Seite 7 von 11
(469)General non-leptonic ∆F = 1 WET at the NLO in QCD
  • Jason Aebischer,
  • Christoph Bobeth,
  • Andrzej J. Buras,
  • Jacky Kumar,
  • Mikołaj Misiak
Journal of High Energy Physics, 2021 (11/2021) doi:10.1007/JHEP11(2021)227
abstract + abstract -

We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic ∆F = 1 decays that govern s → d and b → d, s transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers Nf of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of K → ππ and non-leptonic B-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.


(468)Large gaps and high accretion rates in photoevaporative transition disks with a dead zone
  • Matías Gárate,
  • Timmy N. Delage,
  • Jochen Stadler,
  • Paola Pinilla,
  • Til Birnstiel
  • +5
  • Sebastian Markus Stammler,
  • Giovanni Picogna,
  • Barbara Ercolano,
  • Raphael Franz,
  • Christian Lenz
  • (less)
Astronomy and Astrophysics, 655, p16 (11/2021) doi:10.1051/0004-6361/202141444
abstract + abstract -

Context. Observations of young stars hosting transition disks show that several of them have high accretion rates, despite their disks presenting extended cavities in their dust component. This represents a challenge for theoretical models, which struggle to reproduce both features simultaneously.
Aims: We aim to explore if a disk evolution model, including a dead zone and disk dispersal by X-ray photoevaporation, can explain the high accretion rates and large gaps (or cavities) measured in transition disks.
Methods: We implemented a dead zone turbulence profile and a photoevaporative mass-loss profile into numerical simulations of gas and dust. We performed a population synthesis study of the gas component and obtained synthetic images and SEDs of the dust component through radiative transfer calculations.
Results: This model results in long-lived inner disks and fast dispersing outer disks that can reproduce both the accretion rates and gap sizes observed in transition disks. For a dead zone of turbulence αdz = 10−4 and an extent rdz = 10 AU, our population synthesis study shows that 63% of our transition disks are still accreting with Ṁg ≥ 10−11 M yr−1 after opening a gap. Among those accreting transition disks, half display accretion rates higher than 5.0 × 10−10 M yr−1. The dust component in these disks is distributed in two regions: in a compact inner disk inside the dead zone, and in a ring at the outer edge of the photoevaporative gap, which can be located between 20 and 100 AU. Our radiative transfer calculations show that the disk displays an inner disk and an outer ring in the millimeter continuum, a feature that resembles some of the observed transition disks.
Conclusions: A disk model considering X-ray photoevaporative dispersal in combination with dead zones can explain several of the observed properties in transition disks, including the high accretion rates, the large gaps, and a long-lived inner disk at millimeter emission.


(467)X-ray spectra, light curves and SEDs of blazars frequently observed by Swift
  • Paolo Giommi,
  • M. Perri,
  • M. Capalbi,
  • V. D'Elia,
  • U. Barres de Almeida
  • +17
  • C. H. Brandt,
  • A. M. T. Pollock,
  • F. Arneodo,
  • A. Di Giovanni,
  • Y. L. Chang,
  • O. Civitarese,
  • M. De Angelis,
  • C. Leto,
  • F. Verrecchia,
  • N. Ricard,
  • S. Di Pippo,
  • R. Middei,
  • A. V. Penacchioni,
  • R. Ruffini,
  • N. Sahakyan,
  • D. Israyelyan,
  • S. Turriziani
  • (less)
Monthly Notices of the Royal Astronomical Society, 507, p13 (11/2021) doi:10.1093/mnras/stab2425
abstract + abstract -

Blazars research is one of the hot topics of contemporary extragalactic astrophysics. That is because these sources are the most abundant type of extragalactic γ-ray sources and are suspected to play a central role in multimessenger astrophysics. We have used Swift$\_$xrtproc, a tool to carry out an accurate spectral and photometric analysis of the Swift-XRT data of all blazars observed by Swift at least 50 times between December 2004 and the end of 2020. We present a database of X-ray spectra, best-fit parameter values, count rates and flux estimations in several energy bands of over 31 000 X-ray observations and single snapshots of 65 blazars. The results of the X-ray analysis have been combined with other multifrequency archival data to assemble the broad-band Spectral Energy Distributions (SEDs) and the long-term light curves of all sources in the sample. Our study shows that large X-ray luminosity variability on different time-scales is present in all objects. Spectral changes are also frequently observed with a 'harder-when-brighter' or 'softer-when-brighter' behaviour depending on the SED type of the blazars. The peak energy of the synchrotron component (νpeak) in the SED of HBL blazars, estimated from the log-parabolic shape of their X-ray spectra, also exhibits very large changes in the same source, spanning a range of over two orders of magnitude in Mrk421 and Mrk501, the objects with the best data sets in our sample.


(466)Clash of Titans: a MUSE dynamical study of the extreme cluster merger SPT-CLJ0307-6225
  • D. Hernández-Lang,
  • A. Zenteno,
  • A. Diaz-Ocampo,
  • H. Cuevas,
  • J. Clancy
  • +21
  • H. Prado P.,
  • F. Aldás,
  • D. Pallero,
  • R. Monteiro-Oliveira,
  • F. A. Gómez,
  • A. Ramirez,
  • J. Wynter,
  • E. R. Carrasco,
  • G. K. T. Hau,
  • B. Stalder,
  • M. McDonald,
  • M. Bayliss,
  • B. Floyd,
  • G. Garmire,
  • A. Katzenberger,
  • K. J. Kim,
  • M. Klein,
  • G. Mahler,
  • J. L. Nilo Castellon,
  • A. Saro,
  • T Somboonpanyakul
  • (less)
arXiv e-prints (11/2021) e-Print:2111.15443
abstract + abstract -

We present VLT/MUSE spectroscopy, along with archival Gemini/GMOS spectroscopy, Magellan/Megacam imaging, and Chandra X-ray emission for SPT-CLJ0305-6225, a z=0.58 galaxy cluster. A large BCG-SZ centroid separation and a highly disturbed X-ray morphology classifies SPT-CLJ0307-6225 as a major merging cluster. Furthermore, the galaxy density distribution shows two main overdensities with separations of 0.144' and 0.017' to their respective BCGs. We characterize the central regions of the two colliding structures, namely 0307-6225N and 0307-6225S. We find velocity derived masses of $M_{200,N}=$ 2.42 $\pm$ 1.40 $\times10^{14}$ M$_\odot$ and $M_{200,S}=$ 3.13 $\pm$ 1.87 $\times10^{14}$ M$_\odot$, with a line-of-sight velocity difference between the two structures of $|\Delta v| = 342$ km s$^{-1}$. The total dynamically derived mass is consistent with the SZ derived mass of 7.63 h$_{70}^{-1}$ $\pm$ 1.36 $\times10^{14}$ M$_\odot$. We model the merger using the Monte Carlo Merger Analysis Code, estimating a merging angle of 36$^{+14}_{-12}$ degrees with respect to the plane of the sky. Comparing with simulations of a merging system with a mass ratio of 1:3, we find that the best scenario is that of an ongoing merger that began 0.96$^{+0.31}_{-0.18}$ Gyr ago, which could be close to turnaround. We also characterize the galaxy population using the H$\delta$ and [OII] $\lambda 3727$ Å\ lines. We find that most of the emission-line galaxies belong to 0307-6225S, close to the X-ray peak position, with a third of them corresponding to red-cluster sequence galaxies, and the rest to blue galaxies with velocities consistent with recent periods of accretion. Moreover, we suggest that 0307-6225S suffered a previous merger, evidenced through the two equally bright BCGs at the center with a velocity difference of $\sim$674 km s$^{-1}$.


(465)The Vacuum Frame
  • Jose A. R. Cembranos
arXiv e-prints (11/2021) e-Print:2111.11907
abstract + abstract -

One of the most fundamental questions in cosmology is if dark energy is related just to a constant or it is something more complex. In this work, we call the attention to the fact that, under very general conditions, dark energy can be identified with a cosmological constant. Indeed, this fact defines what we call Vacuum Frame. In general, this frame does not coincide with the Jordan or Einstein frame, defined by the invariant character of particle masses or the Newton constant, respectively. We illustrate this question by the introduction of a particular scalar-tensor model where the different hierarchies among these energy scales are dynamically generated.


(464)A goodness-of-fit test based on a recursive product of spacings
  • Philipp Eller,
  • Lolian Shtembari
arXiv e-prints (11/2021) e-Print:2111.02252
abstract + abstract -

We introduce a new statistical test based on the observed spacings of ordered data. The statistic is sensitive to detect non-uniformity in random samples, or short-lived features in event time series. Under some conditions, this new test can outperform existing ones, such as the well known Kolmogorov-Smirnov or Anderson-Darling tests, in particular when the number of samples is small and differences occur over a small quantile of the null hypothesis distribution. A detailed description of the test statistic is provided including an illustration and examples, together with a parameterization of its distribution based on simulation.


(463)Mixed moduli in 3d N=4 higher-genus quivers
  • Ioannis Lavdas,
  • Bruno Le Floch
arXiv e-prints (11/2021) e-Print:2111.15671
abstract + abstract -

We analyze exactly marginal deformations of 3d N=4 Lagrangian gauge theories, especially mixed-branch operators with both electric and magnetic charges. These mixed-branch moduli are either single-trace (non-factorizable) or in products of electric and magnetic current supermultiplets. Apart from some exceptional quivers (which have additional moduli), 3d N=4 theories described by genus g quivers with nonabelian unitary gauge groups have exactly g single-trace mixed moduli, which preserve the global flavour symmetries. For g>1, this implies that AdS_4 gauged supergravities cannot capture the entire moduli space even if one takes into account the (quantization) moduli of boundary conditions. Likewise, in a general Lagrangian theory, we establish (using the superconformal index) that the number of single-trace mixed moduli is bounded below by the genus of a graph encoding how nonabelian gauge groups act on hypermultiplets.


(462)Lepton-flavour non-universality of B ¯ →D<SUP>∗</SUP>ℓ ν ¯ angular distributions in and beyond the Standard Model
  • Christoph Bobeth,
  • Marzia Bordone,
  • Nico Gubernari,
  • Martin Jung,
  • Danny van Dyk
European Physical Journal C, 81 (11/2021) doi:10.1140/epjc/s10052-021-09724-2
abstract + abstract -

We analyze in detail the angular distributions in B ¯ →Dℓ ν ¯ decays, with a focus on lepton-flavour non-universality. We investigate the minimal number of angular observables that fully describes current and upcoming datasets, and explore their sensitivity to physics beyond the Standard Model (BSM) in the most general weak effective theory. We apply our findings to the current datasets, extract the non-redundant set of angular observables from the data, and compare to precise SM predictions that include lepton-flavour universality violating mass effects. Our analysis shows that the number of independent angular observables that can be inferred from current experimental data is limited to only four. These are insufficient to extract the full set of relevant BSM parameters. We uncover a ∼4 σ tension between data and predictions that is hidden in the redundant presentation of the Belle 2018 data on B ¯ →Dℓ ν ¯ decays. This tension specifically involves observables that probe e -μ lepton-flavour universality. However, we find inconsistencies in these data, which renders results based on it suspicious. Nevertheless, we discuss which generic BSM scenarios could explain the tension, in the case that the inconsistencies do not affect the data materially. Our findings highlight that e -μ non-universality in the SM, introduced by the finite muon mass, is already significant in a subset of angular observables with respect to the experimental precision.


(461)Charge radii, moments, and masses of mercury isotopes across the N =126 shell closure
  • T. Day Goodacre,
  • A. V. Afanasjev,
  • A. E. Barzakh,
  • L. Nies,
  • B. A. Marsh
  • +46
  • S. Sels,
  • U. C. Perera,
  • P. Ring,
  • F. Wienholtz,
  • A. N. Andreyev,
  • P. Van Duppen,
  • N. A. Althubiti,
  • B. Andel,
  • D. Atanasov,
  • R. S. Augusto,
  • J. Billowes,
  • K. Blaum,
  • T. E. Cocolios,
  • J. G. Cubiss,
  • G. J. Farooq-Smith,
  • D. V. Fedorov,
  • V. N. Fedosseev,
  • K. T. Flanagan,
  • L. P. Gaffney,
  • L. Ghys,
  • A. Gottberg,
  • M. Huyse,
  • S. Kreim,
  • P. Kunz,
  • D. Lunney,
  • K. M. Lynch,
  • V. Manea,
  • Y. Martinez Palenzuela,
  • T. M. Medonca,
  • P. L. Molkanov,
  • M. Mougeot,
  • J. P. Ramos,
  • M. Rosenbusch,
  • R. E. Rossel,
  • S. Rothe,
  • L. Schweikhard,
  • M. D. Seliverstov,
  • P. Spagnoletti,
  • C. Van Beveren,
  • M. Veinhard,
  • E. Verstraelen,
  • A. Welker,
  • K. Wendt,
  • R. N. Wolf,
  • A. Zadvornaya,
  • K. Zuber
  • (less)
Physical Review C, 104 (11/2021) doi:10.1103/PhysRevC.104.054322
abstract + abstract -

Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source (VADLIS) with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the N =126 shell closure, the electromagnetic moments of 207Hg, and more precise mass values of Hg-208206. The odd-even staggering (OES) of the mean square charge radii and the kink at N =126 are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predominantly in the particle-hole channel in CDFT, since both are present in the calculations without pairing. However, the magnitude of the kink is still affected by the occupation of the ν 1 i11 /2 and ν 2 g9 /2 orbitals with a dependence on the relative energies as well as pairing.


(460)Boundary Heisenberg Algebras and Their Deformations
  • Martin Enriquez-Rojo,
  • H. R. Safari
arXiv e-prints (11/2021) e-Print:2111.13225
abstract + abstract -

We investigate the deformations and rigidity of boundary Heisenberg-like algebras. In particular, we focus on the Heisenberg and $\text{Heisenberg}\oplus\mathfrak{witt}$ algebras which arise as symmetry algebras in three-dimensional gravity theories. As a result of the deformation procedure we find a large class of algebras. While some of these algebras are new, some of them have already been obtained as asymptotic and boundary symmetry algebras, supporting the idea that symmetry algebras associated to diverse boundary conditions and spacetime loci are algebraically interconnected through deformation of algebras. The deformation/contraction relationships between the new algebras are investigated. In addition, it is also shown that the deformation procedure reaches new algebras inaccessible to the Sugawara construction. As a byproduct of our analysis, we obtain that $\text{Heisenberg}\oplus\mathfrak{witt}$ and the asymptotic symmetry algebra Weyl-$\mathfrak{bms}_3$ are not connected via single deformation but in a more subtle way.


(459)Chromoelectric and chromomagnetic correlators at high temperature from gradient flow
  • Julian Mayer-Steudte,
  • Nora Brambilla,
  • Viljami Leino,
  • Peter Petreczky
arXiv e-prints (11/2021) e-Print:2111.10340
abstract + abstract -

The heavy quark diffusion coefficient is encoded in the spectral functions of the chromoelectric and the chromomagnetic correlators that are calculable on the lattice. We study the chromoelectric and the chromomagnetic correlator in the deconfined phase of SU(3) gauge theory using Symanzik flow at two temperatures $1.5T_c$ and $10000 T_c$, with $T_c$ being the phase transition temperature. To control the lattice discretization errors and perform the continuum limit we use several temporal lattice extents $N_t=16,20,24$ and 28. We observe that the flow time dependence of the chromomagnetic correlator is quite different from chromoelectric correlator most likely due to the anomalous dimension of the former as has been pointed out recently in the literature.


(458)Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017
  • MAGIC Collaboration,
  • V. A. Acciari,
  • S. Ansoldi,
  • L. A. Antonelli,
  • A. Arbet Engels
  • +279
  • M. Artero,
  • K. Asano,
  • A. Babić,
  • A. Baquero,
  • U. Barres de Almeida,
  • J. A. Barrio,
  • I. Batković,
  • J. Becerra González,
  • W. Bednarek,
  • L. Bellizzi,
  • E. Bernardini,
  • M. Bernardos,
  • A. Berti,
  • J. Besenrieder,
  • W. Bhattacharyya,
  • C. Bigongiari,
  • O. Blanch,
  • Ž. Bošnjak,
  • G. Busetto,
  • R. Carosi,
  • G. Ceribella,
  • M. Cerruti,
  • Y. Chai,
  • A. Chilingarian,
  • S. Cikota,
  • S. M. Colak,
  • E. Colombo,
  • J. L. Contreras,
  • J. Cortina,
  • S. Covino,
  • G. D'Amico,
  • V. D'Elia,
  • P. da Vela,
  • F. Dazzi,
  • A. de Angelis,
  • B. de Lotto,
  • M. Delfino,
  • J. Delgado,
  • C. Delgado Mendez,
  • D. Depaoli,
  • F. di Pierro,
  • L. di Venere,
  • E. Do Souto Espiñeira,
  • D. Dominis Prester,
  • A. Donini,
  • M. Doro,
  • V. Fallah Ramazani,
  • A. Fattorini,
  • G. Ferrara,
  • M. V. Fonseca,
  • L. Font,
  • C. Fruck,
  • S. Fukami,
  • R. J. García López,
  • M. Garczarczyk,
  • S. Gasparyan,
  • M. Gaug,
  • N. Giglietto,
  • F. Giordano,
  • P. Gliwny,
  • N. Godinović,
  • J. G. Green,
  • D. Green,
  • D. Hadasch,
  • A. Hahn,
  • L. Heckmann,
  • J. Herrera,
  • J. Hoang,
  • D. Hrupec,
  • M. Hütten,
  • T. Inada,
  • S. Inoue,
  • K. Ishio,
  • Y. Iwamura,
  • I. Jiménez,
  • J. Jormanainen,
  • L. Jouvin,
  • Y. Kajiwara,
  • M. Karjalainen,
  • D. Kerszberg,
  • Y. Kobayashi,
  • H. Kubo,
  • J. Kushida,
  • A. Lamastra,
  • D. Lelas,
  • F. Leone,
  • E. Lindfors,
  • S. Lombardi,
  • F. Longo,
  • R. López-Coto,
  • M. López-Moya,
  • A. López-Oramas,
  • S. Loporchio,
  • B. Machado de Oliveira Fraga,
  • C. Maggio,
  • P. Majumdar,
  • M. Makariev,
  • M. Mallamaci,
  • G. Maneva,
  • M. Manganaro,
  • L. Maraschi,
  • M. Mariotti,
  • M. Martínez,
  • D. Mazin,
  • S. Menchiari,
  • S. Mender,
  • S. Mićanović,
  • D. Miceli,
  • T. Miener,
  • M. Minev,
  • J. M. Miranda,
  • R. Mirzoyan,
  • E. Molina,
  • A. Moralejo,
  • D. Morcuende,
  • V. Moreno,
  • E. Moretti,
  • V. Neustroev,
  • C. Nigro,
  • K. Nilsson,
  • K. Nishijima,
  • K. Noda,
  • S. Nozaki,
  • Y. Ohtani,
  • T. Oka,
  • J. Otero-Santos,
  • S. Paiano,
  • M. Palatiello,
  • D. Paneque,
  • R. Paoletti,
  • J. M. Paredes,
  • L. Pavletić,
  • P. Peñil,
  • C. Perennes,
  • M. Persic,
  • P. G. Prada Moroni,
  • E. Prandini,
  • C. Priyadarshi,
  • I. Puljak,
  • M. Ribó,
  • J. Rico,
  • C. Righi,
  • A. Rugliancich,
  • L. Saha,
  • N. Sahakyan,
  • T. Saito,
  • S. Sakurai,
  • K. Satalecka,
  • F. G. Saturni,
  • K. Schmidt,
  • T. Schweizer,
  • J. Sitarek,
  • I. Šnidarić,
  • D. Sobczynska,
  • A. Spolon,
  • A. Stamerra,
  • D. Strom,
  • M. Strzys,
  • Y. Suda,
  • T. Surić,
  • M. Takahashi,
  • F. Tavecchio,
  • P. Temnikov,
  • T. Terzić,
  • M. Teshima,
  • L. Tosti,
  • S. Truzzi,
  • A. Tutone,
  • S. Ubach,
  • J. van Scherpenberg,
  • G. Vanzo,
  • M. Vazquez Acosta,
  • S. Ventura,
  • V. Verguilov,
  • C. F. Vigorito,
  • V. Vitale,
  • I. Vovk,
  • M. Will,
  • C. Wunderlich,
  • D. Zarić,
  • Fact Collaboration,
  • D. Baack,
  • M. Balbo,
  • N. Biederbeck,
  • A. Biland,
  • T. Bretz,
  • J. Buss,
  • D. Dorner,
  • L. Eisenberger,
  • D. Elsaesser,
  • D. Hildebrand,
  • R. Iotov,
  • K. Mannheim,
  • D. Neise,
  • M. Noethe,
  • A. Paravac,
  • W. Rhode,
  • B. Schleicher,
  • V. Sliusar,
  • R. Walter,
  • F. D'Ammando,
  • D. Horan,
  • A. Y. Lien,
  • M. Baloković,
  • G. M. Madejski,
  • M. Perri,
  • F. Verrecchia,
  • C. Leto,
  • A. Lähteenmäki,
  • M. Tornikoski,
  • V. Ramakrishnan,
  • E. Järvelä,
  • R. J. C. Vera,
  • W. Chamani,
  • M. Villata,
  • C. M. Raiteri,
  • A. C. Gupta,
  • A. Pandey,
  • A. Fuentes,
  • I. Agudo,
  • C. Casadio,
  • E. Semkov,
  • S. Ibryamov,
  • A. Marchini,
  • R. Bachev,
  • A. Strigachev,
  • E. Ovcharov,
  • V. Bozhilov,
  • A. Valcheva,
  • E. Zaharieva,
  • G. Damljanovic,
  • O. Vince,
  • V. M. Larionov,
  • G. A. Borman,
  • T. S. Grishina,
  • V. A. Hagen-Thorn,
  • E. N. Kopatskaya,
  • E. G. Larionova,
  • L. V. Larionova,
  • D. A. Morozova,
  • A. A. Nikiforova,
  • S. S. Savchenko,
  • I. S. Troitskiy,
  • Y. V. Troitskaya,
  • A. A. Vasilyev,
  • O. A. Merkulova,
  • W. P. Chen,
  • M. Samal,
  • H. C. Lin,
  • J. W. Moody,
  • A. C. Sadun,
  • S. G. Jorstad,
  • A. P. Marscher,
  • Z. R. Weaver,
  • M. Feige,
  • J. Kania,
  • M. Kopp,
  • L. Kunkel,
  • D. Reinhart,
  • A. Scherbantin,
  • L. Schneider,
  • C. Lorey,
  • J. A. Acosta-Pulido,
  • M. I. Carnerero,
  • D. Carosati,
  • S. O. Kurtanidze,
  • O. M. Kurtanidze,
  • M. G. Nikolashvili,
  • R. A. Chigladze,
  • R. Z. Ivanidze,
  • G. N. Kimeridze,
  • L. A. Sigua,
  • M. D. Joner,
  • M. Spencer,
  • M. Giroletti,
  • N. Marchili,
  • S. Righini,
  • N. Rizzi,
  • G. Bonnoli
  • (less)
Astronomy and Astrophysics, 655, p36 (11/2021) doi:10.1051/0004-6361/202141004
abstract + abstract -


Aims: We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.
Methods: The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsähovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.
Results: The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3σ. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from γ'min=2×104 to γ'max=6×105.

Light curves and spectral energy distributions data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/655/A89


(457)Velocity dispersion of brightest cluster galaxies in cosmological simulations
  • I. Marini,
  • S. Borgani,
  • A. Saro,
  • G. L. Granato,
  • C. Ragone-Figueroa
  • +5
  • B. Sartoris,
  • K. Dolag,
  • G. Murante,
  • A. Ragagnin,
  • Y. Wang
  • (less)
Monthly Notices of the Royal Astronomical Society, 507, p16 (11/2021) doi:10.1093/mnras/stab2518
abstract + abstract -

Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyse the dynamics traced by stars belonging to the brightest cluster galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and compare it to the dynamics traced by dark matter and galaxies identified in the simulations. We compute scaling relations between the BCG and cluster velocity dispersions and their corresponding masses (i.e. $M_\mathrm{BCG}^{\star }$-$\sigma _\mathrm{BCG}^{\star }$, M200200, $M_\mathrm{BCG}^{\star }$-M200, and $\sigma _\mathrm{BCG}^{\star }$-σ200), we find in general a good agreement with observational results. Our simulations also predict $\sigma _\mathrm{BCG}^{\star }$-σ200 relation to not change significantly up to redshift z = 1, in line with a relatively slow accretion of the BCG stellar mass at late times. We analyse the main features of the velocity dispersion profiles, as traced by stars, dark matter, and galaxies. As a result, we discuss that observed stellar velocity dispersion profiles in the inner cluster regions are in excellent agreement with simulations. We also report that the slopes of the BCG velocity dispersion profile from simulations agree with what is measured in observations, confirming the existence of a robust correlation between the stellar velocity dispersion slope and the cluster velocity dispersion (thus, cluster mass) when the former is computed within 0.1R500. Our results demonstrate that simulations can correctly describe the dynamics of BCGs and their surrounding stellar envelope, as determined by the past star formation and assembly histories of the most massive galaxies of the Universe.


(456)New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types
  • Maria Messineo,
  • Donald F. Figer,
  • Rolf-Peter Kudritzki,
  • Qingfeng Zhu,
  • Karl M. Menten
  • +2
  • Valentin D. Ivanov,
  • C. -H. Rosie Chen
  • (less)
The Astronomical Journal, 162, p46 (11/2021) doi:10.3847/1538-3881/ac116b
abstract + abstract -

We present infrared spectral indices (1.0-2.3 μm) of Galactic late-type giants and red supergiants (RSGs). We used existing and new spectra obtained at resolution power R = 2000 with SpeX on the IRTF telescope. While a large CO equivalent width (EW), at 2.29 μm ([CO, 2.29] ≳ 45 Å) is a typical signature of RSGs later than spectral type M0, $[\mathrm{CO}]$ of K-type RSGs and giants are similar. In the [CO, 2.29] versus [Mg I, 1.71] diagram, RSGs of all spectral types can be distinguished from red giants because the Mg I line weakens with increasing temperature and decreasing gravity. We find several lines that vary with luminosity, but not temperature: Si I (1.59 μm), Sr (1.033 μm), Fe+Cr+Si+CN (1.16 μm), Fe+Ti (1.185 μm), Fe+Ti (1.196 μm), Ti+Ca (1.28 μm), and Mn (1.29 μm). Good markers of CN enhancement are the Fe+Si+CN line at 1.087 μm and CN line at 1.093 μm. Using these lines, at the resolution of SpeX, it is possible to separate RSGs and giants. Contaminant O-rich Mira and S-type AGBs are recognized by strong molecular features due to water vapor features, TiO band heads, and/or ZrO absorption. Among the 42 candidate RSGs that we observed, all but one were found to be late types. Twenty-one have EWs consistent with those of RSGs, 16 with those of O-rich Mira AGBs, and one with an S-type AGB. These infrared results open new, unexplored, potential for searches at low resolution of RSGs in the highly obscured innermost regions of the Milky Way.


(455)Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography
  • Geoff C. -F. Chen,
  • Tommaso Treu,
  • Christopher D. Fassnacht,
  • Sam Ragland,
  • Thomas Schmidt
  • +1
Monthly Notices of the Royal Astronomical Society, 508, p7 (11/2021) doi:10.1093/mnras/stab2587
abstract + abstract -

Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby.


(454)Nebular phase properties of supernova Ibc from He-star explosions
  • L. Dessart,
  • D. J. Hillier,
  • T. Sukhbold,
  • S. E. Woosley,
  • H. -T. Janka
Astronomy and Astrophysics, 656, p38 (11/2021) doi:10.1051/0004-6361/202141927
abstract + abstract -

Following our recent work on Type II supernovae (SNe), we present a set of 1D nonlocal thermodynamic equilibrium radiative transfer calculations for nebular-phase Type Ibc SNe starting from state-of-the-art explosion models with detailed nucleosynthesis. Our grid of progenitor models is derived from He stars that were subsequently evolved under the influence of wind mass loss. These He stars, which most likely form through binary mass exchange, synthesize less oxygen than their single-star counterparts with the same zero-age main sequence (ZAMS) mass. This reduction is greater in He-star models evolved with an enhanced mass loss rate. We obtain a wide range of spectral properties at 200 d. In models from He stars with an initial mass > 6 M, the [O I] λλ 6300, 6364 is of a comparable or greater strength than [Ca II] λλ 7291, 7323 - the strength of [O I] λλ 6300, 6364 increases with the He-star initial mass. In contrast, models from lower mass He stars exhibit a weak [O I] λλ 6300, 6364, strong [Ca II] λλ 7291, 7323, and also strong N II lines and Fe II emission below 5500 Å. The ejecta density, which is modulated by the ejecta mass, the explosion energy, and clumping, has a critical impact on gas ionization, line cooling, and spectral properties. We note that Fe II dominates the emission below 5500 Å and is stronger at earlier nebular epochs. It ebbs as the SN ages, while the fractional flux in [O I] λλ 6300, 6364 and [Ca II] λλ 7291, 7323 increases with a similar rate as the ejecta recombine. Although the results depend on the adopted wind mass loss rate and pre-SN mass, we find that He-stars of 6-8 M initially (ZAMS mass of 23-28 M) match the properties of standard SNe Ibc adequately. This finding agrees with the offset in progenitor masses inferred from the environments of SNe Ibc relative to SNe II. Our results for less massive He stars are more perplexing since the predicted spectra are not seen in nature. They may be missed by current surveys or associated with Type Ibn SNe in which interaction power dominates over decay power.

Tables A.3-A.23 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/656/A61


(453)Operation of an archaeological lead PbWO$_4$ crystal to search for neutrinos from astrophysical sources with a Transition Edge Sensor
  • N. Ferreiro Iachellini,
  • L. Pattavina,
  • A. H. Abdelhameed,
  • A. Bento,
  • L. Canonica
  • +7
  • F. Danevich,
  • O. M. Dubovik,
  • D. Fuchs,
  • A. Garai,
  • M. Mancuso,
  • F. Petricca,
  • I. A. Tupitsyna
  • (less)
arXiv e-prints (11/2021) e-Print:2111.07638
abstract + abstract -

The experimental detection of the CE$\nu$NS allows the investigation of neutrinos and neutrino sources with all-flavor sensitivity. Given its large content in neutrons and stability, Pb is a very appealing choice as target element. The presence of the radioisotope $^{210}$Pb (T$_{1/2}\sim$22 yrs) makes natural Pb unsuitable for low-background, low-energy event searches. This limitation can be overcome employing Pb of archaeological origin, where several half-lives of $^{210}$Pb have gone by. We present results of a cryogenic measurement of a 15g PbWO$_4$ crystal, grown with archaeological Pb (older than $\sim$2000 yrs) that achieved a sub-keV nuclear recoil detection threshold. A ton-scale experiment employing such material, with a detection threshold for nuclear recoils of just 1 keV would probe the entire Milky Way for SuperNovae, with equal sensitivity for all neutrino flavors, allowing the study of the core of such exceptional events.


