Seite 6 von 14
CN-1
CN-3
CN-6
CN-8
RU-A
RU-B
(900)Erasure of strings and vortices.
  • Dvali G. and Valbuena-Bermúdez J.S
Phys. Rev. D (02/2023) doi:10.1103/PhysRevD.107.035001
abstract + abstract -

The interaction of defects can lead to a phenomenon of erasure. During this process, a lower-dimensional object gets absorbed and dissolved by a higher-dimensional one. The phenomenon is very general and has a wide range of implications, both cosmological and fundamental. In particular, all types of strings, such as cosmic strings, QCD flux tubes, or fundamental strings, get erased when encountering a defect, either solitonic or a D-brane that deconfines their fluxes. This leads to a novel mechanism of cosmic string breakup, accompanied by gravitational and electromagnetic radiations. The arguments based on loss of coherence and the entropy count suggest that the erasure probability is very close to one, and strings never make it through the deconfining layer. We confirm this by a numerical simulation of the system, which effectively captures the essence of the phenomenon: a 2+1-dimensional problem of interaction between a Nielsen-Olesen vortex of a U(1) Higgs model and a domain wall, inside which the U(1) gauge group is un-Higgsed and the magnetic flux is deconfined. In accordance with the entropy argument, in our simulation, the vortex never makes it across the wall.


(899)Hydrostatic mass profiles of galaxy clusters in the eROSITA survey
  • Dominik Scheck,
  • Jeremy S. Sanders,
  • Veronica Biffi,
  • Klaus Dolag,
  • Esra Bulbul
  • +1
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202244582
abstract + abstract -

Context. To assume hydrostatic equilibrium between the intracluster medium and the gravitational potential of galaxy clusters is an extensively used method to investigate their total masses.
Aims: We want to test hydrostatic masses obtained with an observational code in the context of the Spectrum-Roentgen-Gamma/eROSITA survey.
Methods: We used the hydrostatic modeling code MBProj2 to fit surface-brightness profiles to simulated clusters with idealized properties as well as to a sample of 93 clusters taken from the Magneticum Pathfinder simulations. We investigated the latter under the assumption of idealized observational conditions and also for realistic eROSITA data quality. The comparison of the fitted cumulative total mass profiles and the true mass profiles provided by the simulations allows us to gain knowledge both about the validity of hydrostatic equilibrium in each cluster and the reliability of our approach. Furthermore, we used the true profiles for gas density and pressure to compute hydrostatic mass profiles based on theory for every cluster.
Results: For an idealized cluster that was simulated to fulfill perfect hydrostatic equilibrium, we find that the cumulative total mass at the true r500 and r200 can be reproduced with deviations of less than 7%. For the clusters from the Magneticum Pathfinder simulations under idealized observational conditions, the median values of the fitted cumulative total masses at the true r500 and r200 are in agreement with our expectations, taking into account the hydrostatic mass bias. Nevertheless, we find a tendency towards steeper cumulative total mass profiles in the outskirts than expected. For realistic eROSITA data quality, this steepness problem intensifies for clusters with high redshifts and leads to excessive cumulative total masses at r200. For the hydrostatic masses based on the true profiles known from the simulations, we find good agreement with our expectations concerning the hydrostatic mass.


(898)Can Neutron Star Mergers Alone Explain the r-process Enrichment of the Milky Way?
  • Chiaki Kobayashi,
  • Ilya Mandel,
  • Krzysztof Belczynski,
  • Stephane Goriely,
  • Thomas H. Janka
  • +7
  • Oliver Just,
  • Ashley J. Ruiter,
  • Dany Vanbeveren,
  • Matthias U. Kruckow,
  • Max M. Briel,
  • Jan J. Eldridge,
  • Elizabeth Stanway
  • (less)
The Astrophysical Journal (02/2023) doi:10.3847/2041-8213/acad82
abstract + abstract -

Comparing Galactic chemical evolution models to the observed elemental abundances in the Milky Way, we show that neutron star mergers can be a leading r-process site only if at low metallicities such mergers have very short delay times and significant ejecta masses that are facilitated by the masses of the compact objects. Namely, black hole-neutron star mergers, depending on the black hole spins, can play an important role in the early chemical enrichment of the Milky Way. We also show that none of the binary population synthesis models used in this Letter, i.e., COMPAS, StarTrack, Brussels, ComBinE, and BPASS, can currently reproduce the elemental abundance observations. The predictions are problematic not only for neutron star mergers, but also for Type Ia supernovae, which may point to shortcomings in binary evolution models.


