful implementation of large-scale lattice gauge theories (LGTs) on quantum simulators is the protection of the underlying gauge symmetry. Recent advancements in the experimental realizations of large-scale LGTs have been impressive, albeit mostly restricted to Abelian gauge groups. Guided by this requirement for gauge protection, we propose an experimentally feasible approach to implement large-scale non-Abelian <inline-formula><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> and <inline-formula><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> LGTs with dynamical matter in <inline-formula><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:mrow></mml:math></inline-formula>, enabled by two-body spin-exchange interactions realizing local emergent gauge-symmetry stabilizer terms. We present two concrete proposals for <inline-formula><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:mrow><mml:mspace width="0.2em"></mml:mspace><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> and <inline-formula><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> LGTs, including dynamical bosonic matter and induced plaquette terms, that can be readily implemented in current ultracold-molecule and next-generation ultracold-atom platforms. We provide numerical benchmarks showcasing experimentally accessible dynamics, and demonstrate the stability of the underlying non-Abelian gauge invariance. We develop a method to obtain the effective gauge-invariant model featuring the relevant magnetic plaquette and minimal gauge-matter coupling terms. Our approach paves the way towards near-term realizations of large-scale non-Abelian quantum link models in analog quantum simulators.
We present phase-corrected photometric measurements of 88 Cepheid variables in the core of the Small Magellanic Cloud (SMC), the first sample obtained with the Hubble Space Telescope's (HST) Wide Field Camera 3, in the same homogeneous photometric system as past measurements of all Cepheids on the SH0ES distance ladder. We limit the sample to the inner core and model the geometry to reduce errors in prior studies due to the nontrivial depth of this cloud. Without crowding present in ground-based studies, we obtain an unprecedentedly low dispersion of 0.102 mag for a period–luminosity (P–L) relation in the SMC, approaching the width of the Cepheid instability strip. The new geometric distance to 15 late-type detached eclipsing binaries in the SMC offers a rare opportunity to improve the foundation of the distance ladder, increasing the number of calibrating galaxies from three to four. With the SMC as the only anchor, we find H 0 = 74.1 ± 2.1 km s‑1 Mpc‑1. Combining these four geometric distances with our HST photometry of SMC Cepheids, we obtain H 0 = 73.17 ± 0.86 km s‑1 Mpc‑1. By including the SMC in the distance ladder, we also double the range where the metallicity ([Fe/H]) dependence of the Cepheid P–L relation can be calibrated, and we find γ = ‑0.234 ± 0.052 mag dex‑1. Our local measurement of H 0 based on Cepheids and Type Ia supernovae shows a 5.8σ tension with the value inferred from the cosmic microwave background assuming a Lambda cold dark matter (ΛCDM) cosmology, reinforcing the possibility of physics beyond ΛCDM.
We introduce a block encoding method for mapping discrete subgroups to qubits on a quantum computer. This method is applicable to general discrete groups, including crystal-like subgroups such as <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="double-struck">BI</mml:mi></mml:mrow></mml:math></inline-formula> of <inline-formula><mml:math display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mi mathvariant="double-struck">V</mml:mi></mml:math></inline-formula> of <inline-formula><mml:math display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula>. We detail the construction of primitive gates—the inversion gate, the group multiplication gate, the trace gate, and the group Fourier gate—utilizing this encoding method for <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="double-struck">BT</mml:mi></mml:mrow></mml:math></inline-formula> and for the first time <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="double-struck">BI</mml:mi></mml:mrow></mml:math></inline-formula> group. We also provide resource estimations to extract the gluon viscosity. The inversion gates for <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="double-struck">BT</mml:mi></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="double-struck">BI</mml:mi></mml:mrow></mml:math></inline-formula> are benchmarked on the Baiwang quantum computer with estimated fidelities of <inline-formula><mml:math display="inline"><mml:msubsup><mml:mn>40</mml:mn><mml:mrow><mml:mo>-</mml:mo><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msubsup><mml:mo>%</mml:mo></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:msubsup><mml:mn>4</mml:mn><mml:mrow><mml:mo>-</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msubsup><mml:mo>%</mml:mo></mml:math></inline-formula>, respectively.
When a star is described as a spectral class G2V, we know its approximate mass, temperature, age, and size. At more than 5,700 exoplanets discovered, it is a natural developmental step to establish a classification for them, such as for example, the Harvard classification for stars. This exoplanet classification has to be easily interpreted and present the most relevant information about them and divides them into groups based on certain characteristics. We propose an exoplanet classification, which using an easily readable code, may inform you about a exoplanet's main characteristics. The suggested classification code contains four parameters by which we can quickly determine the range of temperature, mass, density and their eccentricity. The first parameter concerns the mass of an exoplanet in the form of the units of the mass of other known planets, where e.g. M represents the mass of Mercury, E that of Earth, N Neptune, or J Jupiter. The second parameter is the mean Dyson temperature of the extoplanet's orbit, for which we established four main classes: F represents the Frozen class, W the Water class, G the Gaseous class, and R the Roaster class. The third parameter is eccentricity and the fourth parameter is surface attribute which is defined as the bulk density of the exoplanet, where g represents a gaseous planet, w - water planet, t - terrestrial planet, i - iron planet and s - super dense planet. The classification code for Venus, could be EG0t (E - mass in the range of the mass of the Earth, G - Gaseous class, temperature in the range from 450 to 1000 K, 0 - circular or nearly circular orbit, t - terrestrial surface), for Earth it could be EW0t (W - Water class - a possible Habitable zone). This classification is very helpful in, for example, quickly delimiting if a planet can be found in the Habitable zone; if it is terrestrial or not.
We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time ("flash") spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of H I, He I, C III, and N III with a narrow core and broad, symmetric wings (i.e., "IIn-like") arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of He II, C IV, N IV/V, and O V became visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale of t IIn = 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes of M w2 = ‑18.7 mag and M g = ‑18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of <inline-formula> <mml:math overflow="scroll"><mml:mover accent="true"><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mspace width="0.25em"></mml:mspace><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mo>⊙</mml:mo></mml:mrow></mml:msub></mml:math> </inline-formula> yr‑1 (v w = 50 km s‑1), confined to a distance of r < 5 × 1014 cm. Assuming a wind velocity of v w = 50 km s‑1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion.
We study the contribution of large scalar perturbations sourced by a sharp feature during cosmic inflation to the stochastic gravitational wave background (SGWB), extending our previous work to include the SGWB sourced during the inflationary era. We focus in particular on three-field inflation, since the third dynamical field is the first not privileged by the perturbations' equations of motion and allows a more direct generalization to $N$-field inflation. For the first time, we study the three-field isocurvature perturbations sourced during the feature and include the effects of isocurvature masses. In addition to a two-field limit, we find that the third field's dynamics during the feature can source large isocurvature transients which then later decay, leaving an inflationary-era-sourced SGWB as their only observable signature. We find that the inflationary-era signal shape near the peak is largely independent of the number of dynamical fields and has a greatly enhanced amplitude sourced by the large isocurvature transient, suppressing the radiation-era contribution and opening a new window of detectable parameter space with small adiabatic enhancement. The largest enhancements we study could easily violate backreaction constraints, but much of parameter space remains under perturbative control. These SGWBs could be visible in LISA and other gravitational wave experiments, leaving an almost universal signature of sharp features during multi-field inflation, even when the sourcing isocurvature decays to unobservability shortly afterwards.
The Hubble parameter, H 0, is not an univocally defined quantity: It relates redshifts to distances in the near Universe, but it is also a key parameter of the ΛCDM standard cosmological model. As such, H 0 affects several physical processes at different cosmic epochs and multiple observables. We have counted more than a dozen H 0s that are expected to agree if (a) there are no significant systematics in the data and their interpretation and (b) the adopted cosmological model is correct. With few exceptions (proverbially confirming the rule), these determinations do not agree at high statistical significance; their values cluster around two camps: the low (68 km s1 Mpc1) and high (73 km s1 Mpc1) camps. It appears to be a matter of anchors. The shape of the Universe expansion history agrees with the model; it is the normalizations that disagree. Beyond systematics in the data/analysis, if the model is incorrect, there are only two viable ways to "fix" it: by changing the early time (z ≳ 1,100) physics and, thus, the early time normalization or by a global modification, possibly touching the model's fundamental assumptions (e.g., homogeneity, isotropy, gravity). None of these three options has the consensus of the community. The research community has been actively looking for deviations from ΛCDM for two decades; the one we might have found makes us wish we could put the genie back in the bottle.