(452)EOS -- A Software for Flavor Physics Phenomenology
  • Danny van Dyk,
  • Frederik Beaujean,
  • Thomas Blake,
  • Christoph Bobeth,
  • Marzia Bordone
  • +15
  • Katarina Dugic,
  • Eike Eberhard,
  • Nico Gubernari,
  • Elena Graverini,
  • Martin Jung,
  • Ahmet Kokulu,
  • Stephan Kürten,
  • Domagoj Leljak,
  • Philip Lüghausen,
  • Stefan Meiser,
  • Muslem Rahimi,
  • Méril Reboud,
  • Rafael Silva Coutinho,
  • Javier Virto,
  • K. Keri Vos
  • (less)
arXiv e-prints (11/2021) e-Print:2111.15428
abstract + abstract -

EOS is an open-source software for a variety of computational tasks in flavor physics. Its use cases include theory predictions within and beyond the Standard Model of particle physics, Bayesian inference of theory parameters from experimental and theoretical likelihoods, and simulation of pseudo events for a number of signal processes. EOS ensures high-performance computations through a C++ back-end and ease of usability through a Python front-end. To achieve this flexibility, EOS enables the user to select from a variety of implementations of the relevant decay processes and hadronic matrix elements at run time. In this article, we describe the general structure of the software framework and provide basic examples. Further details and in-depth interactive examples are provided as part of the EOS online documentation.


(451)Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism
  • J. M. Yao,
  • J. Meng,
  • Y. F. Niu,
  • P. Ring
arXiv e-prints (11/2021) e-Print:2111.15543
abstract + abstract -

Nuclear weak decays provide important probes to fundamental symmetries in nature. A precise description of these processes in atomic nuclei requires comprehensive knowledge on both the strong and weak interactions in the nuclear medium and on the dynamics of quantum many-body systems. In particular, an observation of the hypothetical double beta decay without emission of neutrinos ($0\nu\beta\beta$) would unambiguously demonstrate the Majorana nature of neutrinos and the existence of the lepton-number-violation process. It would also provide unique information on the ordering and absolute scale of neutrino masses. The next-generation tonne-scale experiments with sensitivity up to $10^{28}$ years after a few years of running will probably provide a definite answer to these fundamental questions based on our current knowledge on the nuclear matrix element (NME), the precise determination of which is a challenge to nuclear theory. Beyond-mean-field approaches have been frequently adapted for the study of nuclear structure and decay throughout the nuclear chart for several decades. In this review, we summarize the status of beyond-mean-field calculations of the NMEs of $0\nu\beta\beta$ decay assuming the standard mechanism of an exchange of light Majorana neutrinos. The challenges and prospects in the extension and application of beyond-mean-field approaches for $0\nu\beta\beta$ decay are discussed.


(450)Calibration of bias and scatter involved in cluster mass measurements using optical weak gravitational lensing
  • Sebastian Grandis,
  • Sebastian Bocquet,
  • Joseph J. Mohr,
  • Matthias Klein,
  • Klaus Dolag
Monthly Notices of the Royal Astronomical Society, 507, p19 (11/2021) doi:10.1093/mnras/stab2414
abstract + abstract -

Cosmological inference from cluster number counts is systematically limited by the accuracy of the mass calibration, i.e. the empirical determination of the mapping between cluster selection observables and halo mass. In this work we demonstrate a method to quantitatively determine the bias and uncertainties in weak-lensing (WL) mass calibration. To this end, we extract a library of projected matter density profiles from hydrodynamical simulations. Accounting for shear bias and noise, photometric redshift uncertainties, mis-centreing, cluster member contamination, cluster morphological diversity, and line-of-sight projections, we produce a library of shear profiles. Fitting a one-parameter model to these profiles, we extract the so-called WL mass MWL. Relating the WL mass to the halo mass from gravity-only simulations with the same initial conditions as the hydrodynamical simulations allows us to estimate the impact of hydrodynamical effects on cluster number counts experiments. Creating new shear libraries for ~1000 different realizations of the systematics provides a distribution of the parameters of the WL to halo mass relation, reflecting their systematic uncertainty. This result can be used as a prior for cosmological inference. We also discuss the impact of the inner fitting radius on the accuracy, and determine the outer fitting radius necessary to exclude the signal from neighbouring structures. Our method is currently being applied to different Stage III lensing surveys, and can easily be extended to Stage IV lensing surveys.


(449)Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy
  • Nora Brambilla,
  • Miguel Ángel Escobedo,
  • Michael Strickland,
  • Antonio Vairo,
  • Peter Vander Griend
  • +1
Physical Review D, 104 (11/2021) doi:10.1103/PhysRevD.104.094049
abstract + abstract -

We report predictions for the suppression and elliptic flow of the ϒ (1 S ), ϒ (2 S ), and ϒ (3 S ) as a function of centrality and transverse momentum in ultrarelativistic heavy-ion collisions. We obtain our predictions by numerically solving a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix derived using potential nonrelativistic QCD and the formalism of open quantum systems. To numerically solve the Lindblad equation, we make use of a stochastic unraveling called the quantum trajectories algorithm. This unraveling allows us to solve the Lindblad evolution equation efficiently on large lattices with no angular momentum cutoff. The resulting evolution describes the full 3D quantum and non-Abelian evolution of the reduced density matrix for bottomonium states. We expand upon our previous work by treating differential observables and elliptic flow; this is made possible by a newly implemented Monte Carlo sampling of physical trajectories. Our final results are compared to experimental data collected in √{sN N}=5.02 TeV Pb-Pb collisions by the ALICE, ATLAS, and CMS collaborations.


(448)A panchromatic view of star cluster formation in a simulated dwarf galaxy starburst
  • Natalia Lahén,
  • Thorsten Naab,
  • Guinevere Kauffmann
arXiv e-prints (11/2021) e-Print:2111.14875
abstract + abstract -

We present a photometric analysis of star and star cluster (SC) formation in a high-resolution simulation of a dwarf galaxy starburst that allows the formation of individual stars to be followed. Previous work has demonstrated that the properties of the SCs formed in the simulation are in good agreement with observations. In this paper, we create mock spectral energy distributions and broad-band photometric images using the radiative transfer code SKIRT 9. We test several observational star formation (SF) tracers and find that $24\,\mu$m, total infrared and H$_\alpha$ trace the underlying SF rate during the (post)starburst phase, while UV tracers yield a more accurate picture of star formation during quiescent phases prior to and after the merger. We then place the simulated galaxy at distances of $10$ and $50$ Mpc and use aperture photometry at Hubble Space Telescope resolution to analyse the simulated SC population. During the starburst phase, a hierarchically forming set of SCs leads inaccurate source separation because of crowding. This results in estimated SC mass function slopes that are up to $\sim0.3$ shallower than the true slope of $\sim-2$ found for the bound clusters identified from the particle data in the simulation. The masses of the largest clusters are overestimated by a factor of up to $2.5$ due to unresolved clusters within the apertures. The aperture-based analysis also produces a relation between cluster formation efficiency and SF rate surface density that is flatter than that recovered from bound clusters. The differences are strongest in quiescent SF environments.


(447)On the Use of Field RR Lyrae as Galactic Probes. V. Optical and Radial Velocity Curve Templates
  • V. F. Braga,
  • J. Crestani,
  • M. Fabrizio,
  • G. Bono,
  • C. Sneden
  • +27
  • G. W. Preston,
  • J. Storm,
  • S. Kamann,
  • M. Latour,
  • H. Lala,
  • B. Lemasle,
  • Z. Prudil,
  • G. Altavilla,
  • B. Chaboyer,
  • M. Dall'Ora,
  • I. Ferraro,
  • C. K. Gilligan,
  • G. Fiorentino,
  • G. Iannicola,
  • L. Inno,
  • S. Kwak,
  • M. Marengo,
  • S. Marinoni,
  • P. M. Marrese,
  • C. E. Martínez-Vázquez,
  • M. Monelli,
  • J. P. Mullen,
  • N. Matsunaga,
  • J. Neeley,
  • P. B. Stetson,
  • E. Valenti,
  • M. Zoccali
  • (less)
The Astrophysical Journal, 919, p36 (10/2021) doi:10.3847/1538-4357/ac1074
abstract + abstract -

We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including ≍20,000 high-, medium-, and low-resolution spectra for ≍10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (Hα, Hβ, Hγ, Hδ). We tackled the long-standing problem of the reference epoch to anchor light-curve and RVC templates. For the V-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are ~35% to ~45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single-point and the three phase point approaches. We found that barycentric velocities based on our RVC templates are two to three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC 3201 collected with MUSE at VLT. We found the cluster barycentric RV of Vγ = 496.89 ± 8.37(error) ± 3.43 (standard deviation) km s-1, which agrees well with literature estimates.


(446)Effective QCD string and doubly heavy baryons
  • Joan Soto,
  • Jaume Tarrús Castellà
Physical Review D, 104 (10/2021) doi:10.1103/PhysRevD.104.074027
abstract + abstract -

Expressions for the potentials appearing in the nonrelativistic effective field theory description of doubly heavy baryons are known in terms of operator insertions in the Wilson loop. However, their evaluation requires nonperturbative techniques, such as lattice QCD, and the relevant calculations are often not available. We propose a parametrization of these potentials with a minimal model dependence based on an interpolation of the short- and long-distance descriptions. The short-distance description is obtained from weakly-coupled potential NRQCD and the long-distance one is computed using an effective string theory. The effective string theory coincides with the one for pure gluodynamics with the addition of a fermion field constrained to move on the string. We compute the hyperfine contributions to the doubly heavy baryon spectrum. The unknown parameters are obtained from heavy quark-diquark symmetry or fitted to the available lattice-QCD determinations of the hyperfine splittings. Using these parameters we compute the double charm and bottom baryon spectrum including the hyperfine contributions. We compare our results with those of other approaches and find that our results are closer to lattice-QCD determinations, in particular for the excited states. Furthermore, we compute the vacuum energy in the effective string theory and show that the fermion field contribution produces the running of the string tension and a change of sign in the Lüscher term.


(445)Multiscale pentagon integrals to all orders
  • Dhimiter D. Canko,
  • Costas G. Papadopoulos,
  • Nikolaos Syrrakos
arXiv e-prints (10/2021) e-Print:2110.07971
abstract + abstract -

We present analytical results for one-loop five-point master integrals with up to three off-shell legs. The method of canonical differential equations along with the Simplified Differential Equations approach is employed. All necessary boundary terms are given in closed form, resulting to solutions in terms of Goncharov Polylogarithms of arbitrary weight. Explicit results up to weight six will be presented.


(444)Satellite galaxy abundance dependency on cosmology in Magneticum simulations
  • Antonio Ragagnin,
  • Alessandra Fumagalli,
  • Tiago Castro,
  • Klaus Dolag,
  • Alexandro Saro
  • +2
  • Matteo Costanzi,
  • Sebastian Bocquet
  • (less)
arXiv e-prints (10/2021) e-Print:2110.05498
abstract + abstract -

Context: Modelling satellite galaxy abundance $N_s$ in Galaxy Clusters (GCs) is a key element in modelling the Halo Occupation Distribution (HOD), which itself is a powerful tool to connect observational studies with numerical simulations. Aims: To study the impact of cosmological parameters on satellite abundance both in cosmological simulations and in mock observations. Methods: We build an emulator (HODEmu, \url{https://github.com/aragagnin/HODEmu/}) of satellite abundance based on cosmological parameters $\Omega_m, \Omega_b, \sigma_8, h_0$ and redshift $z.$ We train our emulator using \magneticum hydrodynamic simulations that span 15 different cosmologies, each over $4$ redshift slices between $0<z<0.5,$ and for each setup we fit normalisation $A$, log-slope $\beta$ and Gaussian fractional-scatter $\sigma$ of the $N_s-M$ relation. The emulator is based on multi-variate output Gaussian Process Regression (GPR). Results: We find that $A$ and $\beta$ depend on cosmological parameters, even if weakly, especially on $\Omega_m,$ $\Omega_b.$ This dependency can explain some discrepancies found in literature between satellite HOD of different cosmological simulations (Magneticum, Illustris, BAHAMAS). We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO), and non-radiative simulations. Conclusions: This work provides a preliminary calibration of the cosmological dependency of the satellite abundance of high mass halos, and we showed that modelling HOD with cosmological parameters is necessary to interpret satellite abundance, and we showed the importance of using FP simulations in modelling this dependency.


(443)Lattice Simulations of Abelian Gauge Fields coupled to Axion during Inflation
  • Angelo Caravano,
  • Eiichiro Komatsu,
  • Kaloian D. Lozanov,
  • Jochen Weller
arXiv e-prints (10/2021) e-Print:2110.10695
abstract + abstract -

We use a non-linear lattice simulation to study a model of axion inflation where the inflaton is coupled to a U(1) gauge field through Chern-Simons interaction. This kind of models have already been studied with a lattice simulation in the context of reheating. In this work, we focus on the deep inflationary phase and discuss the new aspects that need to be considered in order to simulate gauge fields in this regime. Our main result is reproducing with precision the growth of the gauge field on the lattice induced by the rolling of the axion on its potential, thus recovering the results of linear perturbation theory for this model. In order to do so, we study in detail how the spatial discretization, through the choice of the spatial derivatives on the lattice, influences the dynamics of the gauge field. We find that the evolution of the gauge field is highly sensitive to the choice of the spatial discretization scheme. Nevertheless, we are able to identify a discretization scheme for which the growth of the gauge field on the lattice reproduces the one of continuous space with good precision.


(442)Towards an accurate model of small-scale redshift-space distortions in modified gravity
  • Cheng-Zong Ruan,
  • Carolina Cuesta-Lazaro,
  • Alexander Eggemeier,
  • César Hernández-Aguayo,
  • Carlton M. Baugh
  • +2
abstract + abstract -

The coming generation of galaxy surveys will provide measurements of galaxy clustering with unprecedented accuracy and data size, which will allow us to test cosmological models at much higher precision than achievable previously. This means that we must have more accurate theoretical predictions to compare with future observational data. As a first step towards more accurate modelling of the redshift space distortions (RSD) of small-scale galaxy clustering in modified gravity (MG) cosmologies, we investigate the validity of the so-called Skew-T (ST) probability distribution function (PDF) of halo pairwise peculiar velocities in these models. We show that, combined with the streaming model of RSD, the ST PDF substantially improves the small-scale predictions by incorporating skewness and kurtosis, for both $\Lambda$CDM and two leading MG models: $f(R)$ gravity and the DGP braneworld model. The ST model reproduces the velocity PDF and redshift-space halo clustering measured from MG $N$-body simulations very well down to $\sim 5 \, h^{-1}\mathrm{Mpc}$. In particular, we investigate the enhancements of halo pairwise velocity moments with respect to $\Lambda$CDM for a larger range of MG variants than previous works, and present simple explanations to the behaviours observed. By performing a simple Fisher analysis, we find a significnat increase in constraining power to detect modifications of General Relativity by introducing small-scale information in the RSD analyses.


(441)Fast full N-body simulations of generic modified gravity: conformal coupling models
  • Cheng-Zong Ruan,
  • César Hernández-Aguayo,
  • Baojiu Li,
  • Christian Arnold,
  • Carlton M. Baugh
  • +2
  • Anatoly Klypin,
  • Francisco Prada
  • (less)
abstract + abstract -

We present mg-glam, a code developed for the very fast

production of full N-body cosmological simulations in modified

gravity (MG) models. We describe the implementation, numerical tests

and first results of a large suite of cosmological simulations for

three classes of MG models with conformal coupling terms: the f(R)

gravity, symmetron and coupled quintessence models. Derived from

the parallel particle-mesh code glam, mg-glam

incorporates an efficient multigrid relaxation technique to solve

the characteristic nonlinear partial differential equations of these

models. For f(R) gravity, we have included new variants to

diversify the model behaviour, and we have tailored the relaxation

algorithms to these to maintain high computational efficiency. In a

companion paper, we describe versions of this code developed for

derivative coupling MG models, including the Vainshtein- and

K-mouflage-type models. mg-glam can model the prototypes

for most MG models of interest, and is broad and versatile. The

code is highly optimised, with a tremendous speedup of a factor of

more than a hundred compared with earlier N-body codes, while

still giving accurate predictions of the matter power spectrum and

dark matter halo abundance. mg-glam is ideal for the

generation of large numbers of MG simulations that can be used in

the construction of mock galaxy catalogues and the production of

accurate emulators for ongoing and future galaxy surveys.


(440)RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos
  • L. Pattavina,
  • N. Ferreiro Iachellini,
  • L. Pagnanini,
  • L. Canonica,
  • E. Celi
  • +16
  • M. Clemenza,
  • F. Ferroni,
  • E. Fiorini,
  • A. Garai,
  • L. Gironi,
  • M. Mancuso,
  • S. Nisi,
  • F. Petricca,
  • S. Pirro,
  • S. Pozzi,
  • A. Puiu,
  • J. Rothe,
  • S. Schönert,
  • L. Shtembari,
  • R. Strauss,
  • V. Wagner
  • (less)
Journal of Cosmology and Astroparticle Physics, 2021, p23 (10/2021) doi:10.1088/1475-7516/2021/10/064
abstract + abstract -

RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm)3 and an energy threshold of 1 keV will probe the entire Milky Way Galaxy for (failed) core-collapse SNe with > 3 σ detection significance. The high detector modularity makes RES-NOVA ideal also for reconstructing the main parameters (e.g. average neutrino energy, star binding energy) of SNe occurring in our vicinity, without deterioration of the detector performance caused by the high neutrino interaction rate. For the first time, distances <3 kpc can be surveyed, similarly to the ones where all known past galactic SNe happened. We discuss the RES-NOVA potential, accounting for a realistic setup, considering the detector geometry, modularity and background level in the region of interest. We report on the RES-NOVA background model and on the sensitivity to SN neutrinos as a function of the distance travelled by neutrinos.


(439)Simulating MADMAX in 3D: requirements for dielectric axion haloscopes
  • S. Knirck,
  • J. Schütte-Engel,
  • S. Beurthey,
  • D. Breitmoser,
  • A. Caldwell
  • +37
  • C. Diaconu,
  • J. Diehl,
  • J. Egge,
  • M. Esposito,
  • A. Gardikiotis,
  • E. Garutti,
  • S. Heyminck,
  • F. Hubaut,
  • J. Jochum,
  • P. Karst,
  • M. Kramer,
  • C. Krieger,
  • D. Labat,
  • C. Lee,
  • X. Li,
  • A. Lindner,
  • B. Majorovits,
  • S. Martens,
  • M. Matysek,
  • E. Öz,
  • L. Planat,
  • P. Pralavorio,
  • G. Raffelt,
  • A. Ranadive,
  • J. Redondo,
  • O. Reimann,
  • A. Ringwald,
  • N. Roch,
  • J. Schaffran,
  • A. Schmidt,
  • L. Shtembari,
  • F. Steffen,
  • C. Strandhagen,
  • D. Strom,
  • I. Usherov,
  • G. Wieching,
  • MADMAX Collaboration
  • (less)
Journal of Cosmology and Astroparticle Physics, 2021, p27 (10/2021) doi:10.1088/1475-7516/2021/10/034
abstract + abstract -

We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted power by up to 30 % compared to earlier 1D calculations. We derive the emitted beam shape, which is important for antenna design. We show that realistic dark matter axion velocities of 10-3 c and inhomogeneities of the external magnetic field at the scale of 10 % have negligible impact on the sensitivity of MADMAX. We investigate design requirements for which the emitted power changes by less than 20 % for a benchmark boost factor with a bandwidth of 50 MHz at 22 GHz, corresponding to an axion mass of 90 μ eV. We find that the maximum allowed disk tilt is 100 μ m divided by the disk diameter, the required disk planarity is 20 μ m (min-to-max) or better, and the maximum allowed surface roughness is 100 μ m (min-to-max). We show how using tiled dielectric disks glued together from multiple smaller patches can affect the beam shape and antenna coupling.


(438)Production and signatures of multi-flavour dark matter scenarios with t-channel mediators
  • Johannes Herms,
  • Alejandro Ibarra
Journal of Cosmology and Astroparticle Physics, 2021, p16 (10/2021) doi:10.1088/1475-7516/2021/10/026
abstract + abstract -

We investigate the phenomenology of a dark matter scenario containing two generations of the dark matter particle, differing only by their mass and their couplings to the other particles, akin to the quark and lepton sectors of the Standard Model. For concreteness, we consider the case where the two dark matter generations are Majorana fermions that couple to a right-handed lepton and a scalar mediator through Yukawa couplings. We identify different production regimes in the multi-flavor dark matter scenario and we argue that in some parts of the parameter space the heavier generation can play a pivotal role in generating the correct dark matter abundance. In these regions, the strength of the dark matter coupling to the Standard Model can be much larger than in the single-flavored dark matter scenario. Correspondingly the indirect and direct detection signals can be significantly boosted. We also comment on the signatures of the model from the decay of the heavier dark matter generation into the lighter.


(437)Assembly bias in quadratic bias parameters of dark matter halos from forward modeling
  • Titouan Lazeyras,
  • Alexandre Barreira,
  • Fabian Schmidt
Journal of Cosmology and Astroparticle Physics, 2021, p22 (10/2021) doi:10.1088/1475-7516/2021/10/063
abstract + abstract -

We use the forward modeling approach to galaxy clustering combined with the likelihood from the effective-field theory of large-scale structure to measure assembly bias, i.e. the dependence of halo bias on properties beyond the total mass, in the linear (b1) and second order bias parameters (b2 and bK 2) of dark matter halos in N-body simulations. This is the first time that assembly bias in the tidal bias parameter bK 2 is measured. We focus on three standard halo properties: the concentration c, spin λ, and sphericity s, for which we find an assembly bias signal in bK 2 that is opposite to that in b1. Specifically, at fixed mass, halos that get more (less) positively biased in b1, get less (more) negatively biased in bK 2. We also investigate the impact of assembly bias on the b2(b1) and bK 2(b1) relations, and find that while the b2(b1) relation stays roughly unchanged, assembly bias strongly impacts the bK 2(b1) relation. This impact likely extends also to the corresponding relation for galaxies, which motivates future studies to design better priors on bK 2(b1) for use in cosmological constraints from galaxy clustering data.


(436)The eROSITA Final Equatorial-Depth Survey (eFEDS): Galaxy Clusters and Groups in Disguise
  • Esra Bulbul,
  • Ang Liu,
  • Thomas Pasini,
  • Johan Comparat,
  • Duy Hoang
  • +19
  • Matthias Klein,
  • Vittorio Ghirardini,
  • Mara Salvato,
  • Andrea Merloni,
  • Riccardo Seppi,
  • Julien Wolf,
  • Scott F. Anderson,
  • Y. Emre Bahar,
  • Marcella Brusa,
  • Marcus Brueggen,
  • Johannes Buchner,
  • Tom Dwelly,
  • Hector Ibarra-Medel,
  • Jacob Ider Chitham,
  • Teng Liu,
  • Kirpal Nandra,
  • Miriam E. Ramos-Ceja,
  • Jeremy S. Sanders,
  • Yue Shen
  • (less)
(10/2021) e-Print:2110.09544
abstract + abstract -

The eROSITA Final Equatorial-Depth Survey (eFEDS), executed during the performance verification phase of the Spectrum-Roentgen-Gamma (SRG)/eROSITA telescope, was completed in Nov. 2019. One of the science goals of this survey is to demonstrate the ability of eROSITA to detect samples of clusters and groups at the final depth of the eROSITA all-sky survey. Because of the sizeable point-spread function of eROSITA, high-redshift clusters of galaxies or compact nearby groups hosting bright active galactic nuclei (AGN) can be misclassified as point sources by the source detection algorithms. A total of 346 galaxy clusters and groups in the redshift range of 0.1<z<1.3 were identified based on their red sequence in the point source catalog. We examine the multiwavelength properties of these clusters and groups to understand the potential biases in our selection process and the completeness of the extent-selected sample. The majority of the clusters and groups in the point source sample are indeed underluminous and compact compared to the extent-selected sample. Their faint X-ray emission, well below the flux limit of the extent-selected eFEDS clusters, and their compact X-ray emission are likely to be the main reason for this misclassification. In the sample, we confirm that 10% of the sources host AGN in their brightest cluster galaxies (BCGs) through optical spectroscopy and visual inspection. By studying their X-ray, optical, infrared, and radio properties, we establish a method for identifying clusters and groups that host AGN in their BCGs. We successfully test this method on the current point source catalog through the Sloan Digital Sky Survey optical spectroscopy and find eight clusters and groups with active radio-loud AGN that are particularly bright in the infrared. They include eFEDSJ091437.8+024558, eFEDSJ083520.1+012516, and eFEDSJ092227.1+043339 at redshifts 0.3-0.4. [ABRIDGED]


(435)The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections*
  • Karl Gebhardt,
  • Erin Mentuch Cooper,
  • Robin Ciardullo,
  • Viviana Acquaviva,
  • Ralf Bender
  • +58
  • William P. Bowman,
  • Barbara G. Castanheira,
  • Gavin Dalton,
  • Dustin Davis,
  • Roelof S. de Jong,
  • D.L. DePoy,
  • Yaswant Devarakonda,
  • Sun Dongsheng,
  • Niv Drory,
  • Maximilian Fabricius,
  • Daniel J. Farrow,
  • John Feldmeier,
  • Steven L. Finkelstein,
  • Cynthia S. Froning,
  • Eric Gawiser,
  • Caryl Gronwall,
  • Laura Herold,
  • Gary J. Hill,
  • Ulrich Hopp,
  • Lindsay R. House,
  • Steven Janowiecki,
  • Matthew Jarvis,
  • Donghui Jeong,
  • Shardha Jogee,
  • Ryota Kakuma,
  • Andreas Kelz,
  • W. Kollatschny,
  • Eiichiro Komatsu,
  • Mirko Krumpe,
  • Martin Landriau,
  • Chenxu Liu,
  • Maja Lujan Niemeyer,
  • Phillip MacQueen,
  • Jennifer Marshall,
  • Ken Mawatari,
  • Emily M. McLinden,
  • Shiro Mukae,
  • Gautam Nagaraj,
  • Yoshiaki Ono,
  • Masami Ouchi,
  • Casey Papovich,
  • Nao Sakai,
  • Shun Saito,
  • Donald P. Schneider,
  • Andreas Schulze,
  • Khavvia Shanmugasundararaj,
  • Matthew Shetrone,
  • Chris Sneden,
  • Jan Snigula,
  • Matthias Steinmetz,
  • Benjamin P. Thomas,
  • Brianna Thomas,
  • Sarah Tuttle,
  • Tanya Urrutia,
  • Lutz Wisotzki,
  • Isak Wold,
  • Gregory Zeimann,
  • Yechi Zhang
  • (less)
Astrophys.J., 923, p217 (10/2021) e-Print:2110.04298 doi:10.3847/1538-4357/ac2e03
abstract + abstract -

We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg$^{2}$ area encompassing a comoving volume of 10.9 Gpc$^{3}$. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.


(434)Fast full N-body simulations of generic modified gravity: derivative coupling models
  • César Hernández-Aguayo,
  • Cheng-Zong Ruan,
  • Baojiu Li,
  • Christian Arnold,
  • Carlton M. Baugh
  • +2
  • Anatoly Klypin,
  • Francisco Prada
  • (less)
abstract + abstract -

We present mg-glam, a code developed for the very fast production of full N-body cosmological simulations in modified gravity (MG) models. We describe the implementation, numerical tests and first results of a large suite of cosmological simulations for two broad classes of MG models with derivative coupling terms — the Vainshtein- and Kmouflage-type models — which respectively features the Vainshtein and Kmouflage screening mechanism. Derived from the parallel particle-mesh code glam, mg-glam incorporates an efficient multigrid relaxation technique to solve the characteristic nonlinear partial differential equations of these models. For Kmouflage, we have proposed a new algorithm for the relaxation solver, and run the first simulations of the model to understand its cosmological behaviour. In a companion paper, we describe versions of this code developed for conformally-coupled MG models, including several variants of f(R) gravity, the symmetron model and coupled quintessence. Altogether, mg-glam has so far implemented the prototypes for most MG models of interest, and is broad and versatile. The code is highly optimised, with a tremendous (over two orders of magnitude) speedup when comparing its running time with earlier N-body codes, while still giving accurate predictions of the matter power spectrum and dark matter halo abundance. mg-glam is ideal for the generation of large numbers of MG simulations that can be used in the construction of mock galaxy catalogues and accurate emulators for ongoing and future galaxy surveys.


(433)Testing the Sunyaev-Zeldovich-based tomographic approach to the thermal history of the Universe with pressure-density cross correlations: Insights from the Magneticum simulation
  • Sam Young,
  • Eiichiro Komatsu,
  • Klaus Dolag
Physical Review D, 104 (10/2021) doi:10.1103/PhysRevD.104.083538
abstract + abstract -

The thermal Sunyaev-Zeldovich effect contains information about the thermal history of the Universe, which is observable in maps of the Compton y parameter; however, it does not contain information about the redshift of the sources. Recent papers have utilized a tomographic approach, by cross correlating the Compton y map with the locations of galaxies with known redshift in order to deproject the signal along the line of sight. In this paper, we test the validity and accuracy of this tomographic approach to probe the thermal history of the Universe. We use the state-of-the-art, cosmological, and hydrodynamical simulation, Magneticum, for which the thermal history of the Universe is a known quantity. The key ingredient is the Compton-y -weighted halo bias, by, which is computed from the halo model. We find that, at redshifts currently available, the method reproduces the correct mean thermal pressure (or the density-weighted mean temperature) with high accuracy, validating and confirming the results of previous papers. At higher redshifts (z ≳2 ), there is significant disagreement between by from the halo model and the simulation.


(432)Snowdrift game induces pattern formation in systems of self-propelled particles
  • Johanna Mayer,
  • Michael Obermüller,
  • Jonas Denk,
  • Erwin Frey
Physical Review E, 104 (10/2021) doi:10.1103/PhysRevE.104.044408
abstract + abstract -

Evolutionary games between species are known to lead to intriguing spatiotemporal patterns in systems of diffusing agents. However, the role of interspecies interactions is hardly studied when agents are (self-)propelled, as is the case in many biological systems. Here, we combine aspects from active matter and evolutionary game theory and study a system of two species whose individuals are (self-)propelled and interact through a snowdrift game. We derive hydrodynamic equations for the density and velocity fields of both species from which we identify parameter regimes in which one or both species form macroscopic orientational order as well as regimes of propagating wave patterns. Interestingly, we find simultaneous wave patterns in both species that result from the interplay between alignment and snowdrift interactions—a feedback mechanism that we call game-induced pattern formation. We test these results in agent-based simulations and confirm the different regimes of order and spatiotemporal patterns as well as game-induced pattern formation.


(431)Holomorphic boundary conditions for topological field theories via branes in twisted supergravity
  • Ilka Brunner,
  • Ioannis Lavdas,
  • Ingmar Saberi
arXiv e-prints (10/2021) e-Print:2110.15257
abstract + abstract -

Three-dimensional $\mathcal{N}=4$ supersymmetric field theories admit a natural class of chiral half-BPS boundary conditions that preserve $\mathcal{N}=(0,4)$ supersymmetry. While such boundary conditions are not compatible with topological twists, deformations that define boundary conditions for the topological theories were recently introduced by Costello and Gaiotto. Not all $\mathcal{N}=(0,4)$ boundary conditions admit such deformations. We revisit this construction, working directly in the setting of the holomorphically twisted theory and viewing the topological twists as further deformations. Properties of the construction are explained both purely in the context of holomorphic field theory and also by engineering the holomorphic theory on the worldvolume of a D-brane. Our brane engineering approach combines the intersecting brane configurations of Hanany-Witten with recent work of Costello and Li on twisted supergravity. The latter approach allows to realize holomorphically and topologically twisted field theories directly as worldvolume theories in deformed supergravity backgrounds, and we make extensive use of this.


(430)On deformations and extensions of Diff(S<SUP>2</SUP>)
  • Martín Enríquez Rojo,
  • Tomáš Procházka,
  • Ivo Sachs
Journal of High Energy Physics, 2021 (10/2021) doi:10.1007/JHEP10(2021)133
abstract + abstract -

We investigate the algebra of vector fields on the sphere. First, we find that linear deformations of this algebra are obstructed under reasonable conditions. In particular, we show that hs[λ], the one-parameter deformation of the algebra of area-preserving vector fields, does not extend to the entire algebra. Next, we study some non-central extensions through the embedding of vect(S2) into vect(ℂ*). For the latter, we discuss a three parameter family of non-central extensions which contains the symmetry algebra of asymptotically flat and asymptotically Friedmann spacetimes at future null infinity, admitting a simple free field realization.


(429)The charm of 331
  • Andrzej J. Buras,
  • Pietro Colangelo,
  • Fulvia De Fazio,
  • Francesco Loparco
Journal of High Energy Physics, 2021 (10/2021) doi:10.1007/JHEP10(2021)021
abstract + abstract -

We perform a detailed analysis of flavour changing neutral current processes in the charm sector in the context of 331 models. As pointed out recently, in the case of Z' contributions in these models there are no new free parameters beyond those already present in the Bd,s and K meson systems analyzed in the past. As a result, definite ranges for new Physics (NP) effects in various charm observables could be obtained. While generally NP effects turn out to be small, in a number of observables they are much larger than the tiny effects predicted within the Standard Model. In particular we find that the branching ratio of the mode D0→ μ+μ, despite remaining tiny, can be enhanced by 6 orders of magnitude with respect to the SM. We work out correlations between this mode and rare Bd,s and K decays. We also discuss neutral charm meson oscillations and CP violation in the charm system. In particular, we point out that 331 models provide new weak phases that are a necessary condition to have non-vanishing CP asymmetries. In the case of ∆ACP, the difference between the CP asymmetries in D0→ K+K and D0→ π+π, we find that agreement with experiment can be obtained provided that two conditions are verified: the phases in the ranges predicted in 331 models and large hadronic matrix elements.


(428)Determining fundamental parameters of detached double-lined eclipsing binary systems via a statistically robust machine learning method
  • Bryce A. Remple,
  • George C. Angelou,
  • Achim Weiss
Monthly Notices of the Royal Astronomical Society, 507, p19 (10/2021) doi:10.1093/mnras/stab2030
abstract + abstract -

The parameter space for modelling stellar systems is vast and complicated. To find best-fitting models for a star one needs a statistically robust way of exploring this space. We present a new machine-learning approach to predict the modelling parameters for detached double-lined eclipsing binary systems, including the system age, based on observable quantities. Our method allows for the estimation of the importance of several physical effects which are included in a parametrized form in stellar models, such as convective core overshoot or stellar spot coverage. The method yields probability distribution functions for the predicted parameters which take into account the statistical and, to a certain extent, the systematic errors which is very difficult to do using other methods. We employ two different approaches to investigate the two components of the system either independently or in a combined manner. Furthermore, two different grids are used as training data. We apply the method to 26 selected objects and test the predicted best solutions with an on-the-fly optimization routine which generates full hydrostatic models. While we do encounter failures of the predictions, our method can serve as a rapid estimate for stellar ages of detached eclipsing binaries taking full account of the uncertainties in the observables.


(427)First 3D grid-based gas-dust simulations of circumstellar discs with an embedded planet
  • Fabian Binkert,
  • Judit Szulágyi,
  • Til Birnstiel
Monthly Notices of the Royal Astronomical Society, 506, p20 (10/2021) doi:10.1093/mnras/stab2075
abstract + abstract -

Substructures are ubiquitous in high resolution (sub-)millimeter continuum observations of circumstellar discs. They are possibly caused by forming planets embedded in their disc. To investigate the relation between observed substructures and young planets, we perform novel 3D two-fluid (gas+1-mm-dust) hydrodynamic simulations of circumstellar discs with embedded planets (Neptune-, Saturn-, Jupiter-, 5 Jupiter-mass) at different orbital distances from the star (5.2 AU, 30 AU, 50 AU). We turn these simulations into synthetic (sub-)millimeter ALMA images. We find that all but the Neptune-mass planet open annular gaps in both the gas and the dust component of the disc. We find that the temporal evolution of the dust density distribution is distinctly different from the gas'. For example, the planets cause significant vertical stirring of the dust in the circumstellar disc which opposes the vertical settling. This creates a thicker dust disc than discs without a planet. We find that this effect greatly influences the dust masses derived from the synthetic ALMA images. Comparing the dust disc masses in the 3D simulations to the disc masses derived from the 2D ALMA synthetic images using the optically thin approximation, we find the former to be a factor of a few (up to 10) larger, pointing to the conclusion that real discs are significantly more massive than previously thought based on ALMA continuum images. Finally, we analyse the synthetic ALMA images and provide an empirical relationship between the planet mass and the width of the gap in the ALMA images, including the effects of the beam size.


(426)GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes
  • Benjamin P. Moster,
  • Thorsten Naab,
  • Magnus Lindström,
  • Joseph A. O'Leary
Monthly Notices of the Royal Astronomical Society, 507, p22 (10/2021) doi:10.1093/mnras/stab1449
abstract + abstract -

We present the novel wide and deep neural network GalaxyNet, which connects the properties of galaxies and dark matter haloes and is directly trained on observed galaxy statistics using reinforcement learning. The most important halo properties to predict stellar mass and star formation rate (SFR) are halo mass, growth rate, and scale factor at the time the mass peaks, which results from a feature importance analysis with random forests. We train different models with supervised learning to find the optimal network architecture. GalaxyNet is then trained with a reinforcement learning approach: for a fixed set of weights and biases, we compute the galaxy properties for all haloes and then derive mock statistics (stellar mass functions, cosmic and specific SFRs, quenched fractions, and clustering). Comparing these statistics to observations we get the model loss, which is minimized with particle swarm optimization. GalaxyNet reproduces the observed data very accurately and predicts a stellar-to-halo mass relation with a lower normalization and shallower low-mass slope at high redshift than empirical models. We find that at low mass, the galaxies with the highest SFRs are satellites, although most satellites are quenched. The normalization of the instantaneous conversion efficiency increases with redshift, but stays constant above z ≳ 0.5. Finally, we use GalaxyNet to populate a cosmic volume of (5.9 Gpc)3 with galaxies and predict the BAO signal, the bias, and the clustering of active and passive galaxies up to z = 4, which can be tested with next-generation surveys, such as LSST and Euclid.


(425)Higgs-electroweak chiral Lagrangian: One-loop renormalization group equations
  • G. Buchalla,
  • O. Catà,
  • A. Celis,
  • M. Knecht,
  • C. Krause
Physical Review D, 104 (10/2021) doi:10.1103/PhysRevD.104.076005
abstract + abstract -

Starting from the one-loop divergences we obtained previously, we work out the renormalization of the Higgs-electroweak chiral Lagrangian explicitly and in detail. This includes the renormalization of the lowest-order Lagrangian, as well as the decomposition of the remaining divergences into a complete basis of next-to-leading-order counterterms. We provide the list of the corresponding beta functions. We show how our results match the one-loop renormalization of some of the dimension-6 operators in SMEFT. We further point out differences with related work in the literature and discuss them. As an application of the obtained results, we evaluate the divergences of the vacuum expectation value of the Higgs field at one loop and show that they can be appropriately removed by the corresponding renormalization. We also work out the finite renormalization required to keep the no-tadpole condition on the Higgs field at one loop.


(424)Host galaxies of high-redshift quasars: SMBH growth and feedback
  • Milena Valentini,
  • Simona Gallerani,
  • Andrea Ferrara
Monthly Notices of the Royal Astronomical Society, 507, p26 (10/2021) doi:10.1093/mnras/stab1992
abstract + abstract -

The properties of quasar-host galaxies might be determined by the growth and feedback of their supermassive black holes (SMBHs, 108-10 M). We investigate such connection with a suite of cosmological simulations of massive (halo mass ≍1012 M) galaxies at z ≃ 6 that include a detailed subgrid multiphase gas and accretion model. BH seeds of initial mass 105 M grow mostly by gas accretion, and become SMBH by z = 6 setting on the observed MBH-M relation without the need for a boost factor. Although quasar feedback crucially controls the SMBH growth, its impact on the properties of the host galaxy at z = 6 is negligible. In our model, quasar activity can both quench (via gas heating) or enhance (by interstellar medium overpressurization) star formation. However, we find that the star formation history is insensitive to such modulation as it is largely dominated, at least at z > 6, by cold gas accretion from the environment that cannot be hindered by the quasar energy deposition. Although quasar-driven outflows can achieve velocities $\gt 1000~\rm km~s^{-1}$, only ≍4 per cent of the outflowing gas mass can actually escape from the host galaxy. These findings are only loosely constrained by available data, but can guide observational campaigns searching for signatures of quasar feedback in early galaxies.


(423)First results of the CAST-RADES haloscope search for axions at 34.67 μeV
  • A. Álvarez Melcón,
  • S. Arguedas Cuendis,
  • J. Baier,
  • K. Barth,
  • H. Bräuninger
  • +55
  • S. Calatroni,
  • G. Cantatore,
  • F. Caspers,
  • J. F. Castel,
  • S. A. Cetin,
  • C. Cogollos,
  • T. Dafni,
  • M. Davenport,
  • A. Dermenev,
  • K. Desch,
  • A. Díaz-Morcillo,
  • B. Döbrich,
  • H. Fischer,
  • W. Funk,
  • J. D. Gallego,
  • J. M. García Barceló,
  • A. Gardikiotis,
  • J. G. Garza,
  • B. Gimeno,
  • S. Gninenko,
  • J. Golm,
  • M. D. Hasinoff,
  • D. H. H. Hoffmann,
  • I. G. Irastorza,
  • K. Jakovčić,
  • J. Kaminski,
  • M. Karuza,
  • B. Lakić,
  • J. M. Laurent,
  • A. J. Lozano-Guerrero,
  • G. Luzón,
  • C. Malbrunot,
  • M. Maroudas,
  • J. Miralda-Escudé,
  • H. Mirallas,
  • L. Miceli,
  • P. Navarro,
  • A. Ozbey,
  • K. Özbozduman,
  • C. Peña Garay,
  • M. J. Pivovaroff,
  • J. Redondo,
  • J. Ruz,
  • E. Ruiz Chóliz,
  • S. Schmidt,
  • M. Schumann,
  • Y. K. Semertzidis,
  • S. K. Solanki,
  • L. Stewart,
  • I. Tsagris,
  • T. Vafeiadis,
  • J. K. Vogel,
  • E. Widmann,
  • W. Wuensch,
  • K. Zioutas
  • (less)
Journal of High Energy Physics, 2021 (10/2021) doi:10.1007/JHEP10(2021)075
abstract + abstract -

We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g ≳ 4 × 10−13 GeV−1 over a mass range of 34.6738 μeV < ma< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.


(422)A joint 2- and 3-point clustering analysis of the VIPERS PDR2 catalogue at z 1: breaking the degeneracy of cosmological parameters
  • Alfonso Veropalumbo,
  • Iñigo Sáez Casares,
  • Enzo Branchini,
  • Benjamin R. Granett,
  • Luigi Guzzo
  • +5
  • Federico Marulli,
  • Michele Moresco,
  • Lauro Moscardini,
  • Andrea Pezzotta,
  • Sylvain de la Torre
  • (less)
Monthly Notices of the Royal Astronomical Society, 507, p18 (10/2021) doi:10.1093/mnras/stab2205
abstract + abstract -

We measure the galaxy two- and three-point correlation functions at z = [0.5, 0.7] and z = [0.7, 0.9], from the Public Data Release 2 (PDR2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS). We model the two statistics including a non-linear one-loop model for the two-point function and a tree-level model for the three-point function, and perform a joint likelihood analysis. The entire process and non-linear corrections are tested and validated through the use of the 153 highly realistic VIPERS mock catalogues, showing that they are robust down to scales as small as 10 $h^{-1} \, \mathrm{Mpc}$. The mocks are also adopted to compute the covariance matrix that we use for the joint two- and three-point analysis. Despite the limited statistics of the two (volume-limited) subsamples analysed, we demonstrate that such a combination successfully breaks the degeneracy existing at two-point level between clustering amplitude σ8, linear bias b1, and the linear growth rate of fluctuations f. For the latter, in particular, we measure $f(z=0.61)=0.64^{+0.55}_{-0.37}$ and f(z = 0.8) = 1.0 ± 1.0, while the amplitude of clustering is found to be σ8(z = 0.61) = 0.50 ± 0.12 and $\sigma _8(z=0.8)=0.39^{+0.11}_{-0.13}$. These values are in excellent agreement with the extrapolation of a Planck cosmology.


(421)Singly and doubly deuterated formaldehyde in massive star-forming regions
  • S. Zahorecz,
  • I. Jimenez-Serra,
  • L. Testi,
  • K. Immer,
  • F. Fontani
  • +3
Astronomy and Astrophysics, 653, p13 (09/2021) doi:10.1051/0004-6361/201937012
abstract + abstract -

Context. Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth.
Aims: In this paper, we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer.
Methods: Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the J = 3 →2 rotational lines of HDCO and D2CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H2CO emission and to give an estimate of the deuteration fractions HDCO/H2CO and D2CO/HDCO at scales of ~6″ (0.04-0.15 pc at the distance of our targets).
Results: Our observations show that singly and doubly deuterated H2CO are detected towards high-mass protostellar objects (HMPOs) and ultracompact H II regions (UC H II regions), and the deuteration fraction of H2CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UC H II), from ~0.13 to ~0.01. We have not detected HDCO and D2CO emission from the youngest sources (i.e. high-mass starless cores or HMSCs).
Conclusions: Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with the evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.


(420)The TOPGöt high-mass star-forming sample. I. Methyl cyanide emission as tracer of early phases of star formation
  • C. Mininni,
  • F. Fontani,
  • A. Sánchez-Monge,
  • V. M. Rivilla,
  • M. T. Beltrán
  • +7
  • S. Zahorecz,
  • K. Immer,
  • A. Giannetti,
  • P. Caselli,
  • L. Colzi,
  • L. Testi,
  • D. Elia
  • (less)
Astronomy and Astrophysics, 653, p20 (09/2021) doi:10.1051/0004-6361/202040262
abstract + abstract -


Aims: The TOPGöt project studies a sample of 86 high-mass star-forming regions in different evolutionary stages from starless cores to ultra compact HII regions. The aim of the survey is to analyze different molecular species in a statistically significant sample to study the chemical evolution in high-mass star-forming regions, and identify chemical tracers of the different phases.
Methods: The sources have been observed with the IRAM 30 m telescope in different spectral windows at 1, 2, and 3 mm. In this first paper, we present the sample and analyze the spectral energy distributions (SEDs) of the TOPGöt sources to derive physical parameters such as the dust temperature, Tdust, the total column density, NH2, the mass, M, the luminosity, L, and the luminosity-to-mass ratio, L∕M, which is an indicator of the evolutionary stage of the sources. We use the MADCUBA software to analyze the emission of methyl cyanide (CH3CN), a well-known tracer of high-mass star formation.
Results: We built the spectral energy distributions for ~80% of the sample and derived Tdust and NH2 values which range between 9−36 K and ~3 × 1021−7 × 1023 cm−2, respectively. The luminosity of the sources spans over four orders of magnitude from 30 to 3 × 105 L, masses vary between ~30 and 8 × 103 M, and the luminosity-to-mass ratio L∕M covers three orders of magnitude from 6 × 10−2 to 3 × 102 L∕M. The emission of the CH3CN(5K-4K) K-transitions has been detected toward 73 sources (85% of the sample), with 12 nondetections and one source not observed in the frequency range of CH3CN(5K-4K). The emission of CH3CN has been detected toward all evolutionary stages, with the mean abundances showing a clear increase of an order of magnitude from high-mass starless cores to later evolutionary stages. We found a conservative abundance upper limit for high-mass starless cores of XCH3CN < 4.0 × 10−11, and a range in abundance of 4.0 × 10−11 < XCH3CN < 7.0 × 10−11 for those sources that are likely high-mass starless cores or very early high-mass protostellar objects. In fact, in this range of abundance we have identified five sources previously not classified as being in a very early evolutionary stage. The abundance of CH3CN can thus be used to identify high-mass star-forming regions in early phases of star-formation.

Full Tables 3-6 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/653/A87


(419)Rise and fall of post-starburst galaxies in Magneticum Pathfinder
  • Marcel Lotz,
  • Klaus Dolag,
  • Rhea-Silvia Remus,
  • Andreas Burkert
Monthly Notices of the Royal Astronomical Society, 506, p27 (09/2021) doi:10.1093/mnras/stab2037
abstract + abstract -

Post-starburst (PSB) galaxies belong to a short-lived transition population between star-forming (SF) and quiescent galaxies. Deciphering their heavily discussed evolutionary pathways is paramount to understanding galaxy evolution. We aim to determine the dominant mechanisms governing PSB evolution in both the field and in galaxy clusters. Using the cosmological hydrodynamical simulation suite Magneticum Pathfinder, we identify 647 PSBs with z ~ 0 stellar mass $M_* \ge 5 \times 10^{10} \, \mathrm{M_{\odot }}$ . We track their galactic evolution, merger history, and black hole activity over a time-span of $3.6\,$ Gyr. Additionally, we study cluster PSBs identified at different redshifts and cluster masses. Independent of environment and redshift, we find that PSBs, like SF galaxies, have frequent mergers. At z = 0, $89{{\ \rm per\ cent}}$ of PSBs have experienced mergers and $65{{\ \rm per\ cent}}$ had at least one major merger within the last $2.5\,$ Gyr, leading to strong star formation episodes. In fact, $23{{\ \rm per\ cent}}$ of z = 0 PSBs were rejuvenated during their starburst. Following the mergers, field PSBs are generally shutdown via a strong increase in active galactic nucleus (AGN) feedback (power output $P_{\rm AGN,PSB} \ge 10^{56}\,$ erg Myr-1). We find agreement with observations for both stellar mass functions and z = 0.9 line-of-sight phase space distributions of PSBs in galaxy clusters. Finally, we find that z ≲ 0.5 cluster PSBs are predominantly infalling, especially in high-mass clusters and show no signs of enhanced AGN activity. Thus, we conclude that the majority of cluster PSBs are shutdown via an environmental quenching mechanism such as ram-pressure stripping, while field PSBs are mainly quenched by AGN feedback.


(418)Searching for New Physics in Rare $K$ and $B$ Decays without $|V_{cb}|$ and $|V_{ub}|$ Uncertainties
  • Andrzej J. Buras,
  • Elena Venturini
arXiv e-prints (09/2021) e-Print:2109.11032
abstract + abstract -

We reemphasize the strong dependence of the branching ratios $B(K^+\to\pi^+\nu\bar\nu)$ and $B(K_L\to\pi^0\nu\bar\nu)$ on $|V_{cb}|$ that is stronger than in rare $B$ decays, in particular for $K_L\to\pi^0\nu\bar\nu$. Thereby the persistent tension between inclusive and exclusive determinations of $|V_{cb}|$ weakens the power of these theoretically clean decays in the search for new physics (NP). We demonstrate how this uncertainty can be practically removed by considering within the SM suitable ratios of the two branching ratios between each other and with other observables like the branching ratios for $K_S\to\mu^+\mu^-$, $B_{s,d}\to\mu^+\mu^-$ and $B\to K(K^*)\nu\bar\nu$. We use as basic CKM parameters $V_{us}$, $|V_{cb}|$ and the angles $\beta$ and $\gamma$ in the unitarity triangle (UT). This avoids the use of the problematic $|V_{ub}|$. A ratio involving $B(K^+\to\pi^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ while being $|V_{cb}|$-independent exhibits sizable dependence on the angle $\gamma$. It should be of interest for several experimental groups in the coming years. We point out that the $|V_{cb}|$-independent ratio of $B(B^+\to K^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ from Belle II and LHCb signals a $1.8\sigma$ tension with its SM value. As a complementary test of the Standard Model, we propose to extract $|V_{cb}|$ from different observables as a function of $\beta$ and $\gamma$. We illustrate this with $\epsilon_K$, $\Delta M_d$ and $\Delta M_s$ finding tensions between these three determinations of $|V_{cb}|$ within the SM. From $\Delta M_s$ and $S_{\psi K_S}$ alone we find $|V_{cb}|=41.8(6)\times 10^{-3}$ and $|V_{ub}|=3.65(12)\times 10^{-3}$. We stress the importance of a precise measurement of $\gamma$. We obtain most precise SM predictions for considered branching ratios of rare K and B decays to date.


(417)P-wave quarkonium wavefunctions at the origin in the MS ¯ scheme
  • Hee Sok Chung
Journal of High Energy Physics, 2021 (09/2021) doi:10.1007/JHEP09(2021)195
abstract + abstract -

We compute P-wave quarkonium wavefunctions at the origin in the MS ¯ scheme based on nonrelativistic effective field theories. We include nonperturbative effects from the long-distance behaviors of the potential, while the short-distance behaviors are determined from perturbative QCD. We obtain MS ¯-renormalized P-wave quarkonium wavefunctions at the origin that have the correct scale dependences that are expected from factorization formalisms, so that the dependences on the scheme and scale cancel in physical quantities. This greatly reduces the theoretical uncertainties associated with scheme and scale dependences in predictions of decay and production rates. Based on the calculation of the P-wave wavefunctions at the origin in this work, we make first-principles predictions of electromagnetic decay rates and exclusive electromagnetic production rates of P-wave charmonia and bottomonia, and compare them with measurements.


(416)Laguerre reconstruction of the BAO feature in halo-based mock galaxy catalogues
  • Farnik Nikakhtar,
  • Ravi K. Sheth,
  • Idit Zehavi
Physical Review D, 104 (09/2021) doi:10.1103/PhysRevD.104.063504
abstract + abstract -

Fitting half-integer generalized Laguerre functions to the evolved, real-space dark matter and halo correlation functions provides a simple way to reconstruct their initial shapes. We show that this methodology also works well in a wide variety of realistic, assembly biased, velocity biased and redshift-space distorted mock galaxy catalogs. We use the linear point feature in the monopole of the redshift-space distorted correlation function to quantify the accuracy of our approach. We find that the linear point estimated from the mock galaxy catalogs is insensitive to the details of the biasing scheme at the subpercent level. However, the linear point scale in the nonlinear, biased, and redshift-space distorted field is systematically offset from its scale in the unbiased linear density fluctuation field by more than 1%. In the Laguerre reconstructed correlation function, this is reduced to sub-percent values, so it provides comparable accuracy and precision to methods that reconstruct the full density field before estimating the distance scale. The linear point in the reconstructed density fields provided by these other methods is likewise precise, accurate, and insensitive to galaxy bias. All reconstructions depend on some input parameters, and marginalizing over uncertainties in the input parameters required for reconstruction can degrade both accuracy and precision. The linear point simplifies the marginalization process, enabling more realistic estimates of the precision of the distance scale estimate for negligible additional computational cost. We show this explicitly for Laguerre reconstruction.


(415)Dust in the central parsecs of unobscured AGN: more challenges to the torus
  • M. Almudena Prieto,
  • Jakub Nadolny,
  • Juan A. Fernández-Ontiveros,
  • Mar Mezcua
Monthly Notices of the Royal Astronomical Society, 506, p19 (09/2021) doi:10.1093/mnras/stab1704
abstract + abstract -

A parsec-scale dusty torus is thought to be the cause of active galactic nuclei (AGN) dichotomy in the 1/2 types, narrow/broad emission lines. In a previous work, on the basis of parsec-scale resolution infrared/optical dust maps, it was found that dust filaments, few parsecs wide and several hundred parsecs long, were ubiquitous features crossing the centre of type 2 AGN, their optical thickness being sufficient to fully obscure the optical nucleus. This work presents the complementary view for type 1 and intermediate-type AGN. The same type of narrow, collimated, dust filaments are equally found at the centre of these AGN. The difference now resides in their location with respect to the nucleus, next to it but not crossing it, as it is the case in type 2, and their reduced optical thickness towards the centre, $A_V \lesssim 1.5\, \rm {mag}$, insufficient to obscure at ultraviolet nucleus wavelengths. It is concluded that large-scale, hundred parsecs to kiloparsecs long, dust filaments and lanes, reminiscent of those seen in the Milky Way, are a common ingredient to the central parsec of galaxies. Their optical thickness changes along their structure in type 2 reaching optical depths high enough to obscure the nucleus in full. Their location with respect to the nucleus and increasing gradient in optical depth towards the centre could naturally lead to the canonical type 1/2 AGN classification, making these filaments to play the role of the torus. Dust filaments and lanes show equivalent morphologies in molecular gas. Gas kinematic in the filaments indicates mass inflows at rates ${\lt}1 \, \mathrm{M}_{\odot }~ \mathrm{yr}^{-1}$.


(414)Peculiar velocity estimation from kinetic SZ effect using deep neural networks
  • Yuyu Wang,
  • Nesar Ramachandra,
  • Edgar M. Salazar-Canizales,
  • Hume A. Feldman,
  • Richard Watkins
  • +1
Monthly Notices of the Royal Astronomical Society, 506, p11 (09/2021) doi:10.1093/mnras/stab1715
abstract + abstract -

The Sunyaev-Zel'dolvich (SZ) effect is expected to be instrumental in measuring velocities of distant clusters in near future telescope surveys. We simplify the calculation of peculiar velocities of galaxy clusters using deep learning frameworks trained on numerical simulations to avoid the independent estimation of the optical depth. Images of distorted photon backgrounds are generated for idealized observations using one of the largest cosmological hydrodynamical simulations, the Magneticum simulations. The model is tested to determine its ability of estimating peculiar velocities from future kinetic SZ observations under different noise conditions. The deep learning algorithm displays robustness in estimating peculiar velocities from kinetic SZ effect by an improvement in accuracy of about 17 per cent compared to the analytical approach.


(413)Electric dipole moments at one-loop in the dimension-6 SMEFT
  • Jonathan Kley,
  • Tobias Theil,
  • Elena Venturini,
  • Andreas Weiler
arXiv e-prints (09/2021) e-Print:2109.15085
abstract + abstract -

In this paper we present the complete expressions of the lepton and neutron electric dipole moments (EDMs) in the Standard Model Effective Field Theory (SMEFT), up to 1-loop and dimension-6 level and including both RG running contributions and finite corrections. The latter play a fundamental role in the cases of operators that do not renormalize the dipoles, but there are also classes of operators for which they provide an important fraction, $10-20\%$, of the total 1-loop contribution, if the new physics scale is around $\Lambda=5$ TeV. We present the full set of bounds on each individual Wilson coefficient contributing to the EDMs using both the current experimental constraints, as well as those from future experiments, which are expected to improve by at least an order of magnitude.


(412)What can we learn about light-meson interactions at electron-positron colliders?
  • Shuang-shi Fang,
  • Bastian Kubis,
  • Andrzej Kupść
Progress in Particle and Nuclear Physics, 120 (09/2021) doi:10.1016/j.ppnp.2021.103884
abstract + abstract -

Precision studies at electron-positron colliders with centre-of-mass energies in the charm-tau region and below have strongly contributed to our understanding of light-meson interactions at low energies. We focus on the processes involving two or three light mesons with invariant masses below nucleon-antinucleon threshold. A prominent role is given to the interactions of the nine lightest pseudoscalar mesons (pions, kaons, η, and η) and the two narrow neutral isoscalar vector mesons ω and ϕ. Experimental methods used to produce the mesons are reviewed as well as theory tools to extract properties of the meson-meson interactions. Examples of recent results from the DA ΦNE, BEPCII, and VEPP-2000 colliders are presented. In the outlook we briefly discuss prospects for further studies at future super-charm-tau factories.


(411)The integrated three-point correlation function of cosmic shear
  • Anik Halder,
  • Oliver Friedrich,
  • Stella Seitz,
  • Tamas N. Varga
Monthly Notices of the Royal Astronomical Society, 506, p24 (09/2021) doi:10.1093/mnras/stab1801
abstract + abstract -

We present the integrated three-point shear correlation function iζ± - a higher order statistic of the cosmic shear field - which can be directly estimated in wide-area weak lensing surveys without measuring the full three-point shear correlation function, making this a practical and complementary tool to two-point statistics for weak lensing cosmology. We define it as the one-point aperture mass statistic Map measured at different locations on the shear field correlated with the corresponding local two-point shear correlation function ξ±. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated three-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ± and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ± and perform a joint analysis with ξ± for two tomographic source redshift bins with realistic shape noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ± and iζ± has the potential to considerably improve parameter constraints from ξ± alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.