Large-scale cosmological simulations are an indispensable tool for modern cosmology. To enable model-space exploration, fast and accurate predictions are critical. In this paper, we show that the performance of such simulations can be further improved with time-stepping schemes that use input from cosmological perturbation theory. Specifically, we introduce a class of time-stepping schemes derived by matching the particle trajectories in a single leapfrog/Verlet drift-kick-drift step to those predicted by Lagrangian perturbation theory (LPT). As a corollary, these schemes exactly yield the analytic Zel'dovich solution in 1D in the pre-shell-crossing regime (i.e. before particle trajectories cross). One representative of this class is the popular 'FastPM' scheme by Feng et al. 2016[1], which we take as our baseline. We then construct more powerful LPT-inspired integrators and show that they outperform FastPM and standard integrators in fast simulations in two and three dimensions with <mml:math altimg="si1.svg"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo linebreak="badbreak" linebreakstyle="after">‑</mml:mo><mml:mn>100</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> timesteps, requiring fewer steps to accurately reproduce the power spectrum and bispectrum of the density field. Furthermore, we demonstrate analytically and numerically that, for any integrator, convergence is limited in the post-shell-crossing regime (to order <mml:math altimg="si2.svg"><mml:mfrac bevelled="true"><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math> for planar-wave collapse), owing to the lacking regularity of the acceleration field, which makes the use of high-order integrators in this regime futile. Also, we study the impact of the timestep spacing and of a decaying mode present in the initial conditions. Importantly, we find that symplecticity of the integrator plays a minor role for fast approximate simulations with a small number of timesteps.
Context. A correlation has been reported between the arrival directions of high-energy IceCube events and γ-ray blazars classified as intermediate- and high-synchrotron-peaked BL Lacs. Subsequent studies have investigated the optical properties of these sources, compiled and analyzed public multiwavelength data, and constrained their individual neutrino emission based on public IceCube point-source data. Aims. We provide a theoretical interpretation of public multiwavelength and neutrino point source data for the 32 BL Lac objects in the sample previously associated with an IceCube alert event. We combined the individual source results to draw conclusions regarding the multimesssenger properties of the sample and the required power in relativistic protons. Methods. We performed particle interaction modeling using open-source numerical simulation software. We constrained the model parameters using a novel and unique approach that simultaneously describes the host galaxy contribution, the observed synchrotron peak properties, the average multiwavelength fluxes, and, where possible, the IceCube point source constraints. Results. We show that a single-zone leptohadronic model can describe the multiwavelength broadband fluxes from all 32 IceCube candidates. In some cases, the model suggests that hadronic emission may contribute a considerable fraction of the γ-ray flux. The required power in relativistic protons ranges from a few percent to a factor of ten of the Eddington luminosity, which is energetically less demanding compared to other leptohadronic blazar models in recent literature. The model can describe the 68% confidence level IceCube flux for a large fraction of the masquerading BL Lacs in the sample, including TXS 0506+056; whereas, for true BL Lacs, the model predicts a low neutrino flux in the IceCube sensitivity range. Physically, this distinction is due to the presence of photons from broad line emission in masquerading BL Lacs, which increase the efficiency of hadronic interactions. The predicted neutrino flux peaks between a few petaelectronvolt and 100 PeV and scales positively with the flux in the gigaelectronvolt, megaelectronvolt, X-ray, and optical bands. Based on these results, we provide a list of the brightest neutrino emitters, which can be used for future searches targeting the 10–100 PeV regime.
In this work, we significantly enhance masked particle modeling (MPM), a self-supervised learning scheme for constructing highly expressive representations of unordered sets relevant to developing foundation models for high-energy physics. In MPM, a model is trained to recover the missing elements of a set, a learning objective that requires no labels and can be applied directly to experimental data. We achieve significant performance improvements over previous work on MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder. We compare several pre-training tasks and introduce new reconstruction methods that utilize conditional generative models without data tokenization or discretization. We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets, which includes using a wide variety of downstream tasks relevant to jet physics, such as classification, secondary vertex finding, and track identification.
The essence of the memory burden effect is that a load of information carried by a system stabilizes it. This universal effect is especially prominent in systems with a high capacity of information storage, such as black holes and other objects with maximal microstate degeneracy, the entities universally referred to as "saturons." The phenomenon has several implications. The memory burden effect suppresses a further decay of a black hole, the latest, after it has emitted about half of its initial mass. As a consequence, the light primordial black holes that previously were assumed to be fully evaporated are expected to be present as viable dark matter candidates. In the present paper, we deepen the understanding of the memory burden effect. We first identify various memory burden regimes in generic Hamiltonian systems and then establish a precise correspondence in solitons and in black holes. We make transparent, at a microscopic level, the fundamental differences between the stabilization by a quantum memory burden versus the stabilization by a long-range classical hair due to a spin or an electric charge. We identify certain new features of potential observational interest, such as the model-independent spread of the stabilized masses of initially degenerate primordial black holes.
We propose a simple fit function, <inline-formula><mml:math display="inline"><mml:msub><mml:mi>L</mml:mi><mml:msub><mml:mi>ν</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>C</mml:mi><mml:msup><mml:mi>t</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>/</mml:mo><mml:mi>τ</mml:mi><mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:msup></mml:math></inline-formula>, to parametrize the luminosities of neutrinos and antineutrinos of all flavors during the protoneutron star (PNS) cooling phase at postbounce times <inline-formula><mml:math display="inline"><mml:mi>t</mml:mi><mml:mo>≳</mml:mo><mml:mn>1</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi mathvariant="normal">s</mml:mi></mml:math></inline-formula>. This fit is based on results from a set of neutrino-hydrodynamics simulations of core-collapse supernovae in spherical symmetry. The simulations were performed with an energy-dependent transport for six neutrino species and took into account the effects of convection and muons in the dense and hot PNS interior. We provide values of the fit parameters <inline-formula><mml:math display="inline"><mml:mi>C</mml:mi></mml:math></inline-formula>, <inline-formula><mml:math display="inline"><mml:mi>α</mml:mi></mml:math></inline-formula>, <inline-formula><mml:math display="inline"><mml:mi>τ</mml:mi></mml:math></inline-formula>, and <inline-formula><mml:math display="inline"><mml:mi>n</mml:mi></mml:math></inline-formula> for different neutron star masses and equations of state as well as correlations between these fit parameters. Our functional description is useful for analytic supernova modeling, for characterizing the neutrino light curves in large underground neutrino detectors, and as a tool to extract information from measured signals on the mass and equation of state of the PNS and on secondary signal components on top of the PNS's neutrino emission.
Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years.
Gravitational lensing by galaxy clusters involves hundreds of galaxies over a large redshift range and increases the likelihood of rare phenomena (supernovae, microlensing, dark substructures, etc.). Characterizing the mass and light distributions of foreground and background objects often requires a combination of high-resolution data and advanced modeling techniques. We present the detailed analysis of El Anzuelo, a prominent quintuply imaged dusty star-forming galaxy (ɀs = 2.29), mainly lensed by three members of the massive galaxy cluster ACT-CL J0102–4915, also known as El Gordo (ɀd = 0.87). We leverage JWST/NIRCam images, which contain lensing features that were unseen in previous HST images, using a Bayesian, multi-wavelength, differentiable and GPU-accelerated modeling framework that combines HERCULENS (lens modeling) and NIFTY (field model and inference) software packages. For one of the deflectors, we complement lensing constraints with stellar kinematics measured from VLT/MUSE data. In our lens model, we explicitly include the mass distribution of the cluster, locally corrected by a constant shear field. We find that the two main deflectors (L1 and L2) have logarithmic mass density slopes steeper than isothermal, with γL1 = 2.23 ± 0.05 and γL2 = 2.21 ± 0.04. We argue that such steep density profiles can arise due to tidally truncated mass distributions, which we probe thanks to the cluster lensing boost and the strong asymmetry of the lensing configuration. Moreover, our three-dimensional source model captures most of the surface brightness of the lensed galaxy, revealing a clump with a maximum diameter of 400 parsecs at the source redshift, visible at wavelengths λrest ≳ 0.6 µm. Finally, we caution on using point-like features within extended arcs to constrain galaxy-scale lens models before securing them with extended arc modeling.