(410)ALMA Observations of Lyα Blob 1: Multiple Major Mergers and Widely Distributed Interstellar Media
  • Hideki Umehata,
  • Ian Smail,
  • Charles C. Steidel,
  • Matthew Hayes,
  • Douglas Scott
  • +9
  • A. M. Swinbank,
  • R. J. Ivison,
  • Toru Nagao,
  • Mariko Kubo,
  • Kouichiro Nakanishi,
  • Yuichi Matsuda,
  • Soh Ikarashi,
  • Yoichi Tamura,
  • J. E. Geach
  • (less)
The Astrophysical Journal, 918, p20 (09/2021) doi:10.3847/1538-4357/ac1106
abstract + abstract -

We present observations of a giant Lyα blob (LAB) in the SSA22 protocluster at z = 3.1, SSA22-LAB1, taken with the Atacama Large Millimeter/submillimeter Array. Dust continuum, along with [C II] 158 μm and CO(4-3) line emission have been detected in LAB1, showing complex morphology and kinematics across a ~100 kpc central region. Seven galaxies at z = 3.0987-3.1016 in the surroundings are identified in [C II] and dust continuum emission, with two of them potential companions or tidal structures associated with the most massive galaxies. Spatially resolved [C II] and infrared luminosity ratios for the widely distributed media (L[Cɪɪ]/LIR ≍ 10-2-10-3) suggest that the observed extended interstellar media are likely to have originated from star formation activity and the contribution from shocked gas is probably not dominant. LAB1 is found to harbor a total molecular gas mass Mmol = (8.7 ± 2.0) × 1010 M, concentrated in the core region of the Lyα-emitting area. While (primarily obscured) star formation activity in the LAB1 core is one of the most plausible power sources for the Lyα emission, multiple major mergers found in the core may also play a role in making LAB1 exceptionally bright and extended in Lyα as a result of cooling radiation induced by gravitational interactions.


(409)ASASSN-14lp: two possible solutions for the observed ultraviolet suppression
  • Barnabas Barna,
  • Talytha Pereira,
  • Stefan Taubenberger,
  • Mark Magee,
  • Markus Kromer
  • +8
  • Wolfgang Kerzendorf,
  • Christian Vogl,
  • Marc E. Williamson,
  • Andreas Flörs,
  • Ulrich M. Noebauer,
  • Ryan J. Foley,
  • Michele Sasdelli,
  • Wolfgang Hillebrandt
  • (less)
Monthly Notices of the Royal Astronomical Society, 506, p17 (09/2021) doi:10.1093/mnras/stab1736
abstract + abstract -

We test the adequacy of ultraviolet (UV) spectra for characterizing the outer structure of Type Ia supernova (SN) ejecta. For this purpose, we perform spectroscopic analysis for ASASSN-14lp, a normal SN Ia showing low continuum in the mid-UV regime. To explain the strong UV suppression, two possible origins have been investigated by mapping the chemical profiles over a significant part of their ejecta. We fit the spectral time series with mid-UV coverage obtained before and around maximum light by HST, supplemented with ground-based optical observations for the earliest epochs. The synthetic spectra are calculated with the one-dimensional MC radiative transfer code TARDIS from self-consistent ejecta models. Among several physical parameters, we constrain the abundance profiles of nine chemical elements. We find that a distribution of 56Ni (and other iron-group elements) that extends towards the highest velocities reproduces the observed UV flux well. The presence of radioactive material in the outer layers of the ejecta, if confirmed, implies strong constraints on the possible explosion scenarios. We investigate the impact of the inferred 56Ni distribution on the early light curves with the radiative transfer code TURTLS, and confront the results with the observed light curves of ASASSN-14lp. The inferred abundances are not in conflict with the observed photometry. We also test whether the UV suppression can be reproduced if the radiation at the photosphere is significantly lower in the UV regime than the pure Planck function. In this case, solar metallicity might be sufficient enough at the highest velocities to reproduce the UV suppression.


(408)Cosmic shear cosmology beyond two-point statistics: a combined peak count and correlation function analysis of DES-Y1
  • Joachim Harnois-Déraps,
  • Nicolas Martinet,
  • Tiago Castro,
  • Klaus Dolag,
  • Benjamin Giblin
  • +3
  • Catherine Heymans,
  • Hendrik Hildebrandt,
  • Qianli Xia
  • (less)
Monthly Notices of the Royal Astronomical Society, 506, p28 (09/2021) doi:10.1093/mnras/stab1623
abstract + abstract -

We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter $S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3} = 0.766^{+0.033}_{-0.038}$ which, at 4.8 per cent precision, provides one of the tightest constraints on S8 from the DES-Y1 weak lensing data. In our simulation-based method we determine the expected DES-Y1 peak-count signal for a range of cosmologies sampled in four w cold dark matter parameters (Ωm, σ8, h, w0). We also determine the joint covariance matrix with over 1000 realizations at our fiducial cosmology. With mock DES-Y1 data we calibrate the impact of photometric redshift and shear calibration uncertainty on the peak-count, marginalizing over these uncertainties in our cosmological analysis. Using dedicated training samples we show that our measurements are unaffected by mass resolution limits in the simulation, and that our constraints are robust against uncertainty in the effect of baryon feedback. Accurate modelling for the impact of intrinsic alignments on the tomographic peak-count remains a challenge, currently limiting our exploitation of cross-correlated peak counts between high and low redshift bins. We demonstrate that once calibrated, a fully tomographic joint peak-count and correlation functions analysis has the potential to reach a 3 per cent precision on S8 for DES-Y1. Our methodology can be adopted to model any statistic that is sensitive to the non-Gaussian information encoded in the shear field. In order to accelerate the development of these beyond-two-point cosmic shear studies, our simulations are made available to the community upon request.


(407)HOLISMOKES. V. Microlensing of type II supernovae and time-delay inference through spectroscopic phase retrieval
  • J. Bayer,
  • S. Huber,
  • C. Vogl,
  • S. H. Suyu,
  • S. Taubenberger
  • +3
  • D. Sluse,
  • J. H. H. Chan,
  • W. E. Kerzendorf
  • (less)
Astronomy and Astrophysics, 653, p19 (09/2021) doi:10.1051/0004-6361/202040169
abstract + abstract -

We investigate strongly gravitationally lensed type II supernovae (LSNe II) for time-delay cosmography, incorporating microlensing effects; this expands on previous microlensing studies of type Ia supernovae (SNe Ia). We use the radiative-transfer code TARDIS to recreate five spectra of the prototypical SN 1999em at different times within the plateau phase of the light curve. The microlensing-induced deformations of the spectra and light curves are calculated by placing the SN into magnification maps generated with the code GERLUMPH. We study the impact of microlensing on the color curves and find that there is no strong influence on them during the investigated time interval of the plateau phase. The color curves are only weakly affected by microlensing due to the almost achromatic behavior of the intensity profiles. However, the lack of nonlinear structure in the color curves during the plateau phase of type II-plateau supernovae makes time-delay measurements more challenging compared to SN Ia color curves, given the possible presence of differential dust extinction. Therefore, we further investigate SN phase inference through spectral absorption lines under the influence of microlensing and Gaussian noise. As the spectral features shift to longer wavelengths with progressing time after explosion, the measured wavelength of a specific absorption line provides information on the epoch of the SN. The comparison between retrieved epochs of two observed lensing images then gives the time delay of the images. We find that the phase retrieval method that uses spectral features yields accurate delays with uncertainties of ≲2 days, making it a promising approach.


(406)TDCOSMO VIII: Cosmological distance measurements in light of the mass-sheet degeneracy -- forecasts from strong lensing and IFU stellar kinematics
  • A. Yıldırım,
  • S. H. Suyu,
  • G. C. -F. Chen,
  • E. Komatsu
arXiv e-prints (09/2021) e-Print:2109.14615
abstract + abstract -

Time-delay strong lensing (TDSL) is a powerful probe of the current expansion rate of the Universe. However, in light of the discrepancies between early and late-time cosmological studies, efforts revolve around the characterisation of systematic uncertainties in the methods. Here, we focus on the mass-sheet degeneracy (MSD), which is considered a significant source of systematics in TDSL, and aim to assess the constraining power provided by IFU stellar kinematics. We approximate the MSD with a cored, two-parameter extension to the lensing mass profiles (with core radius $r_{\rm c}$ and mass-sheet parameter $\lambda_{\rm int}$). In addition, we utilise mock IFU stellar kinematics of time-delay strong lenses, given the prospects of obtaining such data with JWST. We construct joint strong lensing and stellar dynamical models, where the time delays, mock imaging and IFU observations are used to constrain the mass profile of lens galaxies, and yield joint constraints on the time-delay distance ($D_{\Delta t}$) and angular diameter distance ($D_{\rm d}$) to the lens. We find that mock JWST-like stellar kinematics constrain the internal mass sheet and limit its contribution to the uncertainties of $D_{\Delta t}$ and $D_{\rm d}$, each at the < 4% level, without assumptions on the background cosmological model. These distance constraints would translate to a < 4% precision measurement on $H_{\rm 0}$ in flat $\Lambda CDM$ for a single lens. Our study shows that IFU stellar kinematics of time-delay strong lenses will be key in lifting the MSD on a per lens basis, assuming reasonable core sizes. However, even in the limit of infinite $r_{\rm c}$, where $D_{\Delta t}$ is degenerate with $\lambda_{\rm int}$, stellar kinematics of the deflector, time delays and imaging data will provide powerful constraints on $D_{\rm d}$, which becomes the dominant source of information in the cosmological inference.


(405)Precise Measurements of the Decay of Free Neutrons
  • Dirk Dubbers,
  • Bastian Märkisch
Annual Review of Nuclear and Particle Science, 71, p25 (09/2021) doi:10.1146/annurev-nucl-102419-043156
abstract + abstract -

The impact of new and highly precise neutron β decay data is reviewed. We focus on recent results from neutron lifetime, β asymmetry, and electron-neutrino correlation experiments. From these results, weak interaction parameters are extracted with unprecedented precision, which is possible also because of progress in effective field theory and lattice QCD. Limits on New Physics beyond the Standard Model derived from neutron decay data are sharper than those derived from high-energy experiments, except for processes involving right-handed neutrinos.


(404)Study of the Strong Interaction Among Hadrons with Correlations at the LHC
  • L. Fabbietti,
  • V. Mantovani Sarti,
  • O. Vázquez Doce
Annual Review of Nuclear and Particle Science, 71, p26 (09/2021) doi:10.1146/annurev-nucl-102419-034438
abstract + abstract -

The strong interaction among hadrons has been measured in the past by scattering experiments. Although this technique has been extremely successful in providing information about the nucleon-nucleon and pion-nucleon interactions, when unstable hadrons are considered the experiments become more challenging. In the last few years, the analysis of correlations in the momentum space for pairs of stable and unstable hadrons measured in pp and p+Pb collisions by the ALICE Collaboration at the LHC has provided a new method to investigate the strong interaction among hadrons. In this article, we review the numerous results recently achieved for hyperon-nucleon, hyperon-hyperon, and kaon-nucleon pairs, which show that this new method opens the possibility of measuring the residual strong interaction of any hadron pair.


(403)The isotropic attractor solution of axion-SU(2) inflation: universal isotropization in Bianchi type-I geometry
  • Ira Wolfson,
  • Azadeh Maleknejad,
  • Tomoaki Murata,
  • Eiichiro Komatsu,
  • Tsutomu Kobayashi
Journal of Cosmology and Astroparticle Physics, 2021, p23 (09/2021) doi:10.1088/1475-7516/2021/09/031
abstract + abstract -

SU(2) gauge fields coupled to an axion field can acquire an isotropic background solution during inflation. We study homogeneous but anisotropic inflationary solutions in the presence of such (massless) gauge fields. A gauge field in the cosmological background may pose a threat to spatial isotropy. We show, however, that such models generally isotropize in Bianchi type-I geometry, and the isotropic solution is the attractor. Restricting the setup by adding an axial symmetry, we revisited the numerical analysis presented in [1]. We find that the reported numerical breakdown in the previous analysis is an artifact of parametrization singularity. We use a new parametrization that is well-defined all over the phase space. We show that the system respects the cosmic no-hair conjecture and the anisotropies always dilute away within a few e-folds.


(402)Combining cosmological and local bounds on bimetric theory
  • Angelo Caravano,
  • Marvin Lüben,
  • Jochen Weller
Journal of Cosmology and Astroparticle Physics, 2021, p47 (09/2021) doi:10.1088/1475-7516/2021/09/035
abstract + abstract -

Ghost-free bimetric theory describes two nonlinearly interacting spin-2 fields, one massive and one massless, thus extending general relativity. We confront bimetric theory with observations of Supernovae type 1a, Baryon Acoustic Oscillations and the Cosmic Microwave Background in a statistical analysis, utilising the recently proposed physical parametrisation. This directly constrains the physical parameters of the theory, such as the mass of the spin-2 field and its coupling to matter. We find that all models under consideration are in agreement with the data. Next, we compare these results to bounds from local tests of gravity. Our analysis reveals that all two- and three parameter models are observationally consistent with both cosmological and local tests of gravity. The minimal bimetric model (only β1) is ruled out by our combined analysis.


(401)Publishing statistical models: Getting the most out of particle physics experiments
  • Kyle Cranmer,
  • Sabine Kraml,
  • Harrison B. Prosper,
  • Philip Bechtle,
  • Florian U. Bernlochner
  • +28
  • Itay M. Bloch,
  • Enzo Canonero,
  • Marcin Chrzaszcz,
  • Andrea Coccaro,
  • Jan Conrad,
  • Glen Cowan,
  • Matthew Feickert,
  • Nahuel Ferreiro Iachellini,
  • Andrew Fowlie,
  • Lukas Heinrich,
  • Alexander Held,
  • Thomas Kuhr,
  • Anders Kvellestad,
  • Maeve Madigan,
  • Farvah Mahmoudi,
  • Knut Dundas Morå,
  • Mark S. Neubauer,
  • Maurizio Pierini,
  • Juan Rojo,
  • Sezen Sekmen,
  • Luca Silvestrini,
  • Veronica Sanz,
  • Giordon Stark,
  • Riccardo Torre,
  • Robert Thorne,
  • Wolfgang Waltenberger,
  • Nicholas Wardle,
  • Jonas Wittbrodt
  • (less)
SciPost Phys., 12, p037 (09/2021) e-Print:2109.04981 doi:10.21468/SciPostPhys.12.1.037
abstract + abstract -

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -- including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -- we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.


(400)Toy models for hierarchy studies
  • Clara Álvarez-Luna,
  • José A. R. Cembranos,
  • Juan José Sanz-Cillero
arXiv e-prints (09/2021) e-Print:2109.04955
abstract + abstract -

We provide a simple computation in order to estimate the probability of a given hierarchy between two scales. In particular, we work in a model provided with a gauge symmetry, with two scalar doublets. We start from a scale-invariant classical Lagrangian, but by taking into account the Coleman-Weinberg mechanism, we obtain masses for the gauge bosons and the scalars. This approach typically provides a light (L) and a heavy (H) sector related to the two different vacuum expectation values of the two scalars. We compute the size of the hyper-volume of the parameter space of the model associated with an interval of mass ratios between these two sectors. We define the probability as proportional to this size and conclude that probabilities of very large hierarchies are not negligible in the type of models studied in this letter.


(399)Length Regulation Drives Self-Organization in Filament-Motor Mixtures
  • Moritz Striebel,
  • Fridtjof Brauns,
  • Erwin Frey
arXiv e-prints (09/2021) e-Print:2109.05091
abstract + abstract -

Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.


(398)Direct detection of non-galactic light dark matter
  • Gonzalo Herrera,
  • Alejandro Ibarra
Physics Letters B, 820 (09/2021) doi:10.1016/j.physletb.2021.136551
abstract + abstract -

A fraction of the dark matter in the solar neighborhood might be composed of non-galactic particles with speeds larger than the escape velocity of the Milky Way. The non-galactic dark matter flux would enhance the sensitivity of direct detection experiments, due to the larger momentum transfer to the target. In this note, we calculate the impact of the dark matter flux from the Local Group and the Virgo Supercluster diffuse components in nuclear and electron recoil experiments. The enhancement in the signal rate can be very significant, especially for experiments searching for dark matter induced electron recoils.


(397)Defects and phase transitions to geometric phases of abelian GLSMs
  • Ilka Brunner,
  • Lukas Krumpeck,
  • Daniel Roggenkamp
arXiv e-prints (09/2021) e-Print:2109.04124
abstract + abstract -

We consider gauged linear sigma models with gauge group U(1) that exhibit a geometric as well as a Landau Ginzburg phase. We construct defects that implement the transport of D-branes from the Landau-Ginzburg phase to the geometric phase. Through their fusion with boundary conditions these defects in particular provide functors between the respective D-brane categories. The latter map (equivariant) matrix factorizations to coherent sheaves and can be formulated explicitly in terms of complexes of matrix factorizations.


(396)Positive moments for scattering amplitudes
  • Brando Bellazzini,
  • Joan Elias Miró,
  • Riccardo Rattazzi,
  • Marc Riembau,
  • Francesco Riva
Physical Review D, 104 (08/2021) doi:10.1103/PhysRevD.104.036006
abstract + abstract -

We find the complete set of conditions satisfied by the forward 2 →2 scattering amplitude in unitary and causal theories. These are based on an infinite set of energy dependent quantities (the arcs) which are dispersively expressed as moments of a positive measure defined at (arbitrarily) higher energies. We identify optimal finite subsets of constraints, suitable to bound effective field theories (EFTs), at any finite order in the energy expansion. At tree level arcs are in a one to one correspondence with Wilson coefficients. We establish under which conditions this approximation applies, identifying seemingly viable EFTs where it never does. In all cases, we discuss the range of validity in both energy and couplings, where the latter has to satisfy two-sided bounds. We also extend our results to the case of small but finite t . A consequence of our study is that EFTs in which the scattering amplitude in some regime grows in energy faster than E6 cannot be UV completed.


(395)Measurement of the $\gamma n\rightarrow K^0\Sigma^0$ differential cross section over the $K^*$ threshold
  • K. Kohl,
  • S. Alef,
  • R. Beck,
  • A. Braghieri,
  • P. Cole
  • +29
  • R. D. Salvo,
  • A. Fantini,
  • O. Freyermuth,
  • F. Frommberger,
  • F. Ghio,
  • S. Goertz,
  • A. Gridnev,
  • D. Hammann,
  • J. Hannappel,
  • T. Jude,
  • N. Kozlenko,
  • A. Lapik,
  • P. Levi Sandri,
  • V. Lisin,
  • G. Mandaglio,
  • R. Messi,
  • D. Moricciani,
  • V. Nedorezov,
  • V. A. Nikonov,
  • D. Novinsky,
  • P. Pedroni,
  • A. Polonski,
  • B. -E. Reitz,
  • M. Romaniuk,
  • G. Scheluchin,
  • H. Schmieden,
  • A. Stuglev,
  • V. Sumachev,
  • V. Tarakanov
  • (less)
arXiv e-prints (08/2021) e-Print:2108.13319
abstract + abstract -

The differential cross section for the quasi-free photoproduction reaction $\gamma n\rightarrow K^0\Sigma^0$ was measured at BGOOD at ELSA from threshold to a center-of-mass energy of 2400 MeV. An increase in the cross section is observed at forward angles above 2000 MeV. The available statistics prevent an accurate description of this behavior, however it appears consistent with models describing a resonance of dynamically generated vector meson-baryon states, where an equivalent model predicted the $P_C$ states observed at LHCb. If proven correct, this could indicate parallels between the strange and charmed quark sectors.


(394)Stellar labels for hot stars from low-resolution spectra - I. the HotPayne method and results for 330,000 stars from LAMOST DR6
  • Maosheng Xiang,
  • Hans-Walter Rix,
  • Yuan-Sen Ting,
  • Rolf-Peter Kudritzki,
  • Charlie Conroy
  • +7
  • Eleonora Zari,
  • Jian-Rong Shi,
  • Norbert Przybilla,
  • Maria Ramirez-Tannus,
  • Andrew Tkachenko,
  • Sarah Gebruers,
  • Xiao-Wei Liu
  • (less)
arXiv e-prints (08/2021) e-Print:2108.02878
abstract + abstract -

We set out to determine stellar labels from low-resolution survey spectra of hot, OBA stars with effective temperature (Teff) higher than 7500K. This fills a gap in the scientific analysis of large spectroscopic stellar surveys such as LAMOST, which offers spectra for millions of stars at R=1800. We first explore the theoretical information content of such spectra for determining stellar labels, via the Cramér-Rao bound. We show that in the limit of perfect model spectra and observed spectra with S/N of 100, precise estimates are possible for a wide range of stellar labels: not only the effective temperature Teff, surface gravity logg, and projected rotation velocity vsini, but also the micro-turbulence velocity, Helium abundance and the elemental abundances [C/H], [N/H], [O/H], [Si/H], [S/H], and [Fe/H]. Our analysis illustrates that the temperature regime of around 9500K is challenging, as the dominant Balmer and Paschen line strength vary little with Teff. We implement the simultaneous fitting of these 11 stellar labels to LAMOST hot-star spectra using the Payne approach, drawing on Kurucz's ATLAS12/SYNTHE LTE spectra as the underlying models. We then obtain stellar parameter estimates for a sample of about 330,000 hot stars with LAMOST spectra, an increase by about two orders of magnitude in sample size. Among them, about 260,000 have good Gaia parallaxes (S/N>5), and more than 95 percent of them are luminous stars, mostly on the main sequence; the rest reflects lower luminosity evolved stars, such as hot subdwarfs and white dwarfs. We show that the fidelity of the abundance estimates is limited by the systematics of the underlying models, as they do not account for NLTE effects. Finally, we show the detailed distribution of vsini of stars with 8000-15,000K, illustrating that it extends to a sharp cut-off at the critical rotation velocity, across a wide range of temperatures.


(393)The Three Hundred Project: The stellar angular momentum evolution of cluster galaxies
  • R. Mostoghiu,
  • A. Knebe,
  • F. R. Pearce,
  • C. Power,
  • C. D. P. Lagos
  • +5
  • W. Cui,
  • S. Borgani,
  • K. Dolag,
  • G. Murante,
  • G. Yepes
  • (less)
Astronomy and Astrophysics, 652, p8 (08/2021) doi:10.1051/0004-6361/202038425
abstract + abstract -

Using 324 numerically modelled galaxy clusters as provided by THE THREE HUNDRED project, we study the evolution of the kinematic properties of the stellar component of haloes on first infall. We selected objects with Mstar > 5 × 1010 h−1 M within 3R200 of the main cluster halo at z = 0 and followed their progenitors. We find that although haloes are stripped of their dark matter and gas after entering the main cluster halo, there is practically no change in their stellar kinematics. For the vast majority of our `galaxies' - defined as the central stellar component found within the haloes that form our sample - their kinematic properties, as described by the fraction of ordered rotation, and their position in the specific stellar angular momentum−stellar mass plane jstar − Mstar are mostly unchanged by the influence of the central host cluster. However, for a small number of infalling galaxies, stellar mergers and encounters with remnant stellar cores close to the centre of the main cluster, particularly during pericentre passage, are able to spin up their stellar component by z = 0.


(392)Heat flows in rock cracks naturally optimize salt compositions for ribozymes
  • T. Matreux,
  • K. Le Vay,
  • A. Schmid,
  • P. Aikkila,
  • L. Belohlavek
  • +9
  • A. Z. çalışkanoǧlu,
  • E. Salibi,
  • A. Kühnlein,
  • C. Springsklee,
  • B. Scheu,
  • D. B. Dingwell,
  • D. Braun,
  • H. Mutschler,
  • C. B. Mast
  • (less)
Nature Chemistry, 13, p8 (08/2021) doi:10.1038/s41557-021-00772-5
abstract + abstract -

Catalytic nucleic acids, such as ribozymes, are central to a variety of origin-of-life scenarios. Typically, they require elevated magnesium concentrations for folding and activity, but their function can be inhibited by high concentrations of monovalent salts. Here we show that geologically plausible high-sodium, low-magnesium solutions derived from leaching basalt (rock and remelted glass) inhibit ribozyme catalysis, but that this activity can be rescued by selective magnesium up-concentration by heat flow across rock fissures. In contrast to up-concentration by dehydration or freezing, this system is so far from equilibrium that it can actively alter the Mg:Na salt ratio to an extent that enables key ribozyme activities, such as self-replication and RNA extension, in otherwise challenging solution conditions. The principle demonstrated here is applicable to a broad range of salt concentrations and compositions, and, as such, highly relevant to various origin-of-life scenarios.


(391)Testing one-loop galaxy bias: Cosmological constraints from the power spectrum
  • Andrea Pezzotta,
  • Martin Crocce,
  • Alexander Eggemeier,
  • Ariel G. Sánchez,
  • Román Scoccimarro
Physical Review D, 104 (08/2021) doi:10.1103/PhysRevD.104.043531
abstract + abstract -

We investigate the impact of different assumptions in the modeling of one-loop galaxy bias on the recovery of cosmological parameters, as a follow-up of the analysis done in the first paper of the series at fixed cosmology. To carry out these tests we focus on the real-space galaxy-power spectrum from a set of three different synthetic galaxy samples whose clustering properties are meant to match the ones of the CMASS and LOWZ catalogs of BOSS and the SDSS Main Galaxy Sample. We investigate the relevance of allowing for either short range nonlocality or scale-dependent stochasticity by fitting the real-space galaxy autopower spectrum or the combination of galaxy-galaxy and galaxy-matter power spectrum. From a comparison among the goodness of fit (χ2 ), unbiasedness of cosmological parameters (FoB), and figure of merit (FoM) of the model, we find that a simple four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with fixed quadratic tidal bias provides a robust modeling choice for the autopower spectrum of the three galaxy samples, up to kmax=0.3 h Mpc-1 and for an effective volume of 6 h-3 Gpc3. Instead, a joint analysis of the two observables fails at larger scales, and a model extension with either higher derivatives or scale-dependent shot noise is necessary to reach a similar kmax, with the latter providing the most accurate and stable results. Throughout the majority of the paper, we fix the description of the nonlinear matter evolution using a hybrid perturbative-N-body approach, RESPRESSO, that was found in the first paper to be the closest performing to the measured matter spectrum. We also test the impact of different modeling assumptions based on perturbative approaches, such as galilean-invariant Renormalised Perturbation Theory (gRPT) and effective field theory (EFT). In all cases, we find the inclusion of scale-dependent shot noise to increase the range of validity of the model in terms of FoB and χ2. Interestingly, these model extensions with additional free parameters do not necessarily lead to an increase in the maximally achievable FoM for the cosmological parameters (h ,Ωch2,As), which are generally consistent with those of the simpler model at smaller kmax.


(390)Exotic to standard bottomonium transitions
  • Jaume Tarrús Castellà,
  • Emilie Passemar
Physical Review D, 104 (08/2021) doi:10.1103/PhysRevD.104.034019
abstract + abstract -

We study the transition widths of ϒ (10753 ) and ϒ (11020 ) into standard bottomonium under the hypothesis that they correspond to the two lowest laying 1-- hybrid bottomonium states. We employ weakly coupled potential NRQCD an effective field theory incorporating the heavy-quark and multipole expansions. We consider the transitions generated by the leading order and next-to-leading order singlet-octet operators. In the multipole expansion the heavy-quark matrix elements factorize from the production of light-quark mesons by gluonic operators. For the leading order operator we compute the widths with a single π0, η or η' in the final state and for the next-to-leading operator for π+π- or K+K-. The hadronization of the gluonic operators is obtained, in the first case, from the axial anomaly and a standard π0-η -η' mixing scheme and, in the second case, we employ a coupled-channel dispersive representation matched to chiral perturbation theory for both the S - and D -wave pieces of the gluonic operator. We compare with experimental values and semi-inclusive widths. Our results strongly suggest that ϒ (11020 ) is indeed a hybrid bottomonium state.


(389)QFT with Stubs
  • Christoph Chiaffrino,
  • Ivo Sachs
arXiv e-prints (08/2021) e-Print:2108.04312
abstract + abstract -

The BV-Laplacian $\Delta$ in quantum field theory is singular, by construction, but can be regularized by deforming the classical BV-action. Taking inspiration from string theory we describe a non-local deformation of the latter by adding stubs to the interaction vertices while keeping classical BV-invariance manifest. This is achieved using a version of homotopy transfer resulting in a non-polynomial action for which the quantum master equation is now well defined and will be satisfied by adding additional vertices at loop level. The latter can be defined with the help of standard regularization schemes and is independent of the definition of $\Delta$. In particular, the determination of anomalies reduces to the standard text-book calculation. Finally, we describe how the deformed (quantum) action can be obtained as a canonical transformation. As an example, we illustrate this procedure for quantum electrodynamics.


(388)Probabilistic Reconstruction of Type Ia Supernova SN 2002bo
  • John T. O'Brien,
  • Wolfgang E. Kerzendorf,
  • Andrew Fullard,
  • Marc Williamson,
  • Rüdiger Pakmor
  • +6
  • Johannes Buchner,
  • Stephan Hachinger,
  • Christian Vogl,
  • James H. Gillanders,
  • Andreas Flörs,
  • Patrick van der Smagt
  • (less)
The Astrophysical Journal, 916, p8 (08/2021) doi:10.3847/2041-8213/ac1173
abstract + abstract -

Manual fits to spectral times series of Type Ia supernovae have provided a method of reconstructing the explosion from a parametric model but due to lack of information about model uncertainties or parameter degeneracies direct comparison between theory and observation is difficult. In order to mitigate this important problem we present a new way to probabilistically reconstruct the outer ejecta of the normal Type Ia supernova SN 2002bo. A single epoch spectrum, taken 10 days before maximum light, is fit by a 13-parameter model describing the elemental composition of the ejecta and the explosion physics (density, temperature, velocity, and explosion epoch). Model evaluation is performed through the application of a novel rapid spectral synthesis technique in which the radiative transfer code, TARDIS, is accelerated by a machine-learning framework. Analysis of the posterior distribution reveals a complex and degenerate parameter space and allows direct comparison to various hydrodynamic models. Our analysis favors detonation over deflagration scenarios and we find that our technique offers a novel way to compare simulation to observation.


(387)Performance of the Data-Handling Hub Readout System for the Belle II Pixel Detector
  • Stefan Huber,
  • Igor Konorov,
  • Dmytro Levit,
  • Stephan Paul,
  • Dominik Steffen
IEEE Transactions on Nuclear Science, 68, p7 (08/2021) doi:10.1109/TNS.2021.3083720
abstract + abstract -

The SuperKEKB accelerator in Tsukuba, Japan is providing e$^+$e$^-$ beams for the Belle II experiment since March 2019. To deal with the aimed peak luminosity being forty times higher than the one recorded at Belle, a pixel detector based on DEPFET technology has been installed. It features a long integration time of 20 $\mu$s resulting in an expected data rate of 20 GByte/s (160 GBit/s) at a maximum occupancy of 3 %. To deal with this high amount of data, the data handling hub (DHH) has been developed. It contains all necessary functionality for the control and readout of the detector. In this paper we describe the architecture and features of the DHH system. Further we will show the key performance characteristics after one year of operation.


(386)Presence of water on exomoons orbiting free-floating planets: a case study
  • Patricio Javier Ávila,
  • Tommaso Grassi,
  • Stefano Bovino,
  • Andrea Chiavassa,
  • Barbara Ercolano
  • +2
  • Sebastian Oscar Danielache,
  • Eugenio Simoncini
  • (less)
International Journal of Astrobiology, 20, p12 (08/2021) doi:10.1017/S1473550421000173
abstract + abstract -

A free-floating planet is a planetary-mass object that orbits around a non-stellar massive object (e.g. a brown dwarf) or around the Galactic Center. The presence of exomoons orbiting free-floating planets has been theoretically predicted by several models. Under specific conditions, these moons are able to retain an atmosphere capable of ensuring the long-term thermal stability of liquid water on their surface. We model this environment with a one-dimensional radiative-convective code coupled to a gas-phase chemical network including cosmic rays and ion-neutral reactions. We find that, under specific conditions and assuming stable orbital parameters over time, liquid water can be formed on the surface of the exomoon. The final amount of water for an Earth-mass exomonoon is smaller than the amount of water in Earth oceans, but enough to host the potential development of primordial life. The chemical equilibrium time-scale is controlled by cosmic rays, the main ionization driver in our model of the exomoon atmosphere.


(385)Globular cluster numbers in dark matter haloes in a dual formation scenario: an empirical model within EMERGE
  • Lucas M. Valenzuela,
  • Benjamin P. Moster,
  • Rhea-Silvia Remus,
  • Joseph A. O'Leary,
  • Andreas Burkert
Monthly Notices of the Royal Astronomical Society, 505, p18 (08/2021) doi:10.1093/mnras/stab1701
abstract + abstract -

We present an empirical model for the number of globular clusters (GCs) in galaxies based on recent data showing a tight relationship between dark matter halo virial masses and GC numbers. While a simple base model forming GCs in low-mass haloes reproduces this relation, we show that a second formation pathway for GCs is needed to account for observed younger GC populations. We confirm previous works that reported the observed linear correlation as being a consequence of hierarchical merging and its insensitivity to the exact GC formation processes at higher virial masses, even for a dual formation scenario. We find that the scatter of the linear relation is strongly correlated with the relative amount of smooth accretion: the more dark matter is smoothly accreted, the fewer GCs a halo has compared to other haloes of the same mass. This scatter is smaller than that introduced by halo mass measurements, indicating that the number of GCs in a galaxy is a good tracer for its dark matter mass. Smooth accretion is also the reason for a lower average dark matter mass per GC in low-mass haloes. Finally, we successfully reproduce the observed general trend of GCs being old and the tendency of more massive haloes hosting older GC systems. Including the second GC formation mechanism through gas-rich mergers leads to a more realistic variety of GC age distributions and also introduces an age inversion in the halo virial mass range log Mvir/M = 11-13.


(384)The explosion of 9-29 M<SUB>⊙</SUB> stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion
  • Luc Dessart,
  • D. John Hillier,
  • Tuguldur Sukhbold,
  • S. E. Woosley,
  • H. -T. Janka
Astronomy and Astrophysics, 652, p27 (08/2021) doi:10.1051/0004-6361/202140839
abstract + abstract -

We present a set of nonlocal thermodynamic equilibrium steady-state calculations of radiative transfer for one-year-old Type II supernovae (SNe) starting from state-of-the-art explosion models computed with detailed nucleosynthesis. This grid covers single-star progenitors with initial masses between 9 and 29 M, all evolved with the code KEPLER at solar metallicity and ignoring rotation. The [O I] λλ 6300, 6364 line flux generally grows with progenitor mass, and Hα exhibits an equally strong and opposite trend. The [Ca II] λλ 7291, 7323 strength increases at low 56Ni mass, at low explosion energy, or with clumping. This Ca II doublet, which forms primarily in the explosively produced Si/S zones, depends little on the progenitor mass but may strengthen if Ca+ dominates in the H-rich emitting zones or if Ca is abundant in the O-rich zones. Indeed, Si-O shell merging prior to core collapse may boost the Ca II doublet at the expense of the O I doublet, and may thus mimic the metal line strengths of a lower-mass progenitor. We find that the 56Ni bubble effect has a weak impact, probably because it is too weak to induce much of an ionization shift in the various emitting zones. Our simulations compare favorably to observed SNe II, including SN 2008bk (e.g., the 9 M model), SN 2012aw (12 M model), SN 1987A (15 M model), or SN 2015bs (25 M model with no Si-O shell merging). SNe II with narrow lines and a low 56Ni mass are well matched by the weak explosion of 9-11 M progenitors. The nebular-phase spectra of standard SNe II can be explained with progenitors in the mass range 12-15 M, with one notable exception for SN 2015bs. In the intermediate mass range, these mass estimates may increase by a few M, with allowance for clumping of the O-rich material or CO molecular cooling.


(383)The temperatures of red supergiants in low-metallicity environments
  • Gemma González-Torà,
  • Ben Davies,
  • Rolf-Peter Kudritzki,
  • Bertrand Plez
Monthly Notices of the Royal Astronomical Society, 505, p22 (08/2021) doi:10.1093/mnras/stab1611
abstract + abstract -

The temperatures of red supergiants (RSGs) are expected to depend on metallicity (Z) in such a way that lower Z RSGs are warmer. In this work, we investigate the Z-dependence of the Hayashi limit by analysing RSGs in the low-Z galaxy Wolf-Lundmark-Mellote, and compare with the RSGs in the higher Z environments of the Small Magellanic Cloud and Large Magellanic Cloud. We determine the effective temperature (Teff) of each star by fitting their spectral energy distributions, as observed by VLT + SHOOTER, with MARCS model atmospheres. We find average temperatures of $T_{\textrm {eff}_{\textrm {WLM}}}=4400\pm 202$ K, $T_{\textrm {eff}_{\textrm {SMC}}}=4130\pm 103$ K, and $T_{\textrm {eff}_{\textrm {LMC}}}=4140\pm 148$ K. From population synthesis analysis, we find that although the Geneva evolutionary models reproduce this trend qualitatively, the RSGs in these models are systematically too cool. We speculate that our results can be explained by the inapplicability of the standard solar mixing length to RSGs.


(382)On the small scale turbulent dynamo in the intracluster medium: A comparison to dynamo theory
  • Ulrich P. Steinwandel,
  • Ludwig M. Boess,
  • Klaus Dolag,
  • Harald Lesch
arXiv e-prints (08/2021) e-Print:2108.07822
abstract + abstract -

We present non-radiative, cosmological zoom-simulations of galaxy cluster formation with magnetic fields and (anisotropic) thermal conduction of one very massive galaxy cluster with a mass at redshift zero that corresponds to $M_\mathrm{vir} \sim 2 \times 10^{15} M_{\odot}$. We run the cluster on three resolution levels (1X, 10X, 25X), starting with an effective mass resolution of $2 \times 10^8M_{\odot}$, subsequently increasing the particle number to reach $4 \times 10^6M_{\odot}$. The maximum spatial resolution obtained in the simulations is limited by the gravitational softening reaching $\epsilon=1.0$ kpc at the highest resolution level, allowing to resolve the hierarchical assembly of the structures in very fine detail. All simulations presented, have been carried out with the SPMHD-code Gadget-3 with a heavily updated SPMHD prescription. The primary focus is to investigate magnetic field amplification in the Intracluster Medium (ICM). We show that the main amplification mechanism is the small scale-turbulent-dynamo in the limit of reconnection diffusion. In our two highest resolution models we start to resolve the magnetic field amplification driven by this process and we explicitly quantify this with the magnetic power-spectra and the magnetic tension that limits the bending of the magnetic field lines consistent with dynamo theory. Furthermore, we investigate the $\nabla \cdot \mathbf{B}=0$ constraint within our simulations and show that we achieve comparable results to state-of-the-art AMR or moving-mesh techniques, used in codes such as Enzo and Arepo. Our results show for the first time in a fully cosmological simulation of a galaxy cluster that dynamo action can be resolved in the framework of a modern Lagrangian magnetohydrodynamic (MHD) method, a study that is currently missing in the literature.


(381)Comparison of heavy-ion transport simulations: Mean-field dynamics in a box
  • Maria Colonna,
  • Ying-Xun Zhang,
  • Yong-Jia Wang,
  • Dan Cozma,
  • Pawel Danielewicz
  • +24
  • Che Ming Ko,
  • Akira Ono,
  • Manyee Betty Tsang,
  • Rui Wang,
  • Hermann Wolter,
  • Jun Xu,
  • Zhen Zhang,
  • Lie-Wen Chen,
  • Hui-Gan Cheng,
  • Hannah Elfner,
  • Zhao-Qing Feng,
  • Myungkuk Kim,
  • Youngman Kim,
  • Sangyong Jeon,
  • Chang-Hwan Lee,
  • Bao-An Li,
  • Qing-Feng Li,
  • Zhu-Xia Li,
  • Swagata Mallik,
  • Dmytro Oliinychenko,
  • Jun Su,
  • Taesoo Song,
  • Agnieszka Sorensen,
  • Feng-Shou Zhang
  • (less)
Physical Review C, 104 (08/2021) doi:10.1103/PhysRevC.104.024603
abstract + abstract -

Within the transport model evaluation project (TMEP) of simulations for heavy-ion collisions, the mean-field response is examined here. Specifically, zero-sound propagation is considered for neutron-proton symmetric matter enclosed in a periodic box, at zero temperature and around normal density. The results of several transport codes belonging to two families (BUU-like and QMD-like) are compared among each other and to exact calculations. For BUU-like codes, employing the test particle method, the results depend on the combination of the number of test particles and the spread of the profile functions that weight integration over space. These parameters can be properly adapted to give a good reproduction of the analytical zero-sound features. QMD-like codes, using molecular dynamics methods, are characterized by large damping effects, attributable to the fluctuations inherent in their phase-space representation. Moreover, for a given nuclear effective interaction, they generally lead to slower density oscillations, as compared to BUU-like codes. The latter problem is mitigated in the more recent lattice formulation of some of the QMD codes. The significance of these results for the description of real heavy-ion collisions is discussed.


(380)Laguerre reconstruction of the correlation function on baryon acoustic oscillation scales
  • Farnik Nikakhtar,
  • Ravi K. Sheth,
  • Idit Zehavi
Physical Review D, 104 (08/2021) doi:10.1103/PhysRevD.104.043530
abstract + abstract -

The baryon acoustic oscillation feature can be used as a standard cosmological ruler. In practice, for subpercent level accuracy on the distance scale, it must be standardized. The physical reason why is understood, so we use this to develop an algorithm which improves the estimated scale. The algorithm exploits the fact that, over the range of scales where the initial correlation function is well fit by a polynomial, the leading order effects which distort the length of the ruler can be accounted for analytically. Tests of the method in numerical simulations show that it provides simple and fast reconstruction of the full shape of the BAO feature, as well as subpercent determination of the linear point in the correlation function of biased tracers with minimal assumptions about the underlying cosmological model or the nature of the observed tracers. Our results also suggest that, for least squares estimators of the correlation function, half-integer generalized Laguerre functions are a particularly useful choice.


(379)Early science with the Large Millimeter Telescope: a 1.1 mm AzTEC survey of red-Herschel dusty star-forming galaxies
  • A. Montaña,
  • J. A. Zavala,
  • I. Aretxaga,
  • D. H. Hughes,
  • R. J. Ivison
  • +30
  • A. Pope,
  • D. Sánchez-Argüelles,
  • G. W. Wilson,
  • M. Yun,
  • O. A. Cantua,
  • M. McCrackan,
  • M. J. Michałowski,
  • E. Valiante,
  • V. Arumugam,
  • C. M. Casey,
  • R. Chávez,
  • E. Colín-Beltrán,
  • H. Dannerbauer,
  • J. S. Dunlop,
  • L. Dunne,
  • S. Eales,
  • D. Ferrusca,
  • V. Gómez-Rivera,
  • A. I. Gómez-Ruiz,
  • V. H. de la Luz,
  • S. J. Maddox,
  • G. Narayanan,
  • A. Omont,
  • I. Rodríguez-Montoya,
  • S. Serjeant,
  • F. P. Schloerb,
  • M. Velázquez,
  • S. Ventura-González,
  • P. van der Werf,
  • M. Zeballos
  • (less)
Monthly Notices of the Royal Astronomical Society, 505, p23 (08/2021) doi:10.1093/mnras/stab1649
abstract + abstract -

We present Large Millimeter Telescope (LMT)/AzTEC 1.1 mm observations of ~100 luminous high-redshift dusty star-forming galaxy candidates from the $\sim 600\,$ sq.deg Herschel-ATLAS survey, selected on the basis of their SPIRE red far-infrared colours and with $S_{500\, \mu \rm m}=35-80$ mJy. With an effective $\theta _{\rm FWHM}\approx 9.5\,$arcsec angular resolution, our observations reveal that at least 9 per cent of the targets break into multiple systems with signal-to-noise ratio ≥4 members. The fraction of multiple systems increases to ~23 per cent (or more) if some non-detected targets are considered multiples, as suggested by the data. Combining the new AzTEC and deblended Herschel photometry, we derive photometric redshifts, infrared luminosities, and star formation rates. While the median redshifts of the multiple and single systems are similar (zmed ≍ 3.6), the redshift distribution of the latter is skewed towards higher redshifts. Of the AzTEC sources, ~85 per cent lie at zphot > 3 while ~33 per cent are at zphot > 4. This corresponds to a lower limit on the space density of ultrared sources at 4 < z < 6 of $\sim 3\times 10^{-7}\, \textrm {Mpc}^{-3}$ with a contribution to the obscured star formation of $\gtrsim 8\times 10^{-4}\, \textrm {M}_\odot \, \textrm {yr}^{-1} \, \textrm {Mpc}^{-3}$. Some of the multiple systems have members with photometric redshifts consistent among them suggesting possible physical associations. Given their angular separations, these systems are most likely galaxy over-densities and/or early-stage pre-coalescence mergers. Finally, we present 3 mm LMT/RSR spectroscopic redshifts of six red-Herschel galaxies at zspec = 3.85-6.03, two of them (at z ~ 4.7) representing new redshift confirmations. Here, we release the AzTEC and deblended Herschel photometry as well as catalogues of the most promising interacting systems and z > 4 galaxies.