The joint probability distribution of matter overdensity and galaxy counts in cells is a powerful probe of cosmology, and the extent to which variance in galaxy counts at fixed matter density deviates from Poisson shot noise is not fully understood. The lack of informed bounds on this stochasticity is currently the limiting factor in constraining cosmology with the galaxy–matter probability distribution function (PDF). We investigate stochasticity in the conditional distribution of galaxy counts along lines of sight with fixed matter density, and we present a halo occupation distribution (HOD)-based approach for obtaining plausible ranges for stochasticity parameters. To probe the high-dimensional space of possible galaxy–matter connections, we derive a set of HODs that conserve the galaxies' linear bias and number density to produce REDMAGIC-like galaxy catalogs within the ABACUSSUMMIT suite of N-body simulations. We study the impact of individual HOD parameters and cosmology on stochasticity and perform a Monte Carlo search in HOD parameter space subject to the constraints on bias and density. In mock catalogs generated by the selected HODs, shot noise in galaxy counts spans both sub-Poisson and super-Poisson values, ranging from 80% to 133% of Poisson variance for cells with mean matter density. Nearly all of the derived HODs show a positive relationship between local matter density and stochasticity. For galaxy catalogs with higher stochasticity, modeling galaxy bias to second order is required for an accurate description of the conditional PDF of galaxy counts at fixed matter density. The presence of galaxy assembly bias also substantially extends the range of stochasticity in the super-Poisson direction. This HOD-based approach leverages degrees of freedom in the galaxy–halo connection to obtain informed bounds on nuisance model parameters and can be adapted to study other parametrizations of shot noise in galaxy counts, in particular to motivate prior ranges on stochasticity for cosmological analyses.
A newfound interest has been seen in narrowband galaxy surveys as a promising method for achieving the necessary accuracy on the photometric redshift estimate of individual galaxies for next-generation stage IV cosmological surveys. One key advantage is the ability to provide higher spectral resolution information on galaxies, which ought to allow for a more accurate and precise estimation of the stellar population properties for galaxies. However, the impact of adding narrowband photometry on the stellar population properties estimate is largely unexplored. The scope of this work is two-fold: 1) we leverage the predictive power of broadband and narrowband data to infer galaxy physical properties, such as stellar masses, ages, star formation rates, and metallicities; and 2) we evaluate the improvement of performance in estimating galaxy properties when we use narrowband instead of broadband data. In this work, we measured the stellar population properties of a sample of galaxies in the COSMOS field for which both narrowband and broadband data are available. In particular, we employed narrowband data from the Physics of the Accelerating Universe Survey (PAUS) and broadband data from the Canada France Hawaii Telescope legacy survey (CFHTLS). We used two different spectral energy distribution (SED) fitting codes to measure galaxy properties, namely, CIGALE and PROSPECTOR. We find that the increased spectral resolution of narrowband photom try does not yield a substantial improvement in terms of constraining the galaxy properties using the SED fitting. Nonetheless, we find that we are able to obtain a more diverse distribution of metallicities and dust optical depths with CIGALE when employing the narrowband data. The effect is not as prominent as expected, which we relate to the low narrowband signal-to-noise ratio (S/N) of a majority of the sampled galaxies, the respective drawbacks of both codes, and the restriction of coverage to the optical regime. The measured properties are compared to those reported in the COSMOS2020 catalogue, showing a good agreement. We have released the catalogue of measured properties in tandem with this work.
For cellular functions like division and polarization, protein pattern formation driven by NTPase cycles is a central spatial control strategy. Operating far from equilibrium, no general theory links microscopic reaction networks and parameters to the pattern type and dynamics. We discover a generic mechanism giving rise to an effective interfacial tension organizing the macroscopic structure of non-equilibrium steady-state patterns. Namely, maintaining protein-density interfaces by cyclic protein attachment and detachment produces curvature-dependent protein redistribution which straightens the interface. We develop a non-equilibrium Neumann angle law and Plateau vertex conditions for interface junctions and mesh patterns, thus introducing the concepts of ``Turing mixtures'' and ``Turing foams''. In contrast to liquid foams and mixtures, these non-equilibrium patterns can select an intrinsic wavelength by interrupting an equilibrium-like coarsening process. Data from in vitro experiments with the E. coli Min protein system verifies the vertex conditions and supports the wavelength dynamics. Our study uncovers interface laws with correspondence to thermodynamic relations that arise from distinct physical processes in active systems. It allows the design of specific pattern morphologies with potential applications as spatial control strategies in synthetic cells.
In dense neutrino environments, such as provided by core-collapse supernovae or neutron-star mergers, neutrino angular distributions may be unstable to collective flavor conversions, whose outcome remains to be fully understood. These conversions are much faster than hydrodynamical scales, suggesting that self-consistent configurations may never be strongly unstable. With this motivation in mind, we study weakly unstable modes, i.e., those with small growth rates. We show that our newly developed dispersion relation (Paper~I of this series) allows for an expansion in powers of the small growth rate. For weakly unstable distributions, we show that the unstable modes must either move with subluminal phase velocity, or very close to the speed of light. The instability is fed from neutrinos moving resonantly with the waves, allowing us to derive explicit expressions for the growth rate. For axisymmetric distributions, often assumed in the literature, numerical examples show the accuracy of these expressions. We also note that for the often-studied one-dimensional systems one should not forget the axial-symmetry-breaking modes, and we provide explicit expressions for the range of wavenumbers that exhibit instabilities.
We propose masked particle modeling (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.
We present magnetohydrodynamic simulations of star formation in the multiphase interstellar medium to quantify the impact of non-ionising far-ultraviolet (FUV) radiation. This study is carried out within the framework of the \textsc{Silcc Project}. It incorporates the radiative transfer of ionising radiation and self-consistent modelling of variable FUV radiation from star clusters. Near young star clusters, the interstellar radiation field (ISRF) can reach values of $G_0 \approx 10^4$ (in Habing units), far exceeding the canonical solar neighbourhood value of $G_0 = 1.7$. However, our findings suggest that FUV radiation has minimal impact on the integrated star formation rate compared to other feedback mechanisms such as ionising radiation, stellar winds, and supernovae. Only a slight decrease in star formation burstiness, related to increased photoelectric heating efficiency by the variable FUV radiation field, is detectable. Dust near star-forming regions can be heated up to 60 K via the photoelectric (PE) effect, showing a broad temperature distribution. PE heating rates for variable FUV radiation models show higher peak intensities but lower average heating rates than static ISRF models. Simulations of solar neighbourhood conditions without stellar winds or ionising radiation but with self-consistent ISRF and supernovae show high star formation rates $\sim10^{-1}\,\mathrm{M_\odot\,yr^{-1}\,kpc^{-2}}$, contradicting expectations. Our chemical analysis reveals increased cold neutral medium volume-filling factors (VFF) outside the vicinity of stellar clusters with a variable ISRF. Simultaneously, the thermally unstable gas is reduced, and a sharper separation of warm and cold gas phases is observed. The variable FUV field also promotes a diffuse molecular gas phase with VFF of $\sim5-10$~per cent.
Time-delay cosmography is a powerful technique to constrain cosmological parameters, particularly the Hubble constant (H0). The TDCOSMO Collaboration is performing an ongoing analysis of lensed quasars to constrain cosmology using this method. In this work, we obtain constraints from the lensed quasar WGD 2038‑4008 using new time-delay measurements and previous mass models by TDCOSMO. This is the first TDCOSMO lens to incorporate multiple lens modeling codes and the full time-delay covariance matrix into the cosmological inference. The models are fixed before the time delay is measured, and the analysis is performed blinded with respect to the cosmological parameters to prevent unconscious experimenter bias. We obtain DΔ t = 1.68‑0.38+0.40 Gpc using two families of mass models, a power-law describing the total mass distribution, and a composite model of baryons and dark matter, although the composite model is disfavored due to kinematics constraints. In a flat ΛCDM cosmology, we constrain the Hubble constant to be H0 = 65‑14+23 km s‑1 Mpc‑1. The dominant source of uncertainty comes from the time delays, due to the low variability of the quasar. Future long-term monitoring, especially in the era of the Vera C. Rubin Observatory's Legacy Survey of Space and Time, could catch stronger quasar variability and further reduce the uncertainties. This system will be incorporated into an upcoming hierarchical analysis of the entire TDCOSMO sample, and improved time delays and spatially-resolved stellar kinematics could strengthen the constraints from this system in the future.