(378)Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt {s}$ = 13  TeV with the ATLAS detector
  • Georges Aad,
  • Braden Keim Abbott,
  • Dale Abbott,
  • Adam Abed Abud,
  • Kira Abeling
  • +2937
  • Deshan Kavishka Abhayasinghe,
  • Haider Abidi,
  • Halina Abramowicz,
  • Henso Abreu,
  • Yiming Abulaiti,
  • Angel Abusleme,
  • Bobby Samir Acharya,
  • Baida Achkar,
  • Lennart Adam,
  • Claire Adam Bourdarios,
  • Leszek Adamczyk,
  • Lukas Adamek,
  • Sagar Addepalli,
  • Jahred Adelman,
  • Aytul Adiguzel,
  • Sofia Adorni Braccesi Chiassi,
  • Tim Adye,
  • A.A. Affolder,
  • Tony Affolder,
  • Yoav Afik,
  • Christina Agapopoulou,
  • Merve Nazlim Agaras,
  • Jinky Agarwala,
  • Anamika Aggarwal,
  • Catalin Agheorghiesei,
  • Juan Antonio Aguilar Saavedra,
  • Ammara Ahmad,
  • Faig Ahmadov,
  • Waleed Syed Ahmed,
  • Xiaocong Ai,
  • Giulio Aielli,
  • Iakov Aizenberg,
  • Shunichi Akatsuka,
  • Melike Akbiyik,
  • Torsten Akesson,
  • Andrei Akimov,
  • Konie Al Khoury,
  • Gian Luigi Alberghi,
  • Justin Albert,
  • Pietro Albicocco,
  • M.J. Alconada Verzini,
  • Sara Alderweireldt,
  • Martin Aleksa,
  • I.N. Aleksandrov,
  • Calin Alexa,
  • Theodoros Alexopoulos,
  • Alice Alfonsi,
  • Fabrizio Alfonsi,
  • Muhammad Alhroob,
  • Babar Ali,
  • Shahzad Ali,
  • Malik Aliev,
  • Gianluca Alimonti,
  • Corentin Allaire,
  • Benedict Allbrooke,
  • Philip Patrick Allport,
  • Alberto Aloisio,
  • Francisco Alonso,
  • Cristiano Alpigiani,
  • Elio Alunno Camelia,
  • Manuel Alvarez Estevez,
  • Mariagrazia Alviggi,
  • Yara Do Amaral Coutinho,
  • Alessandro Ambler,
  • Luca Ambroz,
  • Christoph Amelung,
  • Dante Amidei,
  • Susana Patricia Amor Dos Santos,
  • Simone Amoroso,
  • Cherifa Sabrina Amrouche,
  • Christos Anastopoulos,
  • Nansi Andari,
  • Timothy Robert Andeen,
  • John Kenneth Anders,
  • Stefio Yosse Andrean,
  • Attilio Andreazza,
  • Stylianos Angelidakis,
  • Aaron Angerami,
  • Alexey Anisenkov,
  • Alberto Annovi,
  • Claire Antel,
  • Matthew Thomas Anthony,
  • Egor Antipov,
  • Mario Antonelli,
  • Daniel Joseph Antrim,
  • Fabio Anulli,
  • Masato Aoki,
  • Javier Alberto Aparisi Pozo,
  • Marco Aparo,
  • Ludovica Aperio Bella,
  • Nordin Aranzabal Barrio,
  • Victor Araujo Ferraz,
  • Chiara Arcangeletti,
  • Ayana Tamu Arce,
  • Eloisa Arena,
  • Jean-Francois Arguin,
  • Spyros Argyropoulos,
  • Jan-Hendrik Arling,
  • Aaron James Armbruster,
  • Alexander Armstrong,
  • Olivier Arnaez,
  • Hannah Arnold,
  • Zulit Paola Arrubarrena Tame,
  • Giacomo Artoni,
  • Haruka Asada,
  • Kanae Asai,
  • Shoji Asai,
  • Nedaa Alexandra Asbah,
  • Eleni Myrto Asimakopoulou,
  • Lily Asquith,
  • Jihad Assahsah,
  • Ketevi Adikle Assamagan,
  • Robert Astalos,
  • Ryan Justin Atkin,
  • Markus Julian Atkinson,
  • Naim Bora Atlay,
  • Hicham Atmani,
  • Prachi Atmasiddha,
  • Kamil Augsten,
  • Silvia Auricchio,
  • Volker Andreas Austrup,
  • Gal Avner,
  • Giuseppe Avolio,
  • Mohamad Kassem Ayoub,
  • Georges Azuelos,
  • Dominik Babal,
  • Henri Bachacou,
  • K. Bachas,
  • Dinos Bachas,
  • Alexander Bachiu,
  • Karl Filip Backman,
  • Anthony Badea,
  • Paolo Bagnaia,
  • H. Bahrasemani,
  • Sina Bahrasemani,
  • Adam Bailey,
  • Virginia Bailey,
  • John Baines,
  • Christos Bakalis,
  • Keith Baker,
  • Pepijn Johannes Bakker,
  • Evelin Bakos,
  • Debottam Bakshi Gupta,
  • Shyam Balaji,
  • Rahul Balasubramanian,
  • Evgenii Baldin,
  • Petr Balek,
  • Eric Ballabene,
  • Fabrice Balli,
  • William Keaton Balunas,
  • Johannes Balz,
  • Elzbieta Banas,
  • Marilena Bandieramonte,
  • Anjishnu Bandyopadhyay,
  • Shubham Bansal,
  • Liron Barak,
  • Elisabetta Barberio,
  • Dario Barberis,
  • Marlon Benoit Barbero,
  • Gregory Barbour,
  • Kevin Nicholas Barends,
  • Teresa Barillari,
  • Martin Barisits,
  • Jason Tyler Colt Barkeloo,
  • Tim Barklow,
  • Bruce M. Barnett,
  • Michael Barnett,
  • A. Baroncelli,
  • Toni Baroncelli,
  • Gaetano Barone,
  • Alan Barr,
  • Laura Barranco Navarro,
  • Fernando Barreiro Alonso,
  • Joao Barreiro Guimaraes Da Costa,
  • Uriel Barron,
  • Sergey Barsov,
  • Falk Bartels,
  • Rainer Bartoldus,
  • Giovanni Bartolini,
  • Adam Edward Barton,
  • Pavol Bartos,
  • Artem Basalaev,
  • Alexander Basan,
  • Inna Bashta,
  • Ahmed Bassalat,
  • Matthew Joseph Basso,
  • Candice Ruth Basson,
  • Richard Bates,
  • Souad Batlamous,
  • Richard Batley,
  • Binish Batool,
  • Marco Battaglia,
  • Matteo Bauce,
  • Florian Bauer,
  • Patrick Bauer,
  • Harinder Singh Bawa,
  • Arif Bayirli,
  • James Beacham,
  • Tristan Beau,
  • Pierre-Hugues Beauchemin,
  • Fabian Becherer,
  • Philip Bechtle,
  • Hans Peter Beck,
  • Kathrin Becker,
  • Cyril Pascal Becot,
  • Andrew Beddall,
  • Vadim Bednyakov,
  • Chris Bee,
  • Thomas Beermann,
  • Marcia Begalli,
  • Michael Begel,
  • Arabinda Behera,
  • Janna Katharina Behr,
  • Cristovao Beirao Da Cruz E Silva,
  • Joshua Falco Beirer,
  • Florian Beisiegel,
  • Mohamed Belfkir,
  • Gideon Bella,
  • Lorenzo Bellagamba,
  • Alain Bellerive,
  • Panagiotis Bellos,
  • Konstantin Beloborodov,
  • Konstantin Belotskiy,
  • Nikita Belyaev,
  • Driss Benchekroun,
  • Yan Benhammou,
  • Doug Benjamin,
  • Mathieu Benoit,
  • J.R. Bensinger,
  • Stan Bentvelsen,
  • Lydia Audrey Beresford,
  • Matteo Mario Beretta,
  • David Berge,
  • Elin Bergeaas Kuutmann,
  • Nicolas Berger,
  • Benedikt Ludwig Bergmann,
  • Laura Jean Bergsten,
  • Juerg Beringer,
  • Simon Berlendis,
  • Gregorio Bernardi,
  • Catrin Bernius,
  • Florian Urs Bernlochner,
  • Tracey Berry,
  • Peter Berta,
  • Anne-Sophie Berthold,
  • Iain Bertram,
  • Olga Bessidskaia Bylund,
  • Siegfried Bethke,
  • Alessandra Betti,
  • Adrian Bevan,
  • Somadutta Bhatta,
  • Deb Sankar Bhattacharya,
  • Prajita Bhattarai,
  • Vallary Shashikant Bhopatkar,
  • Runyu Bi,
  • Riccardo Maria Bianchi,
  • Otmar Biebel,
  • Rafal Bielski,
  • Nicolo Vladi Biesuz,
  • Michela Biglietti,
  • Thomas Billoud,
  • Marcello Bindi,
  • Ahmet Bingul,
  • Cesare Bini,
  • Silvia Biondi,
  • Alessandro Biondini,
  • Callum Jacob Birch-Sykes,
  • Gareth Adam Bird,
  • Mattias Birman,
  • Tobias Bisanz,
  • Jyoti Prakash Biswal,
  • Diptaparna Biswas,
  • Alexander Bitadze,
  • Carsten Bittrich,
  • Kristian Bjoerke,
  • Ingo Bloch,
  • Craig Blocker,
  • Andrew James Blue,
  • Ulla Blumenschein,
  • Julian Blumenthal,
  • Gerjan Bobbink,
  • Viktor Bobrovnikov,
  • Michael Boehler,
  • Danijela Bogavac,
  • Alexander Bogdanchikov,
  • Christian Bohm,
  • Veronique Boisvert,
  • Petar Bokan,
  • Tomasz Bold,
  • Marco Bomben,
  • Marcella Bona,
  • Maarten Boonekamp,
  • Callum Dale Booth,
  • Albert Gyorgy Borbely,
  • Hanna Maria Borecka-Bielska,
  • Lucas Santiago Borgna,
  • Guennadi Borissov,
  • Daniela Bortoletto,
  • Davide Boscherini,
  • Martine Fernandez-Bosman,
  • J.D. Bossio Sola,
  • Khalil Bouaouda,
  • Joseph Boudreau,
  • E.V. Bouhova-Thacker,
  • Djamel Eddine Boumediene,
  • Romain Bouquet,
  • Antonio Boveia,
  • Jamie Boyd,
  • Diallo Boye,
  • Igor Boyko,
  • Adam Bozson,
  • Juraj Bracinik,
  • Nihal Brahimi,
  • Gerhard Immanuel Brandt,
  • Oleg Brandt,
  • Frued Erik Braren,
  • Benjamin Paul Brau,
  • J.E. Brau,
  • Will Breaden Madden,
  • Kurt Brendlinger,
  • Roy Schimmel Brener,
  • Lydia Brenner,
  • Richard Brenner,
  • Shikma Bressler,
  • Bernard Brickwedde,
  • Daniel Lawrence Briglin,
  • David Britton,
  • Daniel Andreas Britzger,
  • Ian Brock,
  • Raymond Brock,
  • Gustaaf Brooijmans,
  • William King Brooks,
  • Elizabeth Brost,
  • Pawel Bruckman De Renstrom,
  • Ben Bruers,
  • Dusan Bruncko,
  • Alessia Bruni,
  • Graziano Bruni,
  • Marco Bruschi,
  • Nello Bruscino,
  • Lene Kristian Bryngemark,
  • Trygve Buanes,
  • Quentin Buat,
  • Peter Buchholz,
  • Andy Buckley,
  • Ioulian Budagov,
  • Magnar Kopangen Bugge,
  • Oleg Bulekov,
  • Brendon Bullard,
  • Tyler James Burch,
  • Sergey Burdin,
  • Carsten Daniel Burgard,
  • Angela Maria Burger,
  • Blake Oliver Burghgrave,
  • J.T.P. Burr,
  • Charles Burton,
  • Jackson Carl Burzynski,
  • Volker Buescher,
  • Peter John Bussey,
  • John Mark Butler,
  • Craig Buttar,
  • Jonathan Butterworth,
  • Will Buttinger,
  • Carlos Josue Buxo Vazquez,
  • Alexey Buzykaev,
  • Grazia Cabras,
  • Susana Cabrera Urban,
  • Davide Caforio,
  • Huacheng Cai,
  • Valentina Cairo,
  • Orhan Cakir,
  • Noemi Calace,
  • Paolo Calafiura,
  • Giovanni Calderini,
  • Philippe Calfayan,
  • Giuseppe Callea,
  • Luiz Caloba,
  • Sergio Calvente Lopez,
  • David Calvet,
  • Samuel Calvet,
  • Thomas Philippe Calvet,
  • Milene Calvetti,
  • Reina Coromoto Camacho Toro,
  • Stefano Camarda,
  • Daniel Camarero Munoz,
  • Paolo Camarri,
  • Maria Teresa Camerlingo,
  • David Cameron,
  • Clement Camincher,
  • Mario Campanelli,
  • Alessandra Camplani,
  • Vincenzo Canale,
  • Auriane Canesse,
  • Marc Bret Cano,
  • Josu Cantero Garcia,
  • Yumeng Cao,
  • Francesca Capocasa,
  • Marcella Capua,
  • Antonio Carbone,
  • Roberto Cardarelli,
  • Juan Carlos,
  • Jr. Cardenas,
  • Fabio Cardillo,
  • Giovandomenico Carducci,
  • Tancredi Carli,
  • Giampaolo Carlino,
  • B.T. Carlson,
  • Evan Michael Carlson,
  • Leonardo Carminati,
  • Maria Carnesale,
  • Rebecca Carney,
  • Sascha Caron,
  • Edson Carquin Lopez,
  • Sonia Carra,
  • Giuseppe Carratta,
  • Joseph Carter,
  • Thomas Michael Carter,
  • Diego Casadei,
  • Pilar Casado Lechuga,
  • Albert Francis Casha,
  • Emma Grace Castiglia,
  • Florencia Luciana Castillo,
  • Lucia Castillo Garcia,
  • Victoria Castillo Gimenez,
  • Nuno Castro,
  • Andrea Catinaccio,
  • James Catmore,
  • Ariella Cattai,
  • Viviana Cavaliere,
  • Noemi Cavalli,
  • Vincenzo Cavasinni,
  • Emre Celebi,
  • Federico Celli,
  • Martino Salomone Centonze,
  • Karel Cerny,
  • Augusto Santiago Cerqueira,
  • Alex Cerri,
  • Lucio Cerrito,
  • Fabio Cerutti,
  • Alberto Cervelli,
  • Serkant Cetin,
  • Zakaria Chadi,
  • Dhiman Chakraborty,
  • Mikael Chala,
  • Jay Chan,
  • Terry Ws Chan,
  • Wai Yuen Chan,
  • John Derek Chapman,
  • Bakar Chargeishvili,
  • Dave Charlton,
  • Thomas Paul Charman,
  • Meghranjana Chatterjee,
  • Sergei Chekanov,
  • Sergey Chekulaev,
  • G.A. Chelkov,
  • Andy Chen,
  • Boping Chen,
  • Cheng Chen,
  • Chunhui Chen,
  • Huirun Chen,
  • Hucheng Chen,
  • Jing Chen,
  • Jiayi Chen,
  • Shion Chen,
  • Shenjian Chen,
  • Xiang Chen,
  • Xin Chen,
  • Ye Chen,
  • Yu-Heng Chen,
  • Alkaid Cheng,
  • Hok Chuen Cheng,
  • Alexander Cheplakov,
  • Evgeniya Cheremushkina,
  • Elizaveta Cherepanova,
  • Rajaa Cherkaoui El Moursli,
  • Elliott Cheu,
  • Kingman Cheung,
  • Laurent Chevalier,
  • Vitaliano Chiarella,
  • Giorgio Chiarelli,
  • Gabriele Chiodini,
  • Andrew Stephen Chisholm,
  • Adrian Chitan,
  • Justin Chiu,
  • Mihail Chizhov,
  • Kyungeon Choi,
  • Arthur Chomont,
  • Yuan-Tang Chou,
  • Y.S. Chow,
  • Edwin Chow,
  • Lawrence Davou Christopher,
  • Ming Chung Chu,
  • Xiaotong Chu,
  • Jiri Chudoba,
  • Janusz Chwastowski,
  • Davide Cieri,
  • Krzysztof Ciesla,
  • Vladimir Cindro,
  • Irina Antonela Cioara,
  • Alessandra Ciocio,
  • Francesco Cirotto,
  • Z.H. Citron,
  • Mauro Citterio,
  • Dan Andrei Ciubotaru,
  • Bianca Monica Ciungu,
  • Allan Clark,
  • Philip Clark,
  • Jose Manuel Clavijo Columbie,
  • Savannah Clawson,
  • Christophe Clement,
  • Luca Clissa,
  • Yann Coadou,
  • Marina Cobal,
  • Andrea Coccaro,
  • James Herbert,
  • Jr. Cochran,
  • Ricardo Filipe Coelho Barrue,
  • Rafael Coelho Lopes De Sa,
  • Simone Coelli,
  • Hadar Cohen,
  • A.E.C. Coimbra,
  • Brian Cole,
  • Johann Collot,
  • Patricia Conde Muino,
  • Simon Connell,
  • Ian Allan Connelly,
  • Eimear Isobel Conroy,
  • Francesco Conventi,
  • Harry Cooke,
  • Amanda Sarkar,
  • Felix Cormier,
  • Louie Dartmoor Corpe,
  • Massimo Corradi,
  • Eric Edward Corrigan,
  • Francois Corriveau,
  • Maria Jose Costa Mezquita,
  • Francesco Costanza,
  • Davide Costanzo,
  • Benjamin Michael Cote,
  • Glen Cowan,
  • James William Cowley,
  • Kyle Stuart Cranmer,
  • Sabine Crepe-Renaudin,
  • Francesco Crescioli,
  • Markus Cristinziani,
  • Marco Cristoforetti,
  • Vincent Alexander Croft,
  • Nanni Crosetti,
  • G. Crosetti,
  • Ana Rosario Cueto Gomez,
  • Tulay Cuhadar Donszelmann,
  • Han Cui,
  • Aviv Ruben Cukierman,
  • Liam Cunningham,
  • Patrick Karl Czodrowski,
  • Marta Czurylo,
  • M.J. Da Cunha Sargedas De Sousa,
  • Joao Victor Da Fonseca Pinto,
  • Cinzia Da Via,
  • Wladyslaw Dabrowski,
  • Tomas Dado,
  • Salah-Eddine Dahbi,
  • Tiesheng Dai,
  • Carlo Dallapiccola,
  • Mogens Dam,
  • Gabriele D'Amen,
  • Valerio D'Amico,
  • Johannes Frederic Damp,
  • Jeff Dandoy,
  • Maria Florencia Daneri,
  • Matthias Danninger,
  • Valerio Dao,
  • Nanni Darbo,
  • G. Darbo,
  • Smita Darmora,
  • Aparajita Dattagupta,
  • Saverio D'Auria,
  • Claire David,
  • Tomas Davidek,
  • Douglas Raymond Davis,
  • Benjamin Richard Davis-Purcell,
  • Ian Dawson,
  • Kaushik De,
  • Riccardo De Asmundis,
  • Marcus De Beurs,
  • Stefano De Castro,
  • Nicolo De Groot,
  • Paul De Jong,
  • Hector De La Torre Perez,
  • Antonio De Maria,
  • Daniele De Pedis,
  • Alessandro De Salvo,
  • Umberto De Sanctis,
  • Maurizio De Santis,
  • Antonella De Santo,
  • Jean-Baptiste De Vivie De Regie,
  • Dmitri Dedovich,
  • Jordy Degens,
  • Allison Mccarn Deiana,
  • Jose Del Peso,
  • Yasiel Delabat Diaz,
  • Frederic Deliot,
  • Chris Malena Delitzsch,
  • Massimo Della Pietra,
  • Domenico Della Volpe,
  • Andrea Dell'Acqua,
  • Lidia Dell'Asta,
  • Marco Delmastro,
  • Pierre Antoine Delsart,
  • Sarah Marie Demers Konezny,
  • Mikhail Demichev,
  • Serguei Denisov,
  • Louis D'Eramo,
  • Dominik Karol Derendarz,
  • Jamal Derkaoui,
  • Frederic Derue,
  • Paul Dervan,
  • Klaus Desch,
  • Karola Dette,
  • Christopher Deutsch,
  • Pier-Olivier Deviveiros,
  • Francesco Armando Di Bello,
  • Anna Di Ciaccio,
  • Lucia Di Ciaccio,
  • Camilla Di Donato,
  • Alessandro Di Girolamo,
  • Giulia Di Gregorio,
  • Andrea Di Luca,
  • Biagio Di Micco,
  • Roberto Di Nardo,
  • Cristinel Diaconu,
  • Flavia De Almeida Dias,
  • T. Dias Do Vale,
  • Marco Aurelio Diaz Gutierrez,
  • Federico Guillermo Diaz Capriles,
  • Jennet Elizabeth Dickinson,
  • Mariia Didenko,
  • Edward Diehl,
  • Janet Dietrich,
  • Sergio Diez Cornell,
  • Carmen Diez Pardos,
  • Aleksandra Dimitrievska,
  • Wei Ding,
  • Jochen Christian Dingfelder,
  • Ioan-Mihail Dinu,
  • Sebastian Dittmeier,
  • Fido Dittus,
  • Fares Djama,
  • Tamar Djobava,
  • Julia Isabell Djuvsland,
  • Aline Barros Do Vale,
  • David Michael Dodsworth,
  • Caterina Doglioni,
  • Jiri Dolejsi,
  • Zdenek Dolezal,
  • Marisilvia Donadelli,
  • Binbin Dong,
  • Julien Noce Donini,
  • Adelina D'Onofrio,
  • Monica D'Onofrio,
  • Jens Dopke,
  • Alessandra Doria,
  • Maria Teresa Dova,
  • Tony Doyle,
  • Eric Drechsler,
  • Etienne Dreyer,
  • Timo Dreyer,
  • Alec Swenson Drobac,
  • Dongshuo Du,
  • Tristan Arnoldus Du Pree,
  • Filipp Dubinin,
  • Michal Dubovsky,
  • Arnaud Dubreuil,
  • Ehud Duchovni,
  • Guenter Duckeck,
  • Otilia Anamaria Ducu,
  • Dominik Duda,
  • Alexey Dudarev,
  • Matteo D'Uffizi,
  • Laurent Duflot,
  • Michael Duehrssen-Debling,
  • Carsten Dulsen,
  • Ana Elena Dumitriu,
  • Monica Dunford,
  • Sascha Dungs,
  • Katherine Elaine Dunne,
  • Arnaud Duperrin,
  • H. Duran Yildiz,
  • Michael Johannes Dueren,
  • Archil Durglishvili,
  • Baishali Dutta,
  • G.I. Dyckes,
  • Mateusz Dyndal,
  • Samuel Dezso Dysch,
  • Bartosz Sebastian Dziedzic,
  • Barbora Eckerova,
  • Michael Glenn Eggleston,
  • Edmar Egidio Purcino De Souza,
  • Lukas Ehrke,
  • Till Eifert,
  • Gerald Eigen,
  • Kevin Frank Einsweiler,
  • Tord Johan Carl Ekelof,
  • Yassine El Ghazali,
  • Hassnae El Jarrari,
  • Ali El Moussaouy,
  • Venugopal Ellajosyula,
  • Mattias Ellert,
  • Frank Ellinghaus,
  • Alison Elliot,
  • Nick Ellis,
  • Johannes Elmsheuser,
  • Markus Elsing,
  • Dmitry Emeliyanov,
  • Alex Emerman,
  • Yuji Enari,
  • Johannes Erdmann,
  • Antonio Ereditato,
  • Paula Agnieszka Erland,
  • Martin Errenst,
  • Marc Escalier,
  • Carlos Escobar Ibanez,
  • Oscar Estrada Pastor,
  • Erez Etzion,
  • Guiomar Gaspar De Andrade Evans,
  • Hal Evans,
  • Meirin Oan Evans,
  • Aleksei Ezhilov,
  • Federica Fabbri,
  • Laura Fabbri,
  • Veronica Fabiani,
  • Gabriel Facini,
  • Vitaliy Fadeyev,
  • Rinat Fakhrutdinov,
  • Speranza Falciano,
  • Peter Johannes Falke,
  • Saskia Falke,
  • Jana Faltova,
  • Yunyun Fan,
  • Yi Fang,
  • Yaquan Fang,
  • Georgios Fanourakis,
  • Marcello Fanti,
  • Mohammed Faraj,
  • Amir Farbin,
  • Ada Farilla,
  • Edoardo Maria Farina,
  • Trisha Farooque,
  • Sinead Farrington,
  • Philippe Farthouat,
  • Farida Fassi,
  • Dimitris Fassouliotis,
  • Michele Faucci Giannelli,
  • William James Fawcett,
  • Louis Fayard,
  • Oleg Fedin,
  • Matthew Carl Feickert,
  • Lorenzo Feligioni,
  • Alix Fell,
  • Cunfeng Feng,
  • Minyu Feng,
  • Michael James Fenton,
  • Alexandre Fenyuk,
  • Sarah Whitney Ferguson,
  • James Edward Ferrando,
  • Arnaud Ferrari,
  • Pamela Ferrari,
  • Roberto Ferrari,
  • Didier Ferrere,
  • Claudio Ferretti,
  • Frank Fiedler,
  • Andrej Filipcic,
  • Frank Filthaut,
  • Miguel Castro Nunes Fiolhais,
  • Luca Fiorini,
  • Florian Fischer,
  • Wade Cameron Fisher,
  • Tobias Fitschen,
  • Ivor Fleck,
  • Philipp Fleischmann,
  • Tobias Flick,
  • Bernhard Matthias Flierl,
  • Lucas Macrorie Flores,
  • Luis Roberto Flores Castillo,
  • Francesco Maria Follega,
  • Nikolai Fomin,
  • Joel Hengwei Foo,
  • Blake Christopher Forland,
  • Andrea Formica,
  • Fabian Alexander Forster,
  • Alessandra Forti,
  • Etienne Marie Fortin,
  • Maria Giovanna Foti,
  • Daniel Fournier,
  • Harald Fox,
  • Paolo Francavilla,
  • Simone Francescato,
  • Matteo Franchini,
  • Silvia Franchino,
  • David Francis,
  • Luca Franco,
  • Laura Franconi,
  • Melissa Franklin,
  • Guglielmo Frattari,
  • Arran Charles Freegard,
  • Patrick Moriishi Freeman,
  • Werner Spolidoro Freund,
  • Elena Murielle Freundlich,
  • Daniel Froidevaux,
  • James Frost,
  • Yao Fu,
  • Minori Fujimoto,
  • Esteban Fullana Torregrosa,
  • Juan Fuster Verdu,
  • Alessandro Gabrielli,
  • Andrea Gabrielli,
  • Paul Philipp Gadow,
  • Guido Gagliardi,
  • Louis-Guillaume Gagnon,
  • Gabriel Gallardo,
  • Elizabeth Gallas,
  • Bruce Joseph Gallop,
  • Rodrigo Gamboa Goni,
  • Kock Kiam Gan,
  • Sanmay Ganguly,
  • Jun Gao,
  • Yanyan Gao,
  • Yongsheng Gao,
  • Francisca Garay Walls,
  • Carmen Garcia,
  • Jose Enrique Garcia Navarro,
  • J.A. García Pascual,
  • Maurice Garcia-Sciveres,
  • Robert William,
  • Jr. Gardner,
  • Diksha Garg,
  • Simona Gargiulo,
  • Christopher Andrew Garner,
  • Vincent Garonne,
  • Sean Joseph Gasiorowski,
  • Philipp Do Nascimento Gaspar,
  • Gabriella Gaudio,
  • Paolo Gauzzi,
  • Igor Gavrilenko,
  • Aleksandr Gavriliuk,
  • Colin Warren Gay,
  • Goetz Gaycken,
  • Evangelos Gazis,
  • Andrei Alexandru Geanta,
  • Carolyn Gee,
  • Norman Gee,
  • Jannik Geisen,
  • Marc Geisen,
  • Claudia Gemme,
  • Marie-Helene Genest,
  • Simonetta Gentile,
  • Simon George,
  • William Frederick George,
  • Theodoros Geralis,
  • Lino Oscar Gerlach,
  • Paul Gessinger-Befurt,
  • Meisam Ghasemi Bostanabad,
  • Mazuza Ghneimat,
  • Aishik Ghosh,
  • Anindya Ghosh,
  • Benedetto Giacobbe,
  • Stefano Giagu,
  • Nico Giangiacomi,
  • Paola Giannetti,
  • Antonio Giannini,
  • Stephen Gibson,
  • Matthew Gignac,
  • Damian Tomasz Gil,
  • Benjamin Jacob Gilbert,
  • Dag Gillberg,
  • Geoffrey Gilles,
  • N.E.K. Gillwald,
  • Doug Gingrich,
  • Mapo Giordani,
  • Pierre-Francois Giraud,
  • Gilberto Giugliarelli,
  • Danilo Giugni,
  • Francesco Giuli,
  • Ioannis Gkialas,
  • Panagiotis Gkountoumis,
  • Leonid Gladilin,
  • Claudia Glasman,
  • Galen Rhodes Gledhill,
  • Marija Glisic,
  • Ivan Gnesi,
  • Maximilian Emanuel Goblirsch-Kolb,
  • Dominique Godin,
  • Steven Goldfarb,
  • Tobias Golling,
  • Dmitry Golubkov,
  • Jason Peter Gombas,
  • Agostinho Da Silva Gomes,
  • Rafael Goncalves Gama,
  • Ricardo Jose Morais Silva Goncalo,
  • Giulia Gonella,
  • Laura Gonella,
  • Alexi Gongadze,
  • Francesco Gonnella,
  • Julia Lynne Gonski,
  • Santiago Gonzalez De La Hoz,
  • Sergio Gonzalez Fernandez,
  • Ricardo Gonzalez Lopez,
  • Cesar Gonzalez Renteria,
  • Rebeca Gonzalez Suarez,
  • Sergio Gonzalez Sevilla,
  • Galo Rafael Gonzalvo Rodriguez,
  • R.Y. González Andana,
  • Luc Goossens,
  • Nandish Arjan Gorasia,
  • Petr Gorbounov,
  • Howard Gordon,
  • Benedetto Gorini,
  • Edoardo Gorini,
  • Andrej Gorisek,
  • A.T. Goshaw,
  • Mikhail Gostkin,
  • Carlo Alberto Gottardo,
  • Mohamed Gouighri,
  • Vincent Goumarre,
  • Anna Goussiou,
  • Nicolin Govender,
  • Corinne Goy,
  • Iwona Grabowska-Bold,
  • Kevin Robert Graham,
  • Eirik Gramstad,
  • Sergio Grancagnolo,
  • Mario Grandi,
  • Vadim Grachev,
  • Paul Gravila,
  • Francesco Giuseppe Gravili,
  • Heather Gray,
  • Christian Grefe,
  • Ingrid Gregor,
  • Philippe Grenier,
  • Kirill Grevtsov,
  • Chiara Grieco,
  • Nathan Allen Grieser,
  • Alex Grillo,
  • Kathryn Grimm,
  • Sebastian Grinstein,
  • Jean-Francois Grivaz,
  • Sabrina Groh,
  • Eilam Gross,
  • Joern Grosse-Knetter,
  • Christopher Ryan Grud,
  • Aidan Grummer,
  • James Cameron Grundy,
  • Liang Guan,
  • Wen Guan,
  • Chris Gubbels,
  • Jaroslav Guenther,
  • J.G.R. Guerrero Rojas,
  • Francesco Guescini,
  • Dan Guest,
  • Ralf Gugel,
  • Alessandro Guida,
  • Thibault Guillemin,
  • Stefan Guindon,
  • Jun Guo,
  • Linghua Guo,
  • Yuxiang Guo,
  • Ruchi Gupta,
  • Saime Gurbuz,
  • Giuliano Gustavino,
  • Manuel Guth,
  • Phillip Gutierrez,
  • Luis Felipe Gutierrez Zagazeta,
  • Christian Gutschow,
  • Claude Guyot,
  • Claire Gwenlan,
  • Carl Gwilliam,
  • Even Simonsen Haaland,
  • Andrew Haas,
  • Martin Habedank,
  • Carl Haber,
  • Haleh Hadavand,
  • Asma Hadef,
  • Sejla Hadzic,
  • Mahsana Haleem,
  • Joseph Haley,
  • Jack Joseph Hall,
  • Garabed Halladjian,
  • Gregory Hallewell,
  • Lea Halser,
  • Kenji Hamano,
  • Hassane Hamdaoui,
  • Matthias Hamer,
  • Guillermo Nicolas Hamity,
  • Kunlin Han,
  • Liangliang Han,
  • Liang Han,
  • Shuo Han,
  • Yi Fei Han,
  • Kazunori Hanagaki,
  • Mike Hance,
  • Michael Donald Hank,
  • Robert Hankache,
  • Eva Brottmann Hansen,
  • Jorgen Beck Hansen,
  • Dines Hansen,
  • Maike Christina Hansen,
  • Peter Hansen,
  • Kazuhiko Hara,
  • Torsten Harenberg,
  • Siarhei Harkusha,
  • Ynyr Harris,
  • Paul Fraser Harrison,
  • Nicole Michelle Hartman,
  • Nikolai Hartmann,
  • Yoji Hasegawa,
  • Ahmed Hasib,
  • Samira Hassani,
  • Sigve Haug,
  • Reiner Hauser,
  • Miroslav Havranek,
  • Chris Hawkes,
  • Richard Hawkings,
  • Shota Hayashida,
  • Daniel Hayden,
  • Christopher Robyn Hayes,
  • Robin Hayes,
  • Chris Hays,
  • Jonathan Hays,
  • Helen Hayward,
  • Stephen Haywood,
  • Fudong He,
  • Yunjian He,
  • Yajun He,
  • Matthew Peter Heath,
  • Vincent Hedberg,
  • Andreas Lokken Heggelund,
  • Natasha Hehir,
  • Constantin Heidegger,
  • Kim Katrin Heidegger,
  • William Dale Heidorn,
  • Jesse Alan Heilman,
  • Sarah Heim,
  • Timon Heim,
  • Beate Heinemann,
  • James Geddy Heinlein,
  • Jochen Jens Heinrich,
  • Lukas Alexander Heinrich,
  • Jiri Hejbal,
  • Louis Helary,
  • Alexander Held,
  • Simen Hellesund,
  • Cole Michael Helling,
  • Sten Hellman,
  • Clement Helsens,
  • Robert Henderson,
  • Lars Henkelmann,
  • Ana Maria Henriques Correia,
  • Hannah Elizabeth Herde,
  • Yesenia Hernandez Jimenez,
  • Holger Arnold Herr,
  • Maximilian Georg Herrmann,
  • Tim Herrmann,
  • Gregor Herten,
  • Ralf Hertenberger,
  • Luis Hervas,
  • Nigel Hessey,
  • Hiroaki Hibi,
  • Satoshi Higashino,
  • Emilio Higon-Rodriguez,
  • Kurt Keys Hill,
  • Karlheinz Hiller,
  • Stephen Hillier,
  • Maximilian Hils,
  • Ian Hinchliffe,
  • Florian Hinterkeuser,
  • Minoru Hirose,
  • Shigeki Hirose,
  • Dominic Hirschbuehl,
  • Bojan Hiti,
  • Ondrej Hladik,
  • John David Hobbs,
  • Radu Hobincu,
  • Noam Tal Hod,
  • Mark Hodgkinson,
  • Benjamin Haslum Hodkinson,
  • Andreas Hoecker,
  • Judith Hofer,
  • David Hohn,
  • Tanja Holm,
  • Tova Holmes,
  • Michael Holzbock,
  • L.B.A.H. Hommels,
  • Benjamin Paul Honan,
  • Jiangliu Hong,
  • Tae Min Hong,
  • Jan Cedric Honig,
  • Andreas Honle,
  • Benjamin Henry Hooberman,
  • Walter Hopkins,
  • Yasuyuki Horii,
  • Lesya Anna Horyn,
  • Suen Hou,
  • James William Howarth,
  • Joaquin Hoya,
  • Miroslav Hrabovsky,
  • Aliaksei Hrynevich,
  • T. Hryn'ova,
  • Tetiana Hrynova,
  • Pai-Hsien Hsu,
  • Shih-Chieh Hsu,
  • Qipeng Hu,
  • Shuyang Hu,
  • Yifan Hu,
  • Danping Huang,
  • Xiaozhong Huang,
  • Yicong Huang,
  • Yanping Huang,
  • Zdenek Hubacek,
  • Fabrice Hubaut,
  • Michael Hubner,
  • Fabian Huegging,
  • Todd Brian Huffman,
  • Mika Huhtinen,
  • Raphael Hulsken,
  • Nazim Huseynov,
  • Joey Huston,
  • John Huth,
  • Rachel Jordan Hyneman,
  • Sofiia Hyrych,
  • Giuseppe Iacobucci,
  • George Iakovidis,
  • Iskander Ibragimov,
  • Lydia Iconomidou-Fayard,
  • Paolo Iengo,
  • Ryunosuke Iguchi,
  • Tomoya Iizawa,
  • Yoichi Ikegami,
  • Armin Ilg,
  • Nikolina Ilic,
  • Hajar Imam,
  • Tom Ingebretsen Carlson,
  • Gianluca Introzzi,
  • Mauro Iodice,
  • Valerio Ippolito,
  • Masaya Ishino,
  • Wasikul Islam,
  • Cigdem Issever,
  • Serhat Istin,
  • J.M. Iturbe Ponce,
  • Roberto Iuppa,
  • Anna Ivina,
  • Joseph Michael Izen,
  • Vincenzo Izzo,
  • Petr Jacka,
  • Paul Jackson,
  • Ruth Magdalena Jacobs,
  • Benjamin Paul Jaeger,
  • Christoph Jagfeld,
  • Gunnar Jakel,
  • Karl Jakobs,
  • Tomas Jakoubek,
  • Jonathan Jamieson,
  • Krzysztof Janas,
  • Goran Jarlskog,
  • Adam Elliott Jaspan,
  • Namig Javadov,
  • Tomas Javurek,
  • Martina Javurkova,
  • Fabien Jeanneau,
  • Laura Jeanty,
  • Juansher Jejelava,
  • Peter Jenni,
  • Stephane Jezequel,
  • Jiangyong Jia,
  • Zihang Jia,
  • Yi Jiang,
  • Stephen Jiggins,
  • Javier Jimenez Pena,
  • Shan Jin,
  • Adam Jinaru,
  • Osamu Jinnouchi,
  • Harshna Jivan,
  • Per Daniel Conny Johansson,
  • Kenneth Johns,
  • Christian Johnson,
  • Dominic Jones,
  • Eleanor Jones,
  • R.W.L. Jones,
  • T.J. Jones,
  • Jelena Jovicevic,
  • Xiangyang Ju,
  • Johannes Josef Junggeburth,
  • Aurelio Juste Rozas,
  • Sonia Kabana,
  • Anna Kaczmarska,
  • Marumi Kado,
  • Harris Kagan,
  • Michael Aaron Kagan,
  • Alan Mathew Kahn,
  • Christian Kahra,
  • Toshiaki Kaji,
  • Enrique Kajomovitz Must,
  • Will Kalderon,
  • Andrey Kamenshchikov,
  • Michiru Kaneda,
  • Nathan Jihoon Kang,
  • Shuaiyan Kang,
  • Yuya Kano,
  • Junichi Kanzaki,
  • Deepak Kar,
  • Kla Karava,
  • Mohammad Kareem,
  • Ioannis Karkanias,
  • Sergey Karpov,
  • Zoya Karpova,
  • Vato Kartvelishvili,
  • Andrei Karyukhin,
  • Eirini Kasimi,
  • Chikuma Kato,
  • Judith Katzy,
  • Kentaro Kawade,
  • Kiyotomo Kawagoe,
  • Tomomi Kawaguchi,
  • Tatsuo Kawamoto,
  • Gen Kawamura,
  • Ellis Kay,
  • Colette Kaya,
  • F.I. Kaya,
  • Stergios Kazakos,
  • Vassili Kazanin,
  • Yan Ke,
  • James Michael Keaveney,
  • Richard Keeler,
  • John Stakely Keller,
  • Daniel Christopher Kelsey,
  • Jacob Julian Kempster,
  • James Andrew Kendrick,
  • Kiley Elizabeth Kennedy,
  • Oldrich Kepka,
  • Susanne Kersten,
  • Borut Paul Kersevan,
  • S. Ketabchi Haghighat,
  • Mykola Khandoga,
  • Alexander Khanov,
  • Alexey Kharlamov,
  • Tatyana Kharlamova,
  • Elham E. Khoda,
  • Teng Jian Khoo,
  • Gia Khoriauli,
  • Evgeny Khramov,
  • Djemal Khubua,
  • J. Khubua,
  • Shogo Kido,
  • Moritz Kiehn,
  • Aaron Joseph Kilgallon,
  • Eunchong Kim,
  • Young-Kee Kim,
  • Naoki Kimura,
  • Andreas Kirchhoff,
  • David Kirchmeier,
  • Christian Kirfel,
  • Julie Kirk,
  • Andrei Kiryunin,
  • Tomoe Kishimoto,
  • Dylan Perry Kisliuk,
  • Vincent Kitali,
  • Chara Kitsaki,
  • Oleh Kivernyk,
  • Thorwald Klapdor-Kleingrothaus,
  • Martin Klassen,
  • Christoph Thomas Klein,
  • Lucas Klein,
  • Matthew Henry Klein,
  • Max Klein,
  • Uta Klein,
  • Pawel Jan Klimek,
  • Alexei Klimentov,
  • Fabian Klimpel,
  • Tobias Klingl,
  • Tatiana Klioutchnikova,
  • Felix Fidelio Klitzner,
  • Peter Kluit,
  • Stefan Kluth,
  • Emmerich Kneringer,
  • Timothy Michael Knight,
  • Andrea Helen Knue,
  • Dai Kobayashi,
  • Michael Kobel,
  • Martin Kocian,
  • Takafumi Kodama,
  • Peter Kodys,
  • Daniela Kock,
  • D.M. Koeck,
  • Philipp Konig,
  • Thomas Koffas,
  • Nicolas Koehler,
  • Mathis Kolb,
  • Iro Koletsou,
  • Tomas Komarek,
  • Karsten Koeneke,
  • Albert Kong,
  • Takanori Kono,
  • Vasilis Konstantinides,
  • Nikolaos Konstantinidis,
  • Balazs Konya,
  • Revital Kopeliansky,
  • Stefan Zenon Koperny,
  • Krzysztof Marian Korcyl,
  • Kostas Kordas,
  • Guy Koren,
  • Andreas Korn,
  • Steffen Korn,
  • Ilya Korolkov,
  • Elena Korolkova,
  • Natalia Korotkova,
  • Bryan Kortman,
  • Oliver Kortner,
  • Sandra Kortner,
  • William Heribert Kostecka,
  • Vadim Kostyukhin,
  • Anastasia Kotsokechagia,
  • Ashutosh Kotwal,
  • Aimilianos Koulouris,
  • Athina Kourkoumeli-Charalampidi,
  • Christine Kourkoumelis,
  • Evangelos Kourlitis,
  • Ondrej Kovanda,
  • Bob Kowalewski,
  • R. Kowalewski,
  • Witold Kozanecki,
  • Anatoli Kozhin,
  • Viktor Kramarenko,
  • Gregor Kramberger,
  • Dimitrii Krasnopevtsev,
  • Mieczyslaw Witold Krasny,
  • Attila Krasznahorkay,
  • Jakub Kremer,
  • Jan Kretzschmar,
  • Ken Matthias Kreul,
  • Peter Krieger,
  • Ferdinand Krieter,
  • Samyukta Krishnamurthy,
  • Anjali Krishnan,
  • Martin Krivos,
  • Karol Krizka,
  • Kevin Alexander Kroeninger,
  • Hubert Kroha,
  • Jiri Kroll,
  • Joseph Ira Kroll,
  • Kyle Stuart Krowpman,
  • Uladzimir Kruchonak,
  • Hans Krueger,
  • Nils Erik Krumnack,
  • Mark Kruse,
  • Janina Anna Krzysiak,
  • Arisa Kubota,
  • Olesia Kuchinskaia,
  • Sinan Kuday,
  • Daniela Kuchler,
  • J.T. Kuechler,
  • Susanne Kuehn,
  • Thorsten Kuhl,
  • Victor Kukhtin,
  • Yuri Koultchitski,
  • Y. Kulchitsky,
  • Serguei Kuleshov,
  • Mukesh Kumar,
  • Neelam Kumari,
  • Marine Kuna,
  • Alexander Kupco,
  • Tobias Kupfer,
  • Oleg Kuprash,
  • Hisaya Kurashige,
  • Leonid Kurchaninov,
  • Yurii Kurochkin,
  • Anastasia Kurova,
  • Matthew Glenn Kurth,
  • Emma Sian Kuwertz,
  • Masahiro Kuze,
  • Audrey Katherine Kvam,
  • Jiri Kvita,
  • Tony Kwan,
  • King Wai Kwok,
  • Carlos Lacasta Llacer,
  • Francesco Lacava,
  • Heiko Markus Lacker,
  • Didier Lacour,
  • Nisha Nareshbhai Lad,
  • Evgueni Ladygin,
  • Remi Lafaye,
  • Bertrand Laforge,
  • Theodota Lagouri,
  • Stan Lai,
  • Inga Katarzyna Lakomiec,
  • Nathan Lalloue,
  • Joseph Earl Lambert,
  • Sabine Wedam Lammers,
  • Walter Lampl,
  • Christos Lampoudis,
  • Eric Christian Lancon,
  • Ulrich Landgraf,
  • Murrough Landon,
  • Valerie Lang,
  • Joern Lange,
  • Robert Johannes Langenberg,
  • Andrew James Lankford,
  • Francesco Lanni,
  • Kerstin Lantzsch,
  • Agostino Lanza,
  • Alessandro Lapertosa,
  • Jean-Francois Laporte,
  • Tommaso Lari,
  • Federico Lasagni Manghi,
  • Mario Lassnig,
  • Vera Latonova,
  • Tak Shun Lau,
  • Antoine Laudrain,
  • Alexandre Laurier,
  • Marco Lavorgna,
  • Sean Dean Lawlor,
  • Zak Lawrence,
  • Massimo Lazzaroni,
  • Brian Le,
  • Blaz Leban,
  • Alexandre Lebedev,
  • Matt Leblanc,
  • Tom Le Compte,
  • T. LeCompte,
  • F. Ledroit-Guillon,
  • Ava Chloe Audrey Lee,
  • Graham Richard Lee,
  • Lawrence,
  • Jr. Lee,
  • Shih-Chang Lee,
  • Songkyo Lee,
  • Lerothodi Leonard Leeuw,
  • Benoit Lefebvre,
  • Helena Lefebvre,
  • Michel Lefebvre,
  • Charles Leggett,
  • Konstantin Lehmann,
  • Niklaus Lehmann,
  • Giovanna Lehmann Miotto,
  • William Axel Leight,
  • Antonios Leisos,
  • Marco Lisboa Leite,
  • Clara Elisabeth Leitgeb,
  • Rupert Leitner,
  • Katharine Leney,
  • Tatjana Lenz,
  • Sandra Leone,
  • Christos Leonidopoulos,
  • Alexander Leopold,
  • Claude Leroy,
  • Robert Les,
  • Christopher Lester,
  • Mikhail Levchenko,
  • Jessica Leveque,
  • Dan Levin,
  • Lorne Levinson,
  • Daniel James Lewis,
  • Boyang Li,
  • Bing Li,
  • Chihao Li,
  • Changqiao Li,
  • Heng Li,
  • Han Li,
  • Haifeng Li,
  • Jing Li,
  • Ke Li,
  • Liang Li,
  • Mengran Li,
  • Quanyin Li,
  • Shu Li,
  • Tong Li,
  • Xingguo Li,
  • Yichen Li,
  • Zhi Li,
  • Zhiying Li,
  • Zhelun Li,
  • Zhiyuan Li,
  • Zhijun Liang,
  • Marianna Liberatore,
  • Barbara Liberti,
  • Ki Lie,
  • Kuan-Yu Lin,
  • Rebecca Linck,
  • Rachel Elizabeth Lindley,
  • Jack Lindon,
  • Arthur Linss,
  • Elliot Lipeles,
  • Anna Lipniacka,
  • Anthony Michael Liss,
  • Alison Lister,
  • Jared Little,
  • Bo Liu,
  • Bingxuan Liu,
  • Jianbei Liu,
  • Jesse Liu,
  • Kun Liu,
  • Minghui Liu,
  • Mingyi Liu,
  • Peilian Liu,
  • Xiaotian Liu,
  • Yi Liu,
  • Yang Liu,
  • Yanlin Liu,
  • Yanwen Liu,
  • Michele Livan,
  • Annick Lleres,
  • Javier Llorente Merino,
  • Steve Lloyd,
  • Ewelina Maria Lobodzinska,
  • Peter Loch,
  • Salvatore Loffredo,
  • Thomas Lohse,
  • Kristin Lohwasser,
  • Milos Lokajicek,
  • Jonathan Long,
  • Iacopo Longarini,
  • Luigi Longo,
  • Riccardo Longo,
  • Ivan Lopez Paz,
  • Alvaro Lopez Solis,
  • Jeanette Miriam Lorenz,
  • Narei Lorenzo Martinez,
  • Alexander Lory,
  • Alena Loesle,
  • Xuanhong Lou,
  • Xinchou Lou,
  • Abdenour Lounis,
  • Jeremy Love,
  • Peter Love,
  • Julio Lozano Bahilo,
  • Gangcheng Lu,
  • Miaoran Lu,
  • Sicong Lu,
  • Yun-Ju Lu,
  • Henry Lubatti,
  • Claudio Luci,
  • Fabio Lucio Lucio Alves,
  • Arnaud Lucotte,
  • Fred Luehring,
  • Ilaria Luise,
  • Lamberto Luminari,
  • Olof Lundberg,
  • Bengt Lund-Jensen,
  • Nicholas Luongo,
  • Margaret Susan Lutz,
  • David Lynn,
  • Harry John Lyons,
  • Roman Lysak,
  • Else Lytken,
  • Feng Lyu,
  • Vladimir Lyubushkin,
  • Tatiana Lyubushkina,
  • Hong Ma,
  • Lianliang Ma,
  • Yanhui Ma,
  • Danika Marina Macdonell,
  • D.M. Mac Donell,
  • Giovanni Maccarrone,
  • Calum Michael Macdonald,
  • Jack Macdonald,
  • Romain Madar,
  • Wolfgang Mader,
  • Madhuranga Madugoda Ralalage Don,
  • Nico Madysa,
  • Junpei Maeda,
  • Tadashi Maeno,
  • Max Maerker,
  • Veronika Magerl,
  • Jacopo Magro,
  • Devin Mahon,
  • Carmen Maidantchik,
  • Amelia Maio,
  • Klaudia Maj,
  • Oliver Majersky,
  • Stephanie Majewski,
  • Nikola Makovec,
  • Bogdan Malaescu,
  • Pawel Malecki,
  • Pa. Malecki,
  • Victor Maleev,
  • Fairouz Malek,
  • Davide Malito,
  • Usha Mallik,
  • Claire Malone,
  • Stavros Maltezos,
  • Sergey Malyukov,
  • Judita Mamuzic,
  • Giada Mancini,
  • Jesal Mandalia,
  • Igor Mandic,
  • Luciano Manhaes De Andrade Filho,
  • Ioannis Michail Maniatis,
  • Manisha Manisha,
  • J. Manjarres Ramos,
  • Katja Hannele Mankinen,
  • Alexander Mann,
  • Thanos Manousos,
  • A. Manousos,
  • Bruno Mansoulie,
  • Ioannis Manthos,
  • Stefano Manzoni,
  • Alexandros Marantis,
  • Giovanni Marchiori,
  • Michal Marcisovsky,
  • Lorenzo Marcoccia,
  • Caterina Marcon,
  • Marija Marjanovic,
  • Zach Marshall,
  • Salvador Marti I Garcia,
  • T.A. Martin,
  • Victoria Martin,
  • Bertrand Martin Dit Latour,
  • Luca Martinelli,
  • Mario Martinez-Perez,
  • Pablo Martinez Agullo,
  • Verena Ingrid Martinez Outschoorn,
  • Stewart Martin-Haugh,
  • Sorin Martoiu,
  • Alex Christopher Martyniuk,
  • Antoine Marzin,
  • Stefan Raimund Maschek,
  • Lucia Masetti,
  • Tetsuro Mashimo,
  • Jiri Masik,
  • Alexei Maslennikov,
  • Lorenzo Massa,
  • Paolo Massarotti,
  • Paolo Mastrandrea,
  • Anna Mastroberardino,
  • Tatsuya Masubuchi,
  • Dimitrios Matakias,
  • Thomas Mathisen,
  • Andrea Matic,
  • Nobuo Matsuzawa,
  • Julien Maurer,
  • Bostjan Macek,
  • Dmitriy Maximov,
  • Rachid Mazini,
  • Ioannis Maznas,
  • Simone Michele Mazza,
  • Christopher Mc Ginn,
  • John Patrick Mc Gowan,
  • Shawn Mc Kee,
  • Thomas Mccarthy,
  • William Patrick Mccormack,
  • Millie Mcdonald,
  • E.F. McDonald,
  • Ashley Ellen Mcdougall,
  • Josh Mcfayden,
  • Gvantsa Mchedlidze,
  • Maddie Mc Kay,
  • M.A. McKay,
  • Kayla Mclean,
  • Stephen Mcmahon,
  • Peter Charles Mcnamara,
  • R.A. McPherson,
  • Joyful Elma Mdhluli,
  • Zachary Alden Meadows,
  • Samuel Ross Meehan,
  • Theo Megy,
  • Sascha Mehlhase,
  • Andrew Mehta,
  • Bernhard Meirose,
  • Davide Melini,
  • Bruce Mellado Garcia,
  • Andres Hugo Melo,
  • Federico Meloni,
  • Alexander Melzer,
  • E.D. Mendes Gouveia,
  • Antonio Manuel Mendes Jacques Da Costa,
  • Huan Yu Meng,
  • Lingxin Meng,
  • Sven Menke,
  • Matthias Mentink,
  • Evelin Meoni,
  • Claudia Merlassino,
  • Philippe Mermod,
  • Leonardo Merola,
  • Chiara Meroni,
  • Garrett William Merz,
  • Oleg Meshkov,
  • John Kamal Rizk Meshreki,
  • Jessica Metcalfe,
  • Alaettin Serhan Mete,
  • Christopher John Meyer,
  • Jean-Pierre Meyer,
  • Michele Michetti,
  • Robin Middleton,
  • Liza Mijovic,
  • George Mikenberg,
  • Marcela Mikestikova,
  • Marko Mikuz,
  • Hannes Mildner,
  • Adriana Milic,
  • Chris Milke,
  • David Miller,
  • Laura Stephanie Miller,
  • Alexander Milov,
  • David Anthony Milstead,
  • Tianjue Min,
  • Andrei Minaenko,
  • Irakli Minashvili,
  • Laurynas Mince,
  • Allen Irving Mincer,
  • Bartosz Mindur,
  • Mikhail Mineev,
  • Yuji Minegishi,
  • Yuya Mino,
  • Lluisa Maria Mir Martinez,
  • Marcos Miralles Lopez,
  • Maria Mironova,
  • Takashi Mitani,
  • Vasiliki Mitsou,
  • Monika Mittal,
  • Ovidiu Miu,
  • Paul Miyagawa,
  • Yuta Miyazaki,
  • Atsushi Mizukami,
  • Jan-Ulf Mjoernmark,
  • Tigran Mkrtchyan,
  • Michaela Mlynarikova,
  • Torbjorn Moa,
  • Silke Mobius,
  • Kazuya Mochizuki,
  • Paul Moder,
  • Philipp Mogg,
  • Abdualazem Fadol Mohammed,
  • Soumya Mohapatra,
  • Gaogalalwe Mokgatitswane,
  • Buddhadeb Mondal,
  • Santu Mondal,
  • Klaus Monig,
  • Emmanuel Monnier,
  • Alyssa Rae Montalbano,
  • Javier Montejo Berlingen,
  • Marco Montella,
  • Fernando Monticelli,
  • Nicolas Morange,
  • Luisa Carvalho,
  • Maria Moreno Llacer,
  • Carlos Moreno Martinez,
  • Paolo Morettini,
  • Marcus Matthias Morgenstern,
  • Stefanie Morgenstern,
  • Daniel Mori,
  • Masahiro Morii,
  • Masahiro Morinaga,
  • Vanja Morisbak,
  • Anthony Morley,
  • Alice Morris,
  • Ljiljana Morvaj,
  • Paris Moschovakos,
  • Brian Moser,
  • Maia Mosidze,
  • Tetiana Moskalets,
  • Polina Moskvitina,
  • Joshua Moss,
  • Edward Moyse,
  • Steve Muanza,
  • James Alfred Mueller,
  • Roman Mueller,
  • Daniel Muenstermann,
  • Geoffrey Mullier,
  • Joseph Mullin,
  • Davide Pietro Mungo,
  • Jose Luis Munoz Martinez,
  • Francisca Munoz Sanchez,
  • Martin Murin,
  • Pavel Murin,
  • Bill Murray,
  • Alessia Murrone,
  • Joseph M. Muse,
  • Miha Muskinja,
  • Chilufya Mwewa,
  • Alexei Myagkov,
  • Andrew Joel Myers,
  • Ava Anne Myers,
  • Greg Myers,
  • Miroslav Myska,
  • B.P. Nachman,
  • Olaf Nackenhorst,
  • Abhishek Nag,
  • Koichi Nagai,
  • Kunihiro Nagano,
  • James Lawrence Nagle,
  • Elemer Nagy,
  • Armin Nairz,
  • Yu Nakahama Higuchi,
  • Koji Nakamura,
  • Hajime Nanjo,
  • Fabrizio Napolitano,
  • Rohin Thampilali Narayan,
  • Iurii Naryshkin,
  • Mohsen Naseri,
  • Christian Nass,
  • Thomas Naumann,
  • Gabriela Alejandra Navarro,
  • Josep Navarro Gonzalez,
  • Ranjit Nayak,
  • Polina Nechaeva,
  • Filip Nechansky,
  • T.J. Neep,
  • Andrea Negri,
  • Matteo Negrini,
  • Clara Nellist,
  • Christina Nelson,
  • Kevin Michael Nelson,
  • Stanislav Nemecek,
  • Marzio Nessi,
  • Mark Neubauer,
  • Friedemann Neuhaus,
  • Jonas Neundorf,
  • Robin Newhouse,
  • Paul Richard Newman,
  • Chi Wing Ng,
  • Sam Yanwing Ng,
  • Ying Wun Yvonne Ng,
  • Badr-Eddine Ngair,
  • Hoang Dai Nghia Nguyen,
  • Richard Nickerson,
  • Rosy Nikolaidou,
  • Daniel Nielsen,
  • Jason Nielsen,
  • Marcel Niemeyer,
  • Nikiforos Nikiforou,
  • Vladimir Nikolaenko,
  • I. Nikolic-Audit,
  • Konstantinos Nikolopoulos,
  • Paul Nilsson,
  • Herjuno Rah Nindhito,
  • Aleandro Nisati,
  • Nishu Nishu,
  • Richard Nisius,
  • Tatsumi Nitta,
  • Takuya Nobe,
  • Daniel Louis Noel,
  • Yohei Noguchi,
  • Ioannis Nomidis,
  • Marcelo Ayumu Nomura,
  • Mitchell Bradley Norfolk,
  • Raif Rafideen Bin Norisam,
  • Jakob Novak,
  • Tadej Novak,
  • Olga Novgorodova,
  • Lukas Novotny,
  • Radek Novotny,
  • Libor Nozka,
  • Kostas Ntekas,
  • Emily Laura Nurse,
  • Gerald Oakham,
  • Jose Humberto Ocariz,
  • Atsuhiko Ochi,
  • Ines Ochoa,
  • Jean-Pierre Ochoa,
  • Susumu Oda,
  • Shigeru Odaka,
  • Serhat Ordek,
  • Agnieszka Ewa Ogrodnik,
  • Alexander Oh,
  • Christian Ohm,
  • Hideyuki Oide,
  • Reiyo Oishi,
  • Martina Laura Ojeda,
  • Yuta Okazaki,
  • Michael William O'Keefe,
  • Yasuyuki Okumura,
  • Albert Olariu,
  • L.F. Oleiro Seabra,
  • Sebastian Olivares,
  • Denis Oliveira Damazio,
  • Dayane Oliveira Goncalves,
  • Jason Oliver,
  • Mats Joakim Robert Olsson,
  • Andrzej Olszewski,
  • Jolanta Olszowska,
  • Omer Ogul Oncel,
  • Dugan O'Neil,
  • Aaron Paul O'Neill,
  • Antonio Onofre,
  • P.U.E. Onyisi,
  • Rafael Guillermo Oreamuno Madriz,
  • Mark Oreglia,
  • Gonzalo Enrique Orellana,
  • Domizia Orestano,
  • Nicola Orlando,
  • Robert Orr,
  • Val O'Shea,
  • Rustem Ospanov,
  • Gustavo Otero Y Garzon,
  • Hidetoshi Otono,
  • Philipp Sebastian Ott,
  • Gregory James Ottino,
  • Mohamed Ouchrif,
  • Jeff Ouellette,
  • Farid Ould-Saada,
  • Ahmimed Ouraou,
  • Qun Ouyang,
  • Mark Andrew Owen,
  • Rhys Owen,
  • Kaan Yuksel Oyulmaz,
  • Erkcan Ozcan,
  • Nurcan Ozturk,
  • Sertac Ozturk,
  • Josef Pacalt,
  • Holly Pacey,
  • Katherine Pachal,
  • Andreu Pacheco Pages,
  • Cristobal Padilla Aranda,
  • Simone Pagan Griso,
  • Gabriel Palacino,
  • Serena Palazzo,
  • Sandro Palestini,
  • Marek Palka,
  • Prabhakar Palni,
  • D.K. Panchal,
  • Carlo Enrico Pandini,
  • William Panduro Vazquez,
  • J.G. Panduro Vazquez,
  • Priscilla Pani,
  • Giancarlo Panizzo,
  • Lorenzo Paolozzi,
  • Constantine Papadatos,
  • Santosh Parajuli,
  • Alexander Paramonov,
  • Christos Paraskevopoulos,
  • Daniela Katherinne Paredes Hernandez,
  • Santiago Rafael Paredes Saenz,
  • Bibhuti Parida,
  • Tae Hyoun Park,
  • Adam Jackson Parker,
  • Andy Parker,
  • Fabrizio Parodi,
  • Elliot Parrish,
  • John Parsons,
  • Ulrich Parzefall,
  • Luis Pascual Dominguez,
  • Vincent Pascuzzi,
  • Federica Pasquali,
  • Enrico Pasqualucci,
  • Stefano Passaggio,
  • Francesca Pastore,
  • Patrawan Pasuwan,
  • J.R. Pater,
  • Atanu Pathak,
  • Joseph Patton,
  • Thilo Pauly,
  • Jannicke Andree Pearkes,
  • Maiken Pedersen,
  • Lucia Pedraza Diaz,
  • Rute Costa Batalha Pedro,
  • Thomas Peiffer,
  • Sergey Peleganchuk,
  • Ondrej Penc,
  • Chen Peng,
  • Haiping Peng,
  • Maksim Penzin,
  • Bernardo Sotto-Maior Peralva,
  • Marta Maria Perego,
  • A.P. Pereira Peixoto,
  • Laura Pereira Sanchez,
  • Dennis Perepelitsa,
  • Estel Perez Codina,
  • Maria Perganti,
  • Laura Perini,
  • Heinz Pernegger,
  • Sabrina Perrella,
  • Ann-Kathrin Perrevoort,
  • Krisztian Peters,
  • Reinhild Peters,
  • Brian Petersen,
  • Troels Petersen,
  • Elisabeth Petit,
  • Vlasios Petousis,
  • Chariclia Petridou,
  • Pierre Petroff,
  • Fabrizio Petrucci,
  • Mariel Pettee,
  • Nora Emilia Pettersson,
  • Kristina Mihule,
  • K. Petukhova,
  • Alan Peyaud,
  • Raquel Pezoa Rivera,
  • Lorenzo Pezzotti,
  • Gianantonio Pezzullo,
  • Joni Pham,
  • T. Pham,
  • Peter Phillips,
  • Michael William Phipps,
  • Giacinto Piacquadio,
  • Elisabetta Pianori,
  • Federica Piazza,
  • Attilio Picazio,
  • Ricardo Piegaia,
  • Dorel Pietreanu,
  • J.E. Pilcher,
  • Andrew Pilkington,
  • Michele Pinamonti,
  • James Pinfold,
  • Charlie Bruno Pitman Donaldson,
  • Dylan Pizzi,
  • Luca Pizzimento,
  • Alessio Pizzini,
  • Marc-Andre Pleier,
  • Vladislavs Plesanovs,
  • Vojtech Pleskot,
  • Elena Plotnikova,
  • Pavel Podberezko,
  • Ruth Pottgen,
  • Riccardo Poggi,
  • Luc Poggioli,
  • Ivan Pogrebnyak,
  • David-Leon Pohl,
  • Ishan Pokharel,
  • Giacomo Polesello,
  • Anne-Luise Poley,
  • Antonio Policicchio,
  • Richard Polifka,
  • Alessandro Polini,
  • Chris Pollard,
  • Zachary Pollock,
  • Venetios Polychronakos,
  • Daniil Ponomarenko,
  • Ludovico Pontecorvo,
  • Stefan Popa,
  • Gabriel Popeneciu,
  • Louis Portales,
  • Dilia Maria Portillo Quintero,
  • Stanislav Pospisil,
  • Petronel Postolache,
  • Karolos Potamianos,
  • Igor Potrap,
  • Tina Potter,
  • Harish Potti,
  • Trine Poulsen,
  • Ximo Poveda Torres,
  • J. Poveda,
  • Thomas Dennis Powell,
  • Gavin Pownall,
  • Eukeni Pozo Astigarraga,
  • Alberto Prades Ibanez,
  • Pascal Pralavorio,
  • Maria Myrto Prapa,
  • Soeren Andre Prell,
  • Darren Price,
  • Margherita Primavera,
  • Miguel Angel Principe Martin,
  • Mason Proffitt,
  • Nadezda Proklova,
  • Kirill Prokofiev,
  • Fedor Prokoshin,
  • Serban Protopopescu,
  • James Proudfoot,
  • Mariusz Przybycien,
  • Dennis Pudzha,
  • Patrick Michel Puzo,
  • Diana Pyatiizbyantseva,
  • Jianming Qian,
  • Quake Qin,
  • Y. Qin,
  • Tong Qiu,
  • Arnulf Quadt,
  • Michaela Queitsch-Maitland,
  • Gabriel Rabanal Bolanos,
  • Francesco Ragusa,
  • Ghita Rahal,
  • Johnny Raine,
  • Srini Rajagopalan,
  • Kunlin Ran,
  • Damir Fabrice Rassloff,
  • Daniel Rauch,
  • Stefan Rave,
  • Baptiste Ravina,
  • Ilia Ravinovich,
  • Michel Raymond,
  • Alexander Lincoln Read,
  • Nathan Peter Readioff,
  • Daniela Rebuzzi,
  • George Redlinger,
  • Kendall Reeves,
  • David Reikher,
  • Andreas Dominik Reiss,
  • Amartya Rej,
  • Christoph Rembser,
  • Alessia Renardi,
  • Michele Renda,
  • Marian Benedikt Rendel,
  • Adam Rennie,
  • Silvia Resconi,
  • Elodie Deborah Resseguie,
  • Sebastien Rettie,
  • Bryan Reynolds,
  • Elliot Reynolds,
  • Mohsen Rezaei Estabragh,
  • Olga Rezanova,
  • Pavel Reznicek,
  • Ester Ricci,
  • Robert Richter,
  • Stefan Richter,
  • Elzbieta Richter-Was,
  • Melissa Ridel,
  • Patrick Rieck,
  • Petra Riedler,
  • Othmane Rifki,
  • Michael Rijssenbeek,
  • Adele Rimoldi,
  • Marco Rimoldi,
  • Lorenzo Rinaldi,
  • Timothy Thomas Rinn,
  • Maximilian Paul Rinnagel,
  • Giulia Ripellino,
  • Imma Riu,
  • Pablo Andres Rivadeneira Bracho,
  • Juan Cristobal Rivera Vergara,
  • Flera Rizatdinova,
  • Eram Syed Rizvi,
  • Chiara Rizzi,
  • Bryn Arthur Roberts,
  • Steven Robertson,
  • Matthieu Robin,
  • Dave Robinson,
  • Carolina Michel Robles Gajardo,
  • Maria Robles Manzano,
  • Aidan Robson,
  • Alessandro Rocchi,
  • Chiara Roda,
  • Sergi Rodriguez Bosca,
  • Arturo Rodriguez Rodriguez,
  • Ana Maria Rodriguez Vera,
  • Shaun Roe,
  • Amber Roepe,
  • Jens Roggel,
  • Ole Rohne,
  • Rimsky Alejandro Rojas Caballero,
  • Benoit Roland,
  • Christophe Pol A. Roland,
  • Jennifer Kathryn Roloff,
  • Anatoli Romaniouk,
  • Marino Romano,
  • Anabel Romero,
  • Nikolaos Rompotis,
  • Manfredi Ronzani,
  • Lydia Roos,
  • Stefano Rosati,
  • Benjamin John Rosser,
  • Edoardo Rossi,
  • Eleonora Rossi,
  • Elvira Rossi,
  • Leonardo Rossi,
  • Lorenzo Rossini,
  • Rachel Christine Rosten,
  • Marina Rotaru,
  • Benjamin Rottler,
  • David Rousseau,
  • David Rousso,
  • Giulia Rovelli,
  • Avik Roy,
  • Alexandre Rozanov,
  • Yoram Rozen,
  • Ruanxf Ruan,
  • X. Ruan,
  • Adam James Ruby,
  • Tristan Andrew Ruggeri,
  • Frederik Ruehr,
  • F. Rühr,
  • Arantxa Ruiz Martinez,
  • Andre Rummler,
  • Zuzana Rurikova,
  • Nikolai Rusakovich,
  • Heather Russell,
  • Lennart Rustige,
  • John P. Rutherfoord,
  • Elias Ruttinger,
  • Martin Rybar,
  • Eli Baverfjord Rye,
  • Andrey Ryzhov,
  • Jorge Andres Sabater Iglesias,
  • Paolo Sabatini,
  • Luigi Sabetta,
  • Hartmut Sadrozinski,
  • Renat Sadykov,
  • Francesco Safai Tehrani,
  • Batool Safarzadeh Samani,
  • Murtaza Safdari,
  • Puja Saha,
  • Shreya Saha,
  • Merve Sahinsoy,
  • Arunika Sahu,
  • Matthias Saimpert,
  • Masahiko Saito,
  • Tomoyuki Saito,
  • Dalila Salamani,
  • Giuseppe Salamanna,
  • Andy Salnikov,
  • Jose Salt,
  • Adrian Salvador Salas,
  • Daniela Salvatore,
  • Fabrizio Salvatore,
  • Andreas Salzburger,
  • Dirk Sammel,
  • Dimos Sampsonidis,
  • Despoina Sampsonidou,
  • Francisco Javier Sanchez Martinez,
  • Arturos Sanchez Pineda,
  • Victoria Sanchez Sebastian,
  • Heidi Sandaker,
  • Christian Sander,
  • Izaac Sanderswood,
  • Jay Ajitbhai Sandesara,
  • Marisa Sandhoff,
  • Carlos Sandoval Usme,
  • D.P.C. Sankey,
  • Mario Sannino,
  • Yuta Sano,
  • Andrea Sansoni,
  • Claudio Santoni,
  • Helena Santos,
  • Sai Neha Santpur,
  • Arka Santra,
  • Kamal Saoucha,
  • Andrey Sapronov,
  • Joao Gentil Mendes Saraiva,
  • Osamu Sasaki,
  • Koji Sato,
  • Christof Sauer,
  • Frank Sauerburger,
  • Emmanuel Sauvan,
  • Pierre Savard,
  • Ryu Sawada,
  • Craig Anthony Sawyer,
  • Lee Sawyer,
  • Ivan Sayago Galvan,
  • Carla Sbarra,
  • Antonio Sbrizzi,
  • Timothy Paul Scanlon,
  • Jana Schaarschmidt,
  • Peter Schacht,
  • Douglas Michael Schaefer,
  • Uli Schaefer,
  • R.D. Schaffer,
  • Dorothee Schaile,
  • Robert Dean,
  • Jr. Schamberger,
  • Eric Schanet,
  • Christian Scharf,
  • Nicolas Scharmberg,
  • Valery Chtcheguelski,
  • V.A. Schegelsky,
  • Daniel Scheirich,
  • Ferdinand Schenck,
  • Michael Schernau,
  • Carlo Schiavi,
  • Lara Katharina Schildgen,
  • Zachary Michael Schillaci,
  • Enrico,
  • Junior. Schioppa,
  • Marco Schioppa,
  • Bastian Schlag,
  • Katharina Schleicher,
  • Stefan Schlenker,
  • Kristof Schmieden,
  • Christian Schmitt,
  • Stefan Schmitt,
  • Laurent Olivier Schoeffel,
  • Andre Schoening,
  • Patrick Scholer,
  • Elisabeth Schopf,
  • Matthias Schott,
  • Jaroslava Schovancova,
  • Steven Schramm,
  • Frederic Schroeder,
  • Hans-Christian Schultz-Coulon,
  • Markus Schumacher,
  • Bruce Andrew Schumm,
  • Philippe Schune,
  • Ph. Schune,
  • Ariel Gustavo Schwartzman,
  • Thomas Andrew Schwarz,
  • Philippe Schwemling,
  • Ph. Schwemling,
  • Reinhard Schwienhorst,
  • Andrea Sciandra,
  • Gabriella Sciolla,
  • Fabrizio Scuri,
  • Federico Scutti,
  • Cristiano Sebastiani,
  • Kevin Sedlaczek,
  • Pienpen Seema,
  • Sally Seidel,
  • Abraham Seiden,
  • Blair Daniel Seidlitz,
  • Todd Michael Seiss,
  • Claudia Seitz,
  • Jose Seixas,
  • Givi Sekhniaidze,
  • Stephen Jacob Sekula,
  • Luka Selem,
  • Nicola Semprini Cesari,
  • Sourav Sen,
  • Cedric Serfon,
  • Laurent Serin,
  • Leonid Serkin,
  • Marco Sessa,
  • Horst Severini,
  • Stanislava Sevova,
  • Federico Sforza,
  • Anna Sfyrla,
  • Elizaveta Shabalina,
  • Rabia Shaheen,
  • Jeff Shahinian,
  • Nabila Wahab Ahlgren,
  • N.W. Shaikh,
  • Dan Shaked Renous,
  • Lianyou Shan,
  • Marjorie Shapiro,
  • Abhishek Sharma,
  • Abhishek Sharma,
  • Surabhi Sharma,
  • Sppavel Shatalov,
  • P.B. Shatalov,
  • Kate Shaw,
  • Savanna Shaw,
  • Peter Sherwood,
  • Liaoshan Shi,
  • Chase Owen Shimmin,
  • Yoshihiro Shimogama,
  • James David Shinner,
  • I.P.J. Shipsey,
  • Shohei Shirabe,
  • Mariya Shiyakova,
  • Jonathan Shlomi,
  • M.J. Shochet,
  • Seyed Ruhollah Shojaii,
  • J. Shojaii,
  • David Richard Shope,
  • Suyog Shrestha,
  • Esra Mohammed Shrif,
  • Maheyer Jamshed Shroff,
  • Evgeny Shulga,
  • Petr Sicho,
  • Anne Marie Sickles,
  • Elias Sideras Haddad,
  • Ourania Sidiropoulou,
  • Antonio Sidoti,
  • Frank Siegert,
  • Dorde Sijacki,
  • Dj. Sijacki,
  • Julia Manuela Silva,
  • Marcos Vinicius Silva Oliveira,
  • Samuel Silverstein,
  • Stefan Simion,
  • Rosa Simoniello,
  • Sinem Simsek,
  • Pekka Sinervo,
  • Viktor Sinetckii,
  • Sundeep Singh,
  • Sahibjeet Singh,
  • Supriya Sinha,
  • Sukanya Sinha,
  • Maximiliano Sioli,
  • Ismet Siral,
  • Serguei Sivoklokov,
  • Joergen Sjoelin,
  • Ali Skaf,
  • Eleni Skorda,
  • Patrick Skubic,
  • Magdalena Slawinska,
  • Krzysztof Jan Sliwa,
  • Vladimir Smakhtin,
  • Ben Harry Smart,
  • Juraj Smiesko,
  • Serge Smirnov,
  • Yury Smirnov,
  • Lidia Smirnova,
  • Oxana Smirnova,
  • Emily Ann Smith,
  • Hayden Alexander Smith,
  • Maria Smizanska,
  • Karel Smolek,
  • Andrzej Smykiewicz,
  • Andrei Snesarev,
  • Hella Snoek,
  • Scott Snyder,
  • Randy Sobie,
  • Abi Soffer,
  • Fabian Sohns,
  • Carlos Solans Sanchez,
  • Evgeny Soldatov,
  • Urmila Soldevila Serrano,
  • Sanya Solodkov,
  • A.A. Solodkov,
  • Shalu Solomon,
  • Aleksey Soloshenko,
  • Oleg Solovyanov,
  • Victor Solovyev,
  • Philip Sommer,
  • Hyungsuk Son,
  • Anil Sonay,
  • Wen Yi Song,
  • Andre Sopczak,
  • Alex Sopio,
  • Filomena Sopkova,
  • Simone Sottocornola,
  • Rachik Soualah,
  • Andrei Sukharev,
  • A.M. Soukharev,
  • Zainab Soumaimi,
  • David South,
  • Stefania Spagnolo,
  • Margherita Spalla,
  • Martin Spangenberg,
  • Francesco Spano,
  • Dennis Sperlich,
  • Thomas Malte Spieker,
  • Giancarlo Spigo,
  • Mario Spina,
  • Dwayne Patrick Spiteri,
  • Martin Spousta,
  • Alberto Stabile,
  • Brianna Stamas,
  • Rainer Stamen,
  • Marko Stamenkovic,
  • Alexios Stampekis,
  • Mark Standke,
  • Ewa Stanecka,
  • Beojan Stanislaus,
  • Marcel Stanitzki,
  • Migle Stankaityte,
  • Birgit Sylvia Stapf,
  • Jenya Starchenko,
  • E.A. Starchenko,
  • Giordon Holtsberg Stark,
  • Jan Stark,
  • Darij Markian Starko,
  • Pavel Staroba,
  • Pavel Starovoitov,
  • Steffen Staerz,
  • Rafal Staszewski,
  • George Stavropoulos,
  • Peter Alan Steinberg,
  • Amanda Steinhebel,
  • Bernd Stelzer,
  • Joerg Stelzer,
  • Oliver Stelzer-Chilton,
  • Hasko Stenzel,
  • Thomas James Stevenson,
  • Graeme A. Stewart,
  • Mark Stockton,
  • Gabriel Stoicea,
  • Marcin Stolarski,
  • Stefan Stonjek,
  • Arno Straessner,
  • Jonas Strandberg,
  • Sara Strandberg,
  • Mike Strauss,
  • Thomas Strebler,
  • Pavol Strizenec,
  • Raimund Strohmer,
  • David Strom,
  • Lars Rickard Strom,
  • Ryszard Stroynowski,
  • Antonia Strubig,
  • Stefania Antonia Stucci,
  • Bjarne Stugu,
  • John Stupak,
  • Nicholas Styles,
  • Dong Su,
  • Shixiang Su,
  • Wanyun Su,
  • Xiaowen Su,
  • Nicholas Bruno Suarez,
  • Kaito Sugizaki,
  • Vladimir Sulin,
  • Matthew James Sullivan,
  • D.M.S. Sultan,
  • Salekh Sultanov,
  • S. Sultansoy,
  • Toshi Sumida,
  • Siyuan Sun,
  • Shaojun Sun,
  • Xiaohu Sun,
  • O. Sunneborn Gudnadottir,
  • Carl Joseph Edmund Suster,
  • Mark Sutton,
  • Michal Svatos,
  • Maximilian J. Swiatlowski,
  • Thorben Swirski,
  • Ivan Sykora,
  • Martin Sykora,
  • Tomas Sykora,
  • Duc Bao Ta,
  • Kerstin Tackmann,
  • Anyes Taffard,
  • Reda Tafirout,
  • Emin Tagiev,
  • Reem Hani M. Taibah,
  • Ryuichi Takashima,
  • Kosuke Takeda,
  • Toru Takeshita,
  • Emily Petrova Takeva,
  • Yosuke Takubo,
  • Mossadek Talby,
  • Alexei Talyshev,
  • Kai Chung Tam,
  • Nadav Michael Tamir,
  • Aoto Tanaka,
  • Junichi Tanaka,
  • Rei Tanaka,
  • Zhengcheng Tao,
  • Sebastian Tapia Araya,
  • Stefan Tapprogge,
  • A. Tarek Abouelfadl Mohamed,
  • Shlomit Tarem,
  • Khuram Tariq,
  • Grigore Tarna,
  • Francesco Tartarelli,
  • Petr Tas,
  • Marek Tasevsky,
  • Enrico Tassi,
  • Gen Tateno,
  • Yahya Tayalati,
  • Geoffrey Norman Taylor,
  • Wendy Jane Taylor,
  • Hamish Edward Teagle,
  • A.S. Tee,
  • Rafael Teixeira De Lima,
  • Pedro Teixeira-Dias,
  • Herman Ten Kate,
  • Jia Jian Teoh,
  • Koji Terashi,
  • Juan Terron Cuadrado,
  • Stefano Terzo,
  • Marianna Testa,
  • Richard Teuscher,
  • Neofytos Themistokleous,
  • Timothee Theveneaux-Pelzer,
  • Oliver Thielmann,
  • David William Thomas,
  • Juergen Thomas,
  • Emily Anne Thompson,
  • Paul Thompson,
  • Evelyn Jean Thomson,
  • Edward James Thorpe,
  • Yusong Tian,
  • Vladimir.O Tikhomirov,
  • Iouri Tikhonov,
  • Yu.A. Tikhonov,
  • Sergei Timoshenko,
  • Paul Louis Tipton,
  • Sylvain Tisserant,
  • Humphry Tlou,
  • Abdellah Tnourji,
  • Kazuki Todome,
  • S. Todorova-Nova,
  • Stefanie Todt,
  • Manabu Togawa,
  • Junji Tojo,
  • Stano Tokar,
  • Katsuo Tokushuku,
  • Emma Elizabeth Tolley,
  • Rupert Tombs,
  • Makoto Tomoto,
  • Lauren Alexandra Tompkins,
  • Peter Tornambe,
  • Eric Torrence,
  • Heberth Torres,
  • Emma Torro Pastor,
  • Mariana Toscani,
  • Cecilia Tosciri,
  • Jozsef Toth,
  • Daniel Tovey,
  • Are Sivertsen Traeet,
  • Colleen Jennifer Treado,
  • Thomas Trefzger,
  • Alessandro Tricoli,
  • Isabel Trigger,
  • Sophie Trincaz-Duvoid,
  • Dominique Anderson Trischuk,
  • William Trischuk,
  • Benjamin Trocme,
  • Artur Trofymov,
  • Clara Troncon,
  • Fabrizio Trovato,
  • Thi Ngoc Loan Truong,
  • Maciej Trzebinski,
  • Adam Trzupek,
  • Fang-Ying Tsai,
  • Angelos Tsiamis,
  • Pavel Tsiareshka,
  • Apostolos Tsirigotis,
  • Vakhtang Tsiskaridze,
  • Edisher Tskhadadze,
  • Maria-Evanthia Tsopoulou,
  • Ilia Tsukerman,
  • Vakhtang Tsulaia,
  • Soshi Tsuno,
  • Omer Tsur,
  • Dmitry Tsybyshev,
  • Yanjun Tu,
  • Alexandra Tudorache,
  • Valentina Tudorache,
  • Alexander Naip Tuna,
  • Semen Turchikhin,
  • Ilkay Turk Cakir,
  • Russell James Turner,
  • Ruggero Turra,
  • Mike Tuts,
  • Spyros Tzamarias,
  • Polyneikis Tzanis,
  • Eftychia Tzovara,
  • Kenta Uchida,
  • Fumihiko Ukegawa,
  • Guillaume Unal,
  • Mesut Unal,
  • Alexander Undrus,
  • Gokhan Unel,
  • Francesca Ungaro,
  • Kenta Uno,
  • Josef Urban,
  • Phillip Urquijo,
  • Giulio Usai,
  • Risa Ushioda,
  • Muhammad Usman,
  • Zekeriya Uysal,
  • Vic Vacek,
  • Brigitte Vachon,
  • Knut Oddvar Hoie Vadla,
  • Theodoros Vafeiadis,
  • Chrysostomos Valderanis,
  • Eduardo Valdes Santurio,
  • Marco Valente,
  • Sara Valentinetti,
  • Alberto Valero Biot,
  • Loic Valery,
  • Robert Adam Vallance,
  • Alexis Vallier,
  • Juan Valls Ferrer,
  • Tal Roelof Van Daalen,
  • Peter Van Gemmeren,
  • Samuel Van Stroud,
  • Ivo Van Vulpen,
  • Marco Vanadia,
  • Wainer Vandelli,
  • Maxence Vandenbroucke,
  • Evan Richard Van De Wall,
  • E.R. Vandewall,
  • Damiano Vannicola,
  • Leonardo Vannoli,
  • Riccardo Vari,
  • Erich Ward Varnes,
  • Carlo Varni,
  • Tulin Mete,
  • T. Varol,
  • Dimitris Varouchas,
  • Kevin Varvell,
  • Matei Vasile,
  • Louis Vaslin,
  • Gerardo Vasquez,
  • Francois Vazeille,
  • David Vazquez Furelos,
  • Tamara Vazquez Schroeder,
  • Jason Robert Veatch,
  • Valentina Vecchio,
  • Michiel Jan Veen,
  • Iza Veliscek,
  • Laurelle Maria Veloce,
  • Filipe Veloso,
  • Stefano Veneziano,
  • Andrea Ventura,
  • Andrii Verbytskyi,
  • Monica Verducci,
  • Christos Vergis,
  • Micael Verissimo De Araujo,
  • Wouter Verkerke,
  • Ambrosius Thomas Vermeulen,
  • Joseph Vermeulen,
  • Caterina Vernieri,
  • Pim Jordi Verschuuren,
  • Leonora Vesterbacka,
  • Michel Joseph Vetterli,
  • M.C. Vetterli,
  • Andreas Vgenopoulos,
  • Nicolas Viaux Maira,
  • Trevor Vickey,
  • Oana Vickey Boeriu,
  • G.H.A. Viehhauser,
  • Luigi Vigani,
  • Mauro Villa,
  • M. Villaplana Perez,
  • Elena Michelle Villhauer,
  • Elisabetta Vilucchi,
  • Manuella Vincter,
  • Govindraj Singh Virdee,
  • Akanksha Vishwakarma,
  • Camilla Vittori,
  • Iacopo Vivarelli,
  • Vangelis Vladimirov,
  • Elena Voevodina,
  • Marcelo Vogel,
  • Petr Vokac,
  • Janik Von Ahnen,
  • Stefan Von Buddenbrock,
  • Eckhard Von Torne,
  • Vit Vorobel,
  • Konstantin Vorobev,
  • Marcel Vos,
  • Joost Vossebeld,
  • Matous Vozak,
  • Lubos Vozdecky,
  • Nenad Vranjes,
  • Marija Vranjes Milosavljevic,
  • Vaclav Vrba,
  • Marcel Vreeswijk,
  • Ngoc Khanh Vu,
  • Raphael Vuillermet,
  • Olivera Vujinovic,
  • Ilija Vukotic,
  • Sayaka Wada,
  • Cooper Wagner,
  • Wolfgang Wagner,
  • Shayma Wahdan,
  • Hernan Pablo Wahlberg,
  • Rena Wakasa,
  • Moe Wakida,
  • Verena Maria Walbrecht,
  • James William Walder,
  • Rodney Walker,
  • Stuart Derek Walker,
  • Wolfgang Walkowiak,
  • Ann Miao Wang,
  • Alex Zeng Wang,
  • Chen Wang,
  • Chenliang Wang,
  • Haichen Wang,
  • Jiawei Wang,
  • Peilong Wang,
  • Renjie Wang,
  • Rongkun Wang,
  • Rui Wang,
  • Song-Ming Wang,
  • Shuanggeng Wang,
  • Tao Wang,
  • Weitao Wang,
  • Wenxiao Wang,
  • Xin Wang,
  • Xiaoning Wang,
  • Yufeng Wang,
  • Zirui Wang,
  • Chaowaroj Wanotayaroj,
  • Andreas Warburton,
  • Patricia Ward,
  • Robert James Ward,
  • Neil Warrack,
  • Alan Watson,
  • Miriam Watson,
  • Gordon Watts,
  • Benedict Martin Waugh,
  • Aaron Webb,
  • Christian Weber,
  • Michele Weber,
  • Stephen Weber,
  • Sebastian Mario Weber,
  • Chuanshun Wei,
  • Yingjie Wei,
  • Anthony Weidberg,
  • Jens Weingarten,
  • Marcel Weirich,
  • Christian Weiser,
  • Pippa Wells,
  • Torre Wenaus,
  • Bjoern Wendland,
  • Thorsten Wengler,
  • Siegfried Wenig,
  • Norbert Wermes,
  • Martin Wessels,
  • Kate Whalen,
  • Andrew Mark Wharton,
  • Aaron Stephen White,
  • Andrew White,
  • Martin John White,
  • Daniel Whiteson,
  • Lakmin Wickremasinghe,
  • Werner Wiedenmann,
  • Christian Wiel,
  • Monika Wielers,
  • Natalie Wieseotte,
  • Craig Wiglesworth,
  • L.A.M. Wiik-Fuchs,
  • Daniel John Wilbern,
  • Henric Wilkens,
  • Lewis Wilkins,
  • Daniel Williams,
  • Hugh Williams,
  • Sarah Louise Williams,
  • Stephane Willocq,
  • Philipp Windischhofer,
  • Isabelle Wingerter,
  • Frank Winklmeier,
  • Benedict Tobias Winter,
  • Matthias Wittgen,
  • Markus Wobisch,
  • Anton Wolf,
  • Ricardo Woelker,
  • R. Wölker,
  • Julian Wollrath,
  • Marcin Wolter,
  • Helmut Wolters,
  • Vincent Wai Sum Wong,
  • Alicia Wongel,
  • Steven Worm,
  • Barbara Krystyna Wosiek,
  • Krzysztof Wieslaw Wozniak,
  • Kenneth Gibb Wraight,
  • Jinfei Wu,
  • Sau Lan Wu,
  • Xin Wu,
  • Yusheng Wu,
  • Zhibo Wu,
  • Jonas Wurzinger,
  • J. Wuerzinger,
  • Terry Wyatt,
  • Benjamin Michael Wynne,
  • Stefania Xella,
  • Mingming Xia,
  • Jianhuan Xiang,
  • Xiong Xiao,
  • Mingzhe Xie,
  • Xiangyu Xie,
  • Ioannis Xiotidis,
  • Da Xu,
  • Hanlin Xu,
  • Hao Xu,
  • Lailin Xu,
  • Riley Xu,
  • Wenhao Xu,
  • Yue Xu,
  • Zhongyukun Xu,
  • Zijun Xu,
  • Bruce Donald Yabsley,
  • Sahal Yacoob,
  • Naoki Yamaguchi,
  • Yohei Yamaguchi,
  • Masahiro Yamatani,
  • Hiroki Yamauchi,
  • Tomohiro Yamazaki,
  • Yuji Yamazaki,
  • Jun Yan,
  • Siyuan Yan,
  • Zhen Yan,
  • Haijun Yang,
  • Hongtao Yang,
  • Siqi Yang,
  • Tianyi Yang,
  • Xiao Yang,
  • Xuan Yang,
  • Yi-Lin Yang,
  • Zhe Yang,
  • Wei-Ming Yao,
  • Yee Chinn Yap,
  • Hanfei Ye,
  • Jingbo Ye,
  • Shuwei Ye,
  • Ivan Yeletskikh,
  • Melissa Yexley,
  • Pengqi Yin,
  • Kohei Yorita,
  • Keisuke Yoshihara,
  • Christopher Young,
  • Charlie Young,
  • Rui Yuan,
  • Xiaoguang Yue,
  • Mohamed Zaazoua,
  • Bartlomiej Henryk Zabinski,
  • Georgios Zacharis,
  • Jad Zahreddine,
  • Estifa'A Zaid,
  • Alexandre Zaytsev,
  • Tamar Zakareishvili,
  • Nataliia Zakharchuk,
  • Stefano Zambito,
  • Daniele Zanzi,
  • Sonja Verena Zeissner,
  • Christian Zeitnitz,
  • Jiancong Zeng,
  • Oleg Zenin,
  • Tibor Zenis,
  • Seth Zenz,
  • Soufiane Zerradi,
  • Dirk Zerwas,
  • Miha Zgubic,
  • Bowen Zhang,
  • Dengfeng Zhang,
  • Gang Zhang,
  • Jinlong Zhang,
  • Kaili Zhang,
  • Lei Zhang,
  • Matt Zhang,
  • Rui Zhang,
  • Shuzhou Zhang,
  • Xiangke Zhang,
  • Xueyao Zhang,
  • Zhiqing Philippe Zhang,
  • Pingchuan Zhao,
  • Yuzhan Zhao,
  • Zhengguo Zhao,
  • Alexey Zhemchugov,
  • Zhi Zheng,
  • Dewen Zhong,
  • Bing Zhou,
  • Chen Zhou,
  • Hao Zhou,
  • Ning Zhou,
  • You Zhou,
  • Chengguang Zhu,
  • Chenzheng Zhu,
  • Heling Zhu,
  • Hongbo Zhu,
  • Junjie Zhu,
  • Yingchun Zhu,
  • Xuai Zhuang,
  • Konstantin Zhukov,
  • Vladimir Zhulanov,
  • Daria Zieminska,
  • Nikolai Zimine,
  • Stephanie Ulrike Zimmermann,
  • Joachim Zinsser,
  • Michal Ziolkowski,
  • Lidija Zivkovic,
  • Antonio Zoccoli,
  • Knut Zoch,
  • Theodore Zorbas,
  • Olga Zormpa,
  • Wenkai Zou,
  • Lukasz Zwalinski
  • (less)
abstract + abstract -