Chemo-mechanical waves on active deformable surfaces are a key component for many vital cellular functions. In particular, these waves play a major role in force generation and long-range signal transmission in cells that dynamically change shape, as encountered during cell division or morphogenesis. Reconstituting and controlling such chemically controlled cell deformations is a crucial but unsolved challenge for the development of synthetic cells. Here, we develop an optogenetic method to elucidate the mechanism responsible for coordinating surface contraction waves that occur in oocytes of the starfish Patiria miniata during meiotic cell division. Using spatiotemporally-patterned light stimuli as a control input, we create chemo-mechanical cortical excitations that are decoupled from meiotic cues and drive diverse shape deformations ranging from local pinching to surface contraction waves and cell lysis. We develop a quantitative model that entails the hierarchy of chemical and mechanical dynamics, which allows to relate the variety of mechanical responses to optogenetic stimuli. Our framework systematically predicts and explains transitions of programmed shape dynamics. Finally, we qualitatively map the observed shape dynamics to elucidate how the versatility of intracellular protein dynamics can give rise to a broad range of mechanical phenomenologies. More broadly, our results pave the way toward real-time control over dynamical deformations in living organisms and can advance the design of synthetic cells and life-like cellular functions.
The self-organization of proteins into enriched compartments and the formation of complex patterns are crucial processes for life on the cellular level. Liquid-liquid phase separation is one mechanism for forming such enriched compartments. When phase-separating proteins are membrane-bound and locally disturb it, the mechanical response of the membrane mediates interactions between these proteins. How these membrane-mediated interactions influence the steady state of the protein density distribution is thus an important question to investigate in order to understand the rich diversity of protein and membrane-shape patterns present at the cellular level. This work starts with a widely used model for membrane-bound phase-separating proteins. We numerically solve our system to map out its phase space and perform a careful, systematic expansion of the model equations to characterize the phase transitions through linear stability analysis and free energy arguments. We observe that the membrane-mediated interactions, due to their long-range nature, are capable of qualitatively altering the equilibrium state of the proteins. This leads to arrested coarsening and length-scale selection instead of simple demixing and complete coarsening. In this study, we unambiguously show that long-range membrane-mediated interactions lead to pattern formation in a system that otherwise would not do so. This work provides a basis for further systematic study of membrane-bound pattern-forming systems.
Water-based Liquid Scintillator (WbLS) is a novel detector medium for particle physics experiments. Applications range from the use as hybrid Cherenkov/scintillation target in low-energy and accelerator neutrino experiments to large-volume neutron vetoes for dark matter detectors. Here we present a WbLS based on well-known components (the surfactant Triton-X, the fluor PPO and vitamin C for long-term stability), with which a new recipe was developed and the result subjected to a thorough characterization of its properties. In addition, based on neutron scattering data we are able to demonstrate that the pulse shape discrimination capabilities of this particular LS are comparable to all-organic LAB based scintillators.
The origin of atmospheric heating in the cool, magnetic white dwarf GD 356 remains unsolved nearly 40 years after its discovery. This once idiosyncratic star with Teff ≈ 7500 K, yet Balmer lines in Zeeman-split emission is now part of a growing class of white dwarfs exhibiting similar features, and which are tightly clustered in the HR diagram suggesting an intrinsic power source. This paper proposes that convective motions associated with an internal dynamo can power electric currents along magnetic field lines that heat the atmosphere via Ohmic dissipation. Such currents would require a dynamo driven by core 22Ne distillation, and would further corroborate magnetic field generation in white dwarfs by this process. The model predicts that the heating will be highest near the magnetic poles, and virtually absent toward the equator, in agreement with observations. This picture is also consistent with the absence of X-ray or extreme ultraviolet emission, because the resistivity would decrease by several orders of magnitude at the typical coronal temperatures. The proposed model suggests that i) DAHe stars are mergers with enhanced 22Ne that enables distillation and may result in significant cooling delays; and ii) any mergers that distill neon will generate magnetism and chromospheres. The predicted chromospheric emission is consistent with the two known massive DQe white dwarfs.
One of the most promising approaches for the next generation of neutrino experiments is the realization of large hybrid Cherenkov/scintillation detectors made possible by recent innovations in photodetection technology and liquid scintillator chemistry. The development of a potentially suitable future detector liquid with particularly slow light emission is discussed in the present publication. This cocktail is compared with respect to its fundamental characteristics (scintillation efficiency, transparency, and time profile of light emission) with liquid scintillators currently used in large-scale neutrino detectors. In addition, the optimization of the admixture of wavelength shifters for a scintillator with particularly high light emission is presented. Furthermore, the pulse-shape discrimination capabilities of the novel medium was studied using a pulsed particle accelerator driven neutron source. Beyond that, purification methods based on column chromatography and fractional vacuum distillation for the co-solvent DIN (Diisopropylnaphthalene) are discussed.
Context. Dark matter (DM) halos can be subject to gravothermal collapse if the DM is not collisionless, but engaged in strong self-interactions instead. When the scattering is able to efficiently transfer heat from the centre to the outskirts, the central region of the halo collapses and reaches densities much higher than those for collisionless DM. This phenomenon is potentially observable in studies of strong lensing. Current theoretical efforts are motivated by observations of surprisingly dense substructures. However, a comparison with observations requires accurate predictions. One method to obtain such predictions is to use N-body simulations. Collapsed halos are extreme systems that pose severe challenges when applying state-of-the-art codes to model self-interacting dark matter (SIDM). Aims. In this work, we investigate the root of such problems, with a focus on energy non-conservation. Moreover, we discuss possible strategies to avoid them. Methods. We ran N-body simulations, both with and without SIDM, of an isolated DM-only halo and we adjusted the numerical parameters to check the accuracy of the simulation. Results. We find that not only the numerical scheme for SIDM can lead to energy non-conservation, but also the modelling of gravitational interaction and the time integration are problematic. The main issues we find are: (a) particles changing their time step in a non-time-reversible manner; (b) the asymmetry in the tree-based gravitational force evaluation; and (c) SIDM velocity kicks breaking the time symmetry. Conclusions. Tuning the parameters of the simulation to achieve a high level of accuracy allows us to conserve energy not only at early stages of the evolution, but also later on. However, the cost of the simulations becomes prohibitively large as a result. Some of the problems that make the simulations of the gravothermal collapse phase inaccurate can be overcome by choosing appropriate numerical schemes. However, other issues still pose a challenge. Our findings motivate further works on addressing the challenges in simulating strong DM self-interactions.
Cryogenic scintillating calorimeters are ultra- sensitive particle detectors for rare event searches, particularly for the search for dark matter and the measurement of neutrino properties. These detectors are made from scintillating target crystals generating two signals for each particle interaction. The phonon (heat) signal precisely measures the deposited energy independent of the type of interacting particle. The scintillation light signal yields particle discrimination on an event-by-event basis. This paper presents a likelihood framework modeling backgrounds and a potential dark matter signal in the two-dimensional plane spanned by phonon and scintillation light energies. We apply the framework to data from CaWO<inline-formula id="IEq1"><mml:math><mml:mmultiscripts><mml:mrow></mml:mrow><mml:mn>4</mml:mn><mml:mrow></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>-based detectors operated in the CRESST dark matter search. For the first time, a single likelihood framework is used in CRESST to model the data and extract results on dark matter in one step by using a profile likelihood ratio test. Our framework simultaneously fits (neutron) calibration data and physics (background) data and allows combining data from multiple detectors. Although tailored to CaWO<inline-formula id="IEq2"><mml:math><mml:mmultiscripts><mml:mrow></mml:mrow><mml:mn>4</mml:mn><mml:mrow></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>-targets and the CRESST experiment, the framework can easily be expanded to other materials and experiments using scintillating cryogenic calorimeters for dark matter search and neutrino physics.