A search for charginos and neutralinos at the Large Hadron Collider using fully hadronic final states and missing transverse momentum is reported. Pair-produced charginos or neutralinos are explored, each decaying into a high-<math display="inline"><msub><mi>p</mi><mi mathvariant="normal">T</mi></msub></math> Standard Model weak boson. Fully hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient rejection of backgrounds by identifying the high-<math display="inline"><msub><mi>p</mi><mi mathvariant="normal">T</mi></msub></math> bosons using large-radius jets and jet substructure information. An integrated luminosity of <math display="inline"><mrow><mn>139</mn><mtext> </mtext><mtext> </mtext><msup><mrow><mi>fb</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math> of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. Exclusion limits at the 95% confidence level are set on wino or higgsino production with various assumptions about the decay branching ratios and the type of lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest supersymmetry particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass winos and higgsinos is significantly extended relative to previous LHC searches using other final states.


(377)Galaxy bias from forward models: linear and second-order bias of IllustrisTNG galaxies
  • Alexandre Barreira,
  • Titouan Lazeyras,
  • Fabian Schmidt
Journal of Cosmology and Astroparticle Physics, 2021, p29 (08/2021) doi:10.1088/1475-7516/2021/08/029
abstract + abstract -

We use field-level forward models of galaxy clustering and the EFT likelihood formalism to study, for the first time for self-consistently simulated galaxies, the relations between the linear b_1 and second-order bias parameters b2 and bK2. The forward models utilize all of the information available in the galaxy distribution up to a given order in perturbation theory, which allows us to infer these bias parameters with high signal-to-noise, even from relatively small volumes (Lbox = 205 Mpc/h). We consider galaxies from the simulations, and our main result is that the b2(b1) and bK2(b1) relations obtained from gravity-only simulations for total mass selected objects are broadly preserved for simulated galaxies selected by stellar mass, star formation rate, color and black hole accretion rate. We also find good agreement between the bias relations of the simulated galaxies and a number of recent estimates for observed galaxy samples. The consistency under different galaxy selection criteria suggests that theoretical priors on these bias relations may be used to improve cosmological constraints based on observed galaxy samples. We do identify some small differences between the bias relations in the hydrodynamical and gravity-only simulations, which we show can be linked to the environmental dependence of the relation between galaxy properties and mass. We also show that the EFT likelihood recovers the value of σ8 to percent-level from various galaxy samples (including splits by color and star formation rate) and after marginalizing over 8 bias parameters. This demonstration using simulated galaxies adds to previous works based on halos as tracers, and strengthens further the potential of forward models to infer cosmology from galaxy data.


(376)Constraining ultra-light axions with galaxy cluster number counts
  • J. Diehl,
  • J. Weller
Journal of Cosmology and Astroparticle Physics, 2021, p22 (08/2021) doi:10.1088/1475-7516/2021/08/004
abstract + abstract -

In this paper we investigate the potential of current and upcoming cosmological surveys to constrain the mass and abundance of ultra-light axion (ULA) cosmologies with galaxy cluster number counts. ULAs, sometimes also referred to as Fuzzy Dark Matter, are well-motivated in many theories beyond the Standard Model and could potentially solve the ΛCDM small-scale crisis. Galaxy cluster counts provide a robust probe of the formation of structures in the Universe. Their distribution in mass and redshift is strongly sensitive to the underlying linear matter perturbations. In this forecast paper we explore two scenarios, firstly an exclusion limit on axion mass given a no-axion model and secondly constraints on an axion model. With this we obtain lower limits on the ULA mass on the order of ma ≳ 10-24 eV. However, this result depends heavily on the mass of the smallest reliably observable clusters for a given survey. Cluster counts, like many other cosmological probes, display an approximate degeneracy in the ULA mass vs. abundance parameter space, which is dependent on the characteristics of the probe. These degeneracies are different for other cosmological probes. Hence galaxy cluster counts might provide a complementary window on the properties of ultra-light axions.


(375)On the Small-scale Turbulent Dynamo in the Intracluster Medium: A Comparison to Dynamo Theory*
  • Ulrich P. Steinwandel,
  • Ludwig M. Boess,
  • Klaus Dolag,
  • Harald Lesch
Astrophys.J., 933, p131 (08/2021) e-Print:2108.07822 doi:10.3847/1538-4357/ac715c
abstract + abstract -

We present non-radiative, cosmological zoom-in simulations of galaxy-cluster formation with magnetic fields and (anisotropic) thermal conduction of one massive galaxy cluster with M

$_{vir}$ ∼ 2 × 10$^{15}$

M

$_{⊙}$ at z ∼ 0. We run the cluster on three resolution levels (1×, 10×, 25×), starting with an effective mass resolution of 2 × 10$^{8}$

M

$_{⊙}$, subsequently increasing the particle number to reach 4 × 10$^{6}$

M

$_{⊙}$. The maximum spatial resolution obtained in the simulations is limited by the gravitational softening reaching ϵ = 1.0 kpc at the highest resolution level, allowing one to resolve the hierarchical assembly of the structures in fine detail. All simulations presented are carried out with the SPMHD code gadget3 with an updated SPMHD prescription. The primary focus of this paper is to investigate magnetic field amplification in the intracluster medium. We show that the main amplification mechanism is the small-scale turbulent dynamo in the limit of reconnection diffusion. In our two highest resolution models we start to resolve the magnetic field amplification driven by the dynamo and we explicitly quantify this with the magnetic power spectra and the curvature of the magnetic field lines, consistent with dynamo theory. Furthermore, we investigate the ∇ ·

B

= 0 constraint within our simulations and show that we achieve comparable results to state-of-the-art AMR or moving-mesh techniques, used in codes such as enzo and arepo. Our results show for the first time in a cosmological simulation of a galaxy cluster that dynamo action can be resolved with modern numerical Lagrangian magnetohydrodynamic methods, a study that is currently missing in the literature.


(374)TDCOSMO. VI. Distance measurements in time-delay cosmography under the mass-sheet transformation
  • Geoff C. -F. Chen,
  • Christopher D. Fassnacht,
  • Sherry H. Suyu,
  • Akın Yıldırım,
  • Eiichiro Komatsu
  • +1
Astronomy and Astrophysics, 652, p10 (08/2021) doi:10.1051/0004-6361/202039895
abstract + abstract -

Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, H0, independent of traditional distance ladder methodology. A current potential limitation of time-delay distance measurements is the mass-sheet transformation (MST), which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of H0. In this work we show that the standard method of addressing the MST in time-delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, Ds/Dds, of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived H0 under the assumption of the ΛCDM model. In this paper we show that the mass-sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae Type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence Ds/Dds. With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological model-independent way. Hence model-independent distance measurements in time-delay cosmography under MSTs can be obtained.


(373)Predictions for local PNG bias in the galaxy power spectrum and bispectrum and the consequences for f $_{NL}$ constraints
  • Alexandre Barreira
abstract + abstract -

We use hydrodynamical separate universe simulations with the IllustrisTNG model to predict the local primordial non-Gaussianity (PNG) bias parameters b

$_{ϕ}$ and b

$_{ϕδ}$, which enter at leading order in the galaxy power spectrum and bispectrum. This is the first time that b

$_{ϕδ}$ is measured from either gravity-only or galaxy formation simulations. For dark matter halos, the popular assumption of universality overpredicts the b

$_{ϕδ}$(b

$_{1}$) relation in the range 1 ≲ b

$_{1}$ ≲ 3 by up to Δ b

$_{ϕδ}$ ∼ 3 (b

$_{1}$ is the linear density bias). The adequacy of the universality relation is worse for the simulated galaxies, with the relations b

$_{ϕ}$(b

$_{1}$) and b

$_{ϕδ}$(b

$_{1}$) being generically redshift-dependent and very sensitive to how galaxies are selected (we test total, stellar and black hole mass, black hole mass accretion rate and color). The uncertainties on b

$_{ϕ}$ and b

$_{ϕδ}$ have a direct, often overlooked impact on the constraints of the local PNG parameter f

$_{NL}$, which we study and discuss. For a survey with V = 100 Gpc$^{3}$/h$^{3}$ at z=1, uncertainties Δ b

$_{ϕ}$ ≲ 1 and Δ b

$_{ϕδ}$ ≲ 5 around values close to the fiducial can yield relatively unbiased constraints on f

$_{NL}$ using power spectrum and bispectrum data. We also show why priors on galaxy bias are useful even in analyses that fit for products f

$_{NL}$

b

$_{ϕ}$ and f

$_{NL}$

b

$_{ϕδ}$. The strategies we discuss to deal with galaxy bias uncertainties can be straightforwardly implemented in existing f

$_{NL}$ constraint analyses (we provide fits for some of the bias relations). Our results motivate more works with galaxy formation simulations to refine our understanding of b

$_{ϕ}$ and b

$_{ϕδ}$ towards improved constraints on f

$_{NL}$.


(372)Host galaxies of high-redshift quasars: SMBH growth and feedback
  • Milena Valentini,
  • Simona Gallerani,
  • Andrea Ferrara
Mon.Not.Roy.Astron.Soc., 507, p1 (07/2021) e-Print:2107.05638 doi:10.1093/mnras/stab1992
abstract + abstract -

The properties of quasar-host galaxies might be determined by the growth and feedback of their supermassive black holes (SMBHs, 10^8−10 M_⊙). We investigate such connection with a suite of cosmological simulations of massive (halo mass ≈10^12 M_⊙) galaxies at z ≃ 6 that include a detailed subgrid multiphase gas and accretion model. BH seeds of initial mass 10^5 M_⊙ grow mostly by gas accretion, and become SMBH by z = 6 setting on the observed M_BH−M_⋆ relation without the need for a boost factor. Although quasar feedback crucially controls the SMBH growth, its impact on the properties of the host galaxy at z = 6 is negligible. In our model, quasar activity can both quench (via gas heating) or enhance (by interstellar medium overpressurization) star formation. However, we find that the star formation history is insensitive to such modulation as it is largely dominated, at least at z > 6, by cold gas accretion from the environment that cannot be hindered by the quasar energy deposition. Although quasar-driven outflows can achieve velocities |$\gt 1000~\rm km~s^{-1}$|⁠, only ≈4 per cent of the outflowing gas mass can actually escape from the host galaxy. These findings are only loosely constrained by available data, but can guide observational campaigns searching for signatures of quasar feedback in early galaxies.


(371)Self-Assembly of Informational Polymers by Templated Ligation
  • Joachim H. Rosenberger,
  • Tobias Göppel,
  • Patrick W. Kudella,
  • Dieter Braun,
  • Ulrich Gerland
  • +1
Physical Review X, 11 (07/2021) doi:10.1103/PhysRevX.11.031055
abstract + abstract -

The emergence of evermore complex entities from prebiotic building blocks is a key aspect of origins of life research. The RNA-world hypothesis posits that RNA oligomers known as ribozymes acted as the first self-replicating entities. However, the mechanisms governing the self-assembly of complex informational polymers from the shortest prebiotic building blocks were unclear. One open issue concerns the relation between concentration and oligonucleotide length, usually assumed to be exponentially decreasing. Here, we show that a competition of timescales in the self-assembly of informational polymers by templated ligation generically leads to nonmonotonic strand-length distributions with two distinct length scales. The first length scale characterizes the onset of a strongly nonequilibrium regime and is visible as a local minimum. Dynamically, this regime is governed by extension cascades, where the elongation of a "primer" with a short building block is more likely than its dehybridization. The second length scale appears as a local concentration maximum and reflects a balance between degradation and dehybridization of completely hybridized double strands in a heterocatalytic extension-reassembly process. Analytical arguments and extensive numerical simulations within a sequence-independent model allowed us to predict and control these emergent length scales. Nonmonotonic strand-length distributions confirming our theory were obtained in thermocycler experiments using random DNA sequences from a binary alphabet. Our work emphasizes the role of structure-forming processes already for the earliest stages of prebiotic evolution. The accumulation of strands with a typical length reveals a possible starting point for higher-order self-organization events that ultimately lead to a self-replicating, evolving system.


(370)popsynth: A generic astrophysical population synthesis framework
  • J. Burgess,
  • Francesca Capel
The Journal of Open Source Software, 6 (07/2021) doi:10.21105/joss.03257
abstract + abstract -

Simulating a survey of fluxes and redshifts (distances) from an astrophysical population is a routine task. \texttt{popsynth} provides a generic, object-oriented framework to produce synthetic surveys from various distributions and luminosity functions, apply selection functions to the observed variables and store them in a portable (HDF5) format. Population synthesis routines can be constructed either using classes or from a serializable YAML format allowing flexibility and portability. Users can not only sample the luminosity and distance of the populations, but they can create auxiliary distributions for parameters which can have arbitrarily complex dependencies on one another. Thus, users can simulate complex astrophysical populations which can be used to calibrate analysis frameworks or quickly test ideas.