Many advances in astronomy and astrophysics originate from accurate images of the sky emission across multiple wavelengths. This often requires reconstructing spatially and spectrally correlated signals detected from multiple instruments. To facilitate the high-fidelity imaging of these signals, we introduce the universal Bayesian imaging kit (UBIK). Specifically, we present J-UBIK, a flexible and modular implementation leveraging the JAX-accelerated NIFTy.re software as its backend. J-UBIK streamlines the implementation of the key Bayesian inference components, providing for all the necessary steps of Bayesian imaging pipelines. First, it provides adaptable prior models for different sky realizations. Second, it includes likelihood models tailored to specific instruments. So far, the package includes three instruments: Chandra and eROSITA for X-ray observations, and the James Webb Space Telescope (JWST) for the near- and mid-infrared. The aim is to expand this set in the future. Third, these models can be integrated with various inference and optimization schemes, such as maximum a posteriori estimation and variational inference. Explicit demos show how to integrate the individual modules into a full analysis pipeline. Overall, J-UBIK enables efficient generation of high-fidelity images via Bayesian pipelines that can be tailored to specific research objectives.
We present new VLT/MUSE observations of the Hubble Frontier Field (HFF) galaxy cluster MACS J1149.5+2223, lensing the well-known supernova "Refsdal" into multiple images, which has enabled the first cosmological applications with a strongly lensed supernova. Thanks to these data, targeting a northern region of the cluster and thus complementing our previous MUSE program on the cluster core, we have released a new catalog containing 162 secure spectroscopic redshifts. We confirmed 22 cluster members, which had previously been only photometrically selected, and detected ten additional ones, resulting in a total of 308 secure members, of which 63% are spectroscopically confirmed. We further identified 17 new spectroscopic multiple images belonging to six different background sources. By exploiting these new and our previously published MUSE data, in combination with the deep HFF images, we developed an improved total mass model of MACS J1149.5+2223. This model includes 308 total mass components for the member galaxies and requires four additional mass profiles, one of which is associated with a cluster galaxy overdensity identified in the north, representing the dark matter mass distribution on larger scales. The values of the resulting 34 free parameters are optimized based on the observed positions of 106 multiple images from 34 different families, that cover an extended redshift range between 1.240 and 5.983. Our final model has a multiple image position root mean square value of 0.39″, which is in good agreement with other cluster lens models based on a similar number of multiple images. With this refined mass model, we have paved the way toward an improved strong-lensing analyses that will exploit the deep and high resolution observations with HST and JWST on a pixel level in the region of the supernova Refsdal host. This will increase the number of observables by around two orders of magnitude, thus offering the opportunity to carry out more precise and accurate cosmographic measurements in the future. ⋆ This work is based in large part on data collected at ESO VLT (prog.IDs 294.A-5032 and 105.20P5.001) and NASA HST.
The hypergeometric amplitude is a one-parameter deformation of the Veneziano amplitude for four-point tachyon scattering in bosonic string theory that is consistent with $S$-matrix bootstrap constraints. In this article we construct a similar hypergeometric generalization of the Veneziano amplitude for type-I superstring theory. We then rule out a large region of the $(r,m^2,D)$ parameter space as non-unitary, and establish another large subset of the $(r, m^2, D)$ parameter space where all partial wave coefficients are positive. We also analyze positivity in various limits and special cases. As a corollary to our analysis, we are able to directly demonstrate positivity of a wider set of Veneziano amplitude partial wave coefficients than what has been presented elsewhere.
The inference of astrophysical and cosmological properties from the Lyman-α forest conventionally relies on summary statistics of the transmission field that carry useful but limited information. We present a deep learning framework for inference from the Lyman-α forest at the field level. This framework consists of a 1D residual convolutional neural network (ResNet) that extracts spectral features and performs regression on thermal parameters of the intergalactic medium that characterize the power-law temperature-density relation. We trained this supervised machinery using a large set of mock absorption spectra from NYX hydrodynamic simulations at z = 2.2 with a range of thermal parameter combinations (labels). We employed Bayesian optimization to find an optimal set of hyperparameters for our network, and then employed a committee of 20 neural networks for increased statistical robustness of the network inference. In addition to the parameter point predictions, our machine also provides a self-consistent estimate of their covariance matrix with which we constructed a pipeline for inferring the posterior distribution of the parameters. We compared the results of our framework with the traditional summary based approach, namely the power spectrum and the probability density function (PDF) of transmission, in terms of the area of the 68% credibility regions as our figure of merit (FoM). In our study of the information content of perfect (noise- and systematics-free) Lyα forest spectral datasets, we find a significant tightening of the posterior constraints – factors of 10.92 and 3.30 in FoM over the power spectrum only and jointly with PDF, respectively – which is the consequence of recovering the relevant parts of information that are not carried by the classical summary statistics.
Auto-chemotaxis, the directed movement of cells along gradients in chemicals they secrete, is central to the formation of complex spatiotemporal patterns in biological systems. Since the introduction of the Keller-Segel model, numerous variants have been analyzed, revealing phenomena such as coarsening of aggregates, stable aggregate sizes, and spatiotemporally chaotic dynamics. Here, we consider general mass-conserving Keller-Segel models, that is, models without cell growth and death, and analyze the generic long-time dynamics of the chemotactic aggregates. Building on and extending our previous work, which demonstrated that chemotactic aggregation can be understood through a generalized Maxwell construction balancing density fluxes and reactive turnover, we use singular perturbation theory to derive the full rates of mass competition between well-separated aggregates. We analyze how this mass-competition process drives coarsening in both diffusion- and reaction-limited regimes, with the diffusion-limited rate aligning with our previous quasi-steady-state analyses. Our results generalize earlier mathematical findings, demonstrating that coarsening is driven by self-amplifying mass transport and aggregate coalescence. Additionally, we provide a linear stability analysis of the lateral instability, predicting it through a nullcline-slope criterion similar to the curvature criterion in spinodal decomposition. Overall, our findings suggest that chemotactic aggregates behave similarly to phase-separating droplets, providing a robust framework for understanding the coarse-grained dynamics of auto-chemotactic cell populations and providing a basis for the analysis of more complex multi-species chemotactic systems.
Context. Observational evidence has accumulated in recent years, showing that the Galactic bulge includes two populations, a metal-poor one and a metal-rich one, which in addition to having different metallicities show different alpha over iron abundances, spatial distribution, and kinematics. While the metal-rich, barred component has been fairly well characterized, the metal-poor, spheroidal component has been more elusive and harder to describe. RR Lyrae variables are clean tracers of the old bulge component, and they are, on average, more metal-poor than red clump stars. Aims. In the present paper, we provide a new catalog of 16488 ab-type RR Lyrae variables in the bulge region within |l|≲10° and |b|≲2.8°, extracted from multi-epoch Point Spread Function photometry performed on VISTA Variable in the Vía Láctea survey data. We used the catalog to constrain the shape of the old, metal-poor, bulge stellar population. Methods. The identification of ab-type RR Lyrae among a large sample of candidate variables of different types has been performed via a combination of a Random Forest classifier and visual inspection. We optimized this process in such a way to extract a clean catalog with high purity, although for this reason its completeness, close to the midplane, is lower compared to a few other near-infrared catalogs covering the same region of the sky. Results. We used the present catalog to derive the shape of their distribution around the Galactic center, resulting in an elongated spheroid with projected axis ratio of b/a~0.7 and an inclination angle of ϕ~20 degrees. We discuss how observational biases, such as errors on the distances and a nonuniform sampling in longitude, affect both the present measurements and previous ones, especially those based on red clump stars. Because the latter have not been taken into account before, we refrain from a quantitative comparison between these shape parameters and those derived for the main Galactic bar. Nonetheless, qualitatively, taking into account observational biases would lower the estimated ellipticity of the bar derived from red clump stars, and hence reduce the difference with the present results. Conclusions. We publish a high-purity RRab sample for future studies of the oldest Galactic bulge population, close to the midplane. We explore different choices for the period-luminosity-metallicity relation, highlighting how some of them introduce spurious trends of distance with either the period or the metallicity, or both. We provide evidence that they trace a structure that is less elongated than the main bar, though we also highlight some biases of these kind of studies not discussed before. ★Based on observations taken within the ESO VISTA Public Survey VVV, Program ID 179.B-2002.
Extragalactic and galactic cosmic rays scatter with the cosmic neutrino background during propagation to Earth, yielding a flux of relic neutrinos boosted to larger energies. If an overdensity of relic neutrinos is present in galaxies, and neutrinos are massive enough, this flux might be detectable by high-energy neutrino experiments. For a lightest neutrino of mass <inline-formula><mml:math display="inline"><mml:msub><mml:mi>m</mml:mi><mml:mi>ν</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:mn>0.1</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>eV</mml:mi></mml:math></inline-formula>, we find an upper limit on the local relic neutrino overdensity of <inline-formula><mml:math display="inline"><mml:mo>∼</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>13</mml:mn></mml:msup></mml:math></inline-formula> and an upper limit on the relic neutrino overdensity at TXS <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>0506</mml:mn><mml:mo>+</mml:mo><mml:mn>056</mml:mn></mml:mrow></mml:math></inline-formula> of <inline-formula><mml:math display="inline"><mml:mo>∼</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>10</mml:mn></mml:msup></mml:math></inline-formula>. Future experiments like GRAND or IceCube-Gen2 could improve these bounds by orders of magnitude.
It is well established that maximizing the information extracted from upcoming and ongoing stage-IV weak-lensing surveys requires higher order summary statistics that complement the standard two-point statistics. In this work, we focus on weak-lensing peak statistics to test two popular modified gravity models, <inline-formula><tex-math id="TM0001" notation="LaTeX">$f(R)$</tex-math></inline-formula> and nDGP, using the FORGE and BRIDGE weak-lensing simulations, respectively. From these simulations, we measure the peak statistics as a function of both cosmological and modified gravity parameters simultaneously. Our findings indicate that the peak abundance is sensitive to the strength of modified gravity, while the peak two-point correlation function is sensitive to the nature of the screening mechanism in a modified gravity model. We combine these simulated statistics with a Gaussian Process Regression emulator and a Gaussian likelihood to generate stage-IV forecast posterior distributions for the modified gravity models. We demonstrate that, assuming small scales can be correctly modelled, peak statistics can be used to distinguish general relativity from <inline-formula><tex-math id="TM0002" notation="LaTeX">$f(R)$</tex-math></inline-formula> and nDGP models at the 2σ level with a stage-IV survey area of <inline-formula><tex-math id="TM0003" notation="LaTeX">$300$</tex-math></inline-formula> and <inline-formula><tex-math id="TM0004" notation="LaTeX">$1000 \, \rm {deg}^2$</tex-math></inline-formula>, respectively. Finally, we show that peak statistics can constrain <inline-formula><tex-math id="TM0005" notation="LaTeX">$\log _{10}\left(|f_{R0}|\right) = -6$</tex-math></inline-formula> per cent to 2 per cent precision, and <inline-formula><tex-math id="TM0006" notation="LaTeX">$\log _{10}(H_0 r_c) = 0.5$</tex-math></inline-formula> per cent to 25 per cent precision.
This research introduces an innovative application of physics-informed neural networks (PINNs) to tackle the intricate challenges of radiative transfer (RT) modelling in exoplanetary atmospheres, with a special focus on efficiently handling scattering phenomena. Traditional RT models often simplify scattering as absorption, leading to inaccuracies. Our approach utilizes PINNs, noted for their ability to incorporate the governing differential equations of RT directly into their loss function, thus offering a more precise yet potentially fast modelling technique. The core of our method involves the development of a parametrized PINN tailored for a modified RT equation, enhancing its adaptability to various atmospheric scenarios. We focus on RT in transiting exoplanet atmospheres using a simplified 1D isothermal model with pressure-dependent coefficients for absorption and Rayleigh scattering. In scenarios of pure absorption, the PINN demonstrates its effectiveness in predicting transmission spectra for diverse absorption profiles. For Rayleigh scattering, the network successfully computes the RT equation, addressing both direct and diffuse stellar light components. While our preliminary results with simplified models are promising, indicating the potential of PINNs in improving RT calculations, we acknowledge the errors stemming from our approximations as well as the challenges in applying this technique to more complex atmospheric conditions. Specifically, extending our approach to atmospheres with intricate temperature-pressure profiles and varying scattering properties, such as those introduced by clouds and hazes, remains a significant area for future development.
We study the theory of a scalar in the fundamental representation of the internal supergroup $SU(N|M)$. Remarkably, for $M=N+1$ its tree-level mass does not receive quantum corrections at one loop from either self-coupling or interactions with gauge bosons and fermions. This property comes at the price of introducing both degrees of freedom with wrong statistics and with wrong sign kinetic terms. We detail a method to break $SU(N|M)$ down to its bosonic subgroup through a Higgs-like mechanism, allowing for the partial decoupling of the dangerous modes, and study the associated vacuum structure up to one loop.
If primordial black holes (PBHs) of asteroidal mass make up the entire dark matter they could be detectable through their gravitational influence in the solar system. In this work, we study the perturbations that PBHs induce on the orbits of planets. Detailed numerical simulations of the solar system, embedded in a halo of PBHs, are performed. Using the Earth-Mars distance as an observational probe, we show that the perturbations are below the current detection limits and thus PBHs are not directly constrained by solar system ephemerides. We estimate that an improvement in the measurement accuracy by more than an order of magnitude or the extraction of signals well below the noise level are required to detect the gravitational influence of PBHs in the solar system in the foreseeable future.
We present constraints on the $f(R)$ gravity model using a sample of 1,005 galaxy clusters in the redshift range $0.25 - 1.78$ that have been selected through the thermal Sunyaev-Zel'dovich effect (tSZE) from South Pole Telescope (SPT) data and subjected to optical and near-infrared confirmation with the Multi-component Matched Filter (MCMF) algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey (DES) Year 3 data for 688 clusters at $z < 0.95$ and from the Hubble Space Telescope (HST) for 39 clusters with $0.6 < z < 1.7$. Our cluster sample is a powerful probe of $f(R)$ gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semi-analytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck2018 release, we derive robust constraints on the $f(R)$ parameter $f_{R0}$. Our results, $\log_{10} |f_{R0}| < -5.32$ at the 95 % credible level, are the tightest current constraints on $f(R)$ gravity from cosmological scales. This upper limit rules out $f(R)$-like deviations from general relativity that result in more than a $\sim$20 % enhancement of the cluster population on mass scales $M_\mathrm{200c}>3\times10^{14}M_\odot$.
Context. The forward modelling of galaxy surveys has recently gathered interest as one of the primary methods to achieve the required precision on the estimate of the redshift distributions for stage IV surveys, allowing them to perform cosmological tests with unprecedented accuracy. One of the key aspects of forward modelling a galaxy survey is the connection between the physical properties drawn from a galaxy population model and the intrinsic galaxy spectral energy distributions (SEDs), achieved through stellar population synthesis (SPS) codes (e.g. FSPS). However, SPS requires a large number of detailed assumptions on the constituents of galaxies, for which the model choice or parameter values are currently uncertain. Aims. In this work, we perform a sensitivity study of the impact that the variations of the SED modelling choices have on the mean and scatter of the tomographic galaxy redshift distributions. Methods. We assumed the PROSPECTOR-β model as the fiducial input galaxy population model and used its SPS parameters to build 9-bands ugriZYJHKs observed-frame magnitudes of a fiducial sample of galaxies. We then built samples of galaxy magnitudes by varying one SED modelling choice at a time. We modelled the colour-redshift relation of these galaxy samples using the self-organising map (SOM) approach that optimally groups similar redshifts galaxies by their multidimensional colours. We placed galaxies in the SOM cells according to their simulated observed-frame colours and used their cell assignment to build colour-selected tomographic bins. Finally, we compared each variant's binned redshift distributions against the estimates obtained for the original PROSPECTOR-β model. Results. We find that the SED components related to the initial mass function, as well as the active galactic nuclei, the gas physics, and the attenuation law substantially bias the mean and the scatter of the tomographic redshift distributions with respect to those estimated with the fiducial model. Conclusions. For the uncertainty of these choices currently present in the literature and regardless of the applied stellar mass function based re-weighting strategy, the bias in the mean and the scatter of the tomographic redshift distributions are greater than the precision requirements set by next-generation Stage IV galaxy surveys, such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) and Euclid.
Context. The ESO public survey VISTA Variables in the Vía Láctea (VVV) surveyed the inner Galactic bulge and the adjacent southern Galactic disk from 2009–2015. Upon its conclusion, the complementary VVV extended (VVVX) survey has expanded both the temporal as well as spatial coverage of the original VVV area, widening it from 562 to 1700 sq. deg., as well as providing additional epochs in JHKs filters from 2016–2023. Aims. With the completion of VVVX observations during the first semester of 2023, we present here the observing strategy, a description of data quality and access, and the legacy of VVVX. Methods. VVVX took ~2000 h, covering about 4% of the sky in the bulge and southern disk. VVVX covered most of the gaps left between the VVV and the VISTA Hemisphere Survey (VHS) areas and extended the VVV time baseline in the obscured regions affected by high extinction and hence hidden from optical observations. Results. VVVX provides a deep JHKs catalogue of ≳1.5 × 109 point sources, as well as a Ks band catalogue of ~107 variable sources. Within the existing VVV area, we produced a 5D map of the surveyed region by combining positions, distances, and proper motions of well-understood distance indicators such as red clump stars, RR Lyrae, and Cepheid variables. Conclusions. In March 2023 we successfully finished the VVVX survey observations that started in 2016, an accomplishment for ESO Paranal Observatory upon 4200 h of observations for VVV+VVVX. The VVV+VVVX catalogues complement those from the Gaia mission at low Galactic latitudes and provide spectroscopic targets for the forthcoming ESO high-multiplex spectrographs MOONS and 4MOST. ★Based on observations taken within the ESO VISTA Public Survey VVV and VVVX, Programmes ID 179.B-2002 and 198.B-2004, respectively.
We derive a cutting rule for equal-time in-in correlators including cosmological correlators based on Keldysh $r/a$ basis, which decomposes diagrams into fully retarded functions and cut-propagators consisting of Wightman functions. Our derivation relies only on basic assumptions such as unitarity, locality, and the causal structure of the in-in formalism, and therefore holds for theories with arbitrary particle contents and local interactions at any loop order. As an application, we show that non-local cosmological collider signals arise solely from cut-propagators under the assumption of microcausality. Since the cut-propagators do not contain (anti-)time-ordering theta functions, the conformal time integrals are factorized, simplifying practical calculations.
Hyperluminous infrared galaxies (HyLIRGs) are the rarest and most extreme starbursts and found only in the distant Universe (z ≳ 1). They have intrinsic infrared (IR) luminosities LIR ≥ 1013 L⊙ and are commonly found to be major mergers. Recently, the Planck All-Sky Survey to Analyze Gravitationally-lensed Extreme Starbursts project (PASSAGES) searched ~104 deg2 of the sky and found ~20 HyLIRGs. We describe a detailed study of PJ0116-24, the brightest (μLIR ≈ 2.6 × 1014 L⊙, magnified with μ ≈ 17) Einstein-ring HyLIRG in the southern sky, at z = 2.125, with observations from the near-IR integral-field spectrograph VLT/ERIS and the submillimetre interferometer ALMA. We detected Hα, Hβ, [N II] and [S II] lines and obtained an extreme Balmer decrement (Hα/Hβ ≈ 8.73 ± 1.14). We modelled the molecular-gas and ionized-gas kinematics with CO(3-2) and Hα data at ~100-300 pc and (sub)kiloparsec delensed scales, respectively, finding consistent regular rotation. We found PJ0116-24 to be highly rotationally supported (vrot/σ0, mol. gas ≈ 9.4) with a richer gaseous substructure than other known HyLIRGs. Our results imply that PJ0116-24 is an intrinsically massive (Mbaryon ≈ 1011.3 M⊙) and rare starbursty disk (star-formation rate, SFR = 1,490 M⊙ yr−1) probably undergoing secular evolution. This indicates that the maximal SFR (≳1,000 M⊙ yr−1) predicted by simulations could occur during a galaxy's secular evolution, away from major mergers.
Over the past decade, advancement of observational capabilities, specifically the Atacama Large Millimeter/submillimeter Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instruments, alongside theoretical innovations like pebble accretion, have reshaped our understanding of planet formation and the physics of protoplanetary disks. Despite this progress, mysteries persist along the winded path of micrometer-sized dust, from the interstellar medium, through transport and growth in the protoplanetary disk, to becoming gravitationally bound bodies. This review outlines our current knowledge of dust evolution in circumstellar disks, yielding the following insights: ▪ Theoretical and laboratory studies have accurately predicted the growth of dust particles to sizes that are susceptible to accumulation through transport processes like radial drift and settling. ▪ Critical uncertainties in that process remain the level of turbulence, the threshold collision velocities at which dust growth stalls, and the evolution of dust porosity. ▪ Symmetric and asymmetric substructures are widespread. Dust traps appear to be solving several long-standing issues in planet formation models, and they are observationally consistent with being sites of active planetesimal formation. ▪ In some instances, planets have been identified as the causes behind substructures. This underlines the need to study earlier stages of disks to understand how planets can form so rapidly. Theoretical and laboratory studies have accurately predicted the growth of dust particles to sizes that are susceptible to accumulation through transport processes like radial drift and settling. Critical uncertainties in that process remain the level of turbulence, the threshold collision velocities at which dust growth stalls, and the evolution of dust porosity. Symmetric and asymmetric substructures are widespread. Dust traps appear to be solving several long-standing issues in planet formation models, and they are observationally consistent with being sites of active planetesimal formation. In some instances, planets have been identified as the causes behind substructures. This underlines the need to study earlier stages of disks to understand how planets can form so rapidly. In the future, better probes of the physical conditions in optically thick regions, including densities, turbulence strength, kinematics, and particle properties, will be essential for unraveling the physical processes at play.
Axion quark nuggets (AQN) are hypothetical, macroscopically large objects with a mass greater than a few grams and sub-micrometer size, formed during the quark-hadron transition. Originating from the axion field, they offer a possible resolution of the similarity between visible and dark components of the Universe, i.e. ΩDM ∼ Ωvisible and observed matter-antimatter asymmetry. These composite objects behave as cold dark matter, interacting with ordinary matter and resulting in pervasive electromagnetic radiation throughout the Universe. This work aims to predict the electromagnetic signature in large-scale structures from this AQN-baryon interaction, accounting for thermal and non-thermal radiations. We use Magneticum hydrodynamical simulations to describe the realistic distribution and dynamics of gas and dark matter at cosmological scales. We construct a light cone encompassing a 1.4 square degree area on the sky, extending up to redshift z = 5.4, and we calculate the electromagnetic signature across a wide range of frequencies from radio, starting at ν ∼ 1 GHz, up to a few keV X-ray energies. We find that the AQNs electromagnetic signature is characterized by global (monopole) and fluctuation signals. The amplitude of both signals strongly depends on the average nugget mass and the ionization level of the baryonic environment, allowing us to identify a most optimistic scenario and a minimal configuration. The signal of our most optimistic scenario is often near the sensitivity limit of existing instruments, such as FIRAS in the ν = [100-500] GHz range and the South Pole Telescope for high-resolution ℓ > 4000 at ν = 95 GHz. Fluctuations in the Extra-galactic Background Light caused by the axion quark nuggets in the most optimistic scenario can also be tested with space-based imagers Euclid and James Webb Space Telescope. In general, our minimal configuration is still out of reach of existing instruments, but future experiments might be able to pose some constraints. We conclude that the axion quark nuggets model represents a viable model for dark matter, which does not violate the canons of cosmology nor existing observations. A reanalysis of existing data sets could provide some evidence of axion quark nuggets if our most optimistic configuration is correct. The best chances for testing the model reside in 1) ultra-deep infrared and optical surveys, 2) future experiments to probe the frequency spectrum of the cosmic microwave background, and 3) low-frequency (1 GHz < ν < 100 GHz) and high-resolution (ℓ ≳ 104) observations.
We develop parametrizations of eight of the lowest Born-Oppenheimer potentials for quarkonium hybrid mesons as functions of the separation <inline-formula><mml:math display="inline"><mml:mi>r</mml:mi></mml:math></inline-formula> of the static quark and antiquark sources. The parameters are determined by fitting results calculated using pure <inline-formula><mml:math display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> lattice gauge theory. The parametrizations have the correct limiting behavior at small <inline-formula><mml:math display="inline"><mml:mi>r</mml:mi></mml:math></inline-formula>, where the potentials form multiplets associated with gluelumps. They have the correct limiting behavior at large <inline-formula><mml:math display="inline"><mml:mi>r</mml:mi></mml:math></inline-formula>, where the potentials form multiplets associated with excitations of a relativistic string. There is a narrow avoided crossing in the small-<inline-formula><mml:math display="inline"><mml:mi>r</mml:mi></mml:math></inline-formula> region between two potentials with the same Born-Oppenheimer quantum numbers.
Context. Planets form in the disks surrounding young stars. The time at which the planet formation process begins is still an open question. Annular substructures such as rings and gaps in disks are intertwined with planet formation, and thus their presence or absence is commonly used to investigate the onset of this process. Aims. Current observations show that a limited number of disks surrounding protostars exhibit annular substructures, all of them in the Class I stage. The lack of observed features in most of these sources may indicate a late emergence of substructures, but it could also be an artifact of these disks being optically thick. To mitigate the problem of optical depth, we investigated substructures within a very young Class 0 disk characterized by low inclination using observations at longer wavelengths. Methods. We used 3 mm ALMA observations tracing dust emission at a resolution of 7 au to search for evidence of annular substructures in the disk around the deeply embedded Class 0 protostar Oph A SM1. Results. The observations reveal a nearly face-on disk (inclination ∼ 16°) extending up to 40 au. The radial intensity profile shows a clear deviation from a smooth profile near 30 au, which we interpret as the presence of either a gap at 28 au or a ring at 34 au with Gaussian widths of σ = 1.4‑1.2+2.3 au and σ = 3.9‑1.9+2.0 au, respectively. Crucially, the 3 mm emission at the location of the possible gap or ring is determined to be optically thin, precluding the possibility that this feature in the intensity profile is due to the emission being optically thick. Conclusions. Annular substructures resembling those in the more evolved Class I and II disks could indeed be present in the Class 0 stage, which is earlier than suggested by previous observations. Similar observations of embedded disks in which the high-optical-depth problem can be mitigated are clearly needed to better constrain the onset of substructures in the embedded stages.
Observed low-mass galaxies with nuclear star clusters (NSCs) can host accreting massive black holes (MBH). We present simulations of dwarf galaxies ($M_{\mathrm{baryon}} \sim 0.6 - 2.4 \times 10^8 \rm \, M_\odot$) at solar mass resolution ($0.5\rm \, M_\odot < m_{\mathrm{gas}} < 4 \rm \, M_\odot$) with a multi-phase interstellar medium (ISM) and investigate the impact of NSCs on MBH growth and nuclear star formation (SF). The Griffin simulation model includes non-equilibrium low temperature cooling, chemistry and the effect of HII regions and supernovae (SN) from massive stars. Individual stars are sampled down to 0.08 $\rm M_\odot$ and their non-softened gravitational interactions with MBHs are computed with the regularised Ketju integrator. MBHs with masses in the range of $10^2 - 10^5 \, \rm M_\odot$ are represented by accreting sink particles without feedback. We find that the presence of NSCs boost nuclear SF (i.e. NSC growth) and MBH accretion by funneling gas to the central few parsecs. Low-mass MBHs grow more rapidly on $\sim 600$ Myr timescales, exceeding their Eddington rates at peak accretion. MBH accretion and nuclear SF is episodic (i.e. leads to multiple stellar generations), coeval and regulated by SN explosions. On 40 - 60 Myr timescales the first SN of each episode terminates MBH accretion and nuclear SF. Without NSCs, low-mass MBHs do not grow and MBH accretion and reduced nuclear SF become irregular and uncorrelated. This study gives the first insights into the possible co-evolution of MBHs and NSCs in low-mass galaxies and highlights the importance of considering dense NSCs in galactic studies of MBH growth.
Strongly lensed supernovae (SNe) are a rare class of transient that can offer tight cosmological constraints that are complementary to methods from other astronomical events. We present a follow-up study of one recently-discovered strongly lensed SN, the quadruply-imaged Type Ia SN 2022qmx (aka, "SN Zwicky") at z = 0.3544. We measure updated, template-subtracted photometry for SN Zwicky and derive improved time delays and magnifications. This is possible because SNe are transient, fading away after reaching their peak brightness. Specifically, we measure point spread function (PSF) photometry for all four images of SN Zwicky in three Hubble Space Telescope WFC3/UVIS passbands (F475W, F625W, F814W) and one WFC3/IR passband (F160W), with template images taken $\sim 11$ months after the epoch in which the SN images appear. We find consistency to within $2\sigma$ between lens model predicted time delays ($\lesssim1$ day), and measured time delays with HST colors ($\lesssim2$ days), including the uncertainty from chromatic microlensing that may arise from stars in the lensing galaxy. The standardizable nature of SNe Ia allows us to estimate absolute magnifications for the four images, with images A and C being elevated in magnification compared to lens model predictions by about $6\sigma$ and $3\sigma$ respectively, confirming previous work. We show that millilensing or differential dust extinction is unable to explain these discrepancies and find evidence for the existence of microlensing in images A, C, and potentially D, that may contribute to the anomalous magnification.
Studying the orbital motion of stars around Sagittarius A* in the Galactic Center provides a unique opportunity to probe the gravitational potential near the supermassive black hole at the heart of our Galaxy. Interferometric data obtained with the GRAVITY instrument at the Very Large Telescope Interferometer (VLTI) since 2016 has allowed us to achieve unprecedented precision in tracking the orbits of these stars. GRAVITY data have been key to detecting the in-plane, prograde Schwarzschild precession of the orbit of the star S2, as predicted by General Relativity. By combining astrometric and spectroscopic data from multiple stars, including S2, S29, S38, and S55 - for which we have data around their time of pericenter passage with GRAVITY - we can now strengthen the significance of this detection to an approximately $10 \sigma$ confidence level. The prograde precession of S2's orbit provides valuable insights into the potential presence of an extended mass distribution surrounding Sagittarius A*, which could consist of a dynamically relaxed stellar cusp comprised of old stars and stellar remnants, along with a possible dark matter spike. Our analysis, based on two plausible density profiles - a power-law and a Plummer profile - constrains the enclosed mass within the orbit of S2 to be consistent with zero, establishing an upper limit of approximately $1200 \, M_\odot$ with a $1 \sigma$ confidence level. This significantly improves our constraints on the mass distribution in the Galactic Center. Our upper limit is very close to the expected value from numerical simulations for a stellar cusp in the Galactic Center, leaving little room for a significant enhancement of dark matter density near Sagittarius A*.
We perform canonical quantization of General Relativity, as an effective quantum field theory below the Planck scale, within the BRST-invariant framework. We show that the promotion of constraints to dynamical equations of motion for auxiliary fields leads to the healthy Hamiltonian flow. In particular, we show that the classical properties of Einstein's gravity, such as vanishing Hamiltonian modulo boundary contribution, is realized merely as an expectation value in appropriate physical states. Most importantly, the physicality is shown not to entail trivial time-evolution for correlation functions. In the present approach we quantize the theory once and for all around the Minkowaski vacuum and treat other would-be classical backgrounds as BRST-invariant coherent states. This is especially important for cosmological spacetimes as it uncovers features that are not visible in ordinary semi-classical treatment. The Poincaré invariance of the vacuum, essential for our quantization, provides strong motivation for spontaneously-broken supersymmetry.
In this thesis, I present my work developing two instruments for studying cosmic and solar particles and the secondary radiation created by them. The RadMap Telescope is a compact radiation monitor for characterizing the environment inside the International Space Station. The Lunar Cosmic-Ray and Neutron Spectrometer is a versatile instrument designed to detect areas of increased sub-surface hydrogen abundance via neutron spectroscopy, which we use to search for water-ice deposits in the Moon's polar regions.