(897)Reflections on nebulae around young stars. A systematic search for late-stage infall of material onto Class II disks
  • A. Gupta,
  • A. Miotello,
  • C. F. Manara,
  • J. P. Williams,
  • S. Facchini
  • +8
  • G. Beccari,
  • T. Birnstiel,
  • C. Ginski,
  • A. Hacar,
  • M. Küffmeier,
  • L. Testi,
  • L. Tychoniec,
  • H. -W. Yen
  • (less)
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202245254
abstract + abstract -

Context. While it is generally assumed that Class II sources evolve largely in isolation from their environment, many still lie close to molecular clouds and may continue to interact with them. This may result in late accretion of material onto the disk that can significantly influence disk processes and planet formation.
Aims: In order to systematically study late infall of gas onto disks, we identify candidate Class II sources in close vicinity to a reflection nebula (RN) that may be undergoing this process.
Methods: First we targeted Class II sources with known kilo-au scale gas structures - possibly due to late infall of material - and we searched for RNe in their vicinity in optical and near-infrared images. Second, we compiled a catalogue of Class II sources associated with RNe and looked for the large-scale CO structures in archival ALMA data. Using the catalogues of protostars and RNe, we also estimated the probability of Class II sources interacting with surrounding material.
Results: All of the sources with large-scale gas structures also exhibit some reflection nebulosity in their vicinity. Similarly, at least five Class II objects associated with a prominent RNe, and for which adequate ALMA observations are available, were found to have spirals or stream-like structures which may be due to late infall. We report the first detection of these structures around S CrA.
Conclusions: Our results suggest that a non-negligible fraction of Class II disks in nearby star-forming regions may be associated with RNe and could therefore be undergoing late accretion of gas. Surveys of RNe and kilo-au scale gas structures around Class II sources will allow us to better understand the frequency and impact of late-infall phenomena.


(896)Accelerations of stars in the central 2-7 arcsec from Sgr A*
  • A. Young,
  • S. Gillessen,
  • T. de Zeeuw,
  • Y. Dallilar,
  • A. Drescher
  • +8
  • F. Eisenhauer,
  • R. Genzel,
  • F. Mang,
  • T. Ott,
  • J. Stadler,
  • O. Straub,
  • S. von Fellenburg,
  • F. Widmann
  • (less)
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202244966
abstract + abstract -

This work presents the results from extending the long-term monitoring program of stellar motions within the Galactic Center to include stars with separations of 2-7 arcsec from the compact radio source, Sgr A*. In comparison to the well studied inner 2 arcsec, a longer baseline in time is required to study these stars. With 17 years of data, a sufficient number of positions along the orbits of these outer stars can now be measured. This was achieved by designing a source finder to track the positions of ∼2000 stars in NACO/VLT adaptive-optics-assisted images of the Galactic Center from 2002 to 2019. Of the studied stars, 54 exhibit significant accelerations toward Sgr A*, most of which have separations of between 2 and 3 arcsec from the black hole. A further 20 of these stars have measurable radial velocities from SINFONI/VLT stellar spectra, which allows for the calculation of the orbital elements for these stars, thus increasing the number of known orbits in the Galactic Center by ∼40%. With orbits, we can consider which structural features within the Galactic Center nuclear star cluster these stars belong to. Most of the stars have orbital solutions that are consistent with the known clockwise rotating disk feature. Further, by employing Monte Carlo sampling for stars without radial velocity measurements, we show that many stars have a subset of possible orbits that are consistent with one of the known disk features within the Galactic Center.


(895)Sequence dependent UV damage of complete pools of oligonucleotides
  • Corinna L. Kufner,
  • Stefan Krebs,
  • Marlis Fischaleck,
  • Julia Philippou-Massier,
  • Helmut Blum
  • +4
  • Dominik B. Bucher,
  • Dieter Braun,
  • Wolfgang Zinth,
  • Christof B. Mast
  • (less)
Scientific Reports (02/2023) doi:10.1038/s41598-023-29833-0
abstract + abstract -

Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.


RU-A
(894)Natural Suppression of FCNCs at the One-Loop Level in $Z^\prime$ Models with Implications for K, D and B Decays
  • Andrzej J. Buras
abstract + abstract -

We analyse $Z^\prime$ contributions to FCNC processes at the one-loop level. In analogy to the CKM matrix we introduce two $3\times3$ unitary matrices $\hat\Delta_d(Z^\prime)$ and $\hat\Delta_u(Z^\prime)$ which are also hermitian. They govern the flavour interactions mediated by $Z^\prime$ between down-quarks and up-quarks, respectively, with $\hat\Delta_d(Z^\prime)=\hat\Delta_u(Z^\prime)\equiv \hat\Delta_L(Z^\prime)$ for left-handed currents due to the unbroken $\text{SU(2)}_L$ gauge symmetry. This assures the suppression of these contributions to all $Z^\prime$ mediated FCNC processes at the one-loop level. As, in contrast to the GIM mechanism, one-loop $Z^\prime$ contributions to flavour observables in $K$ and $B_{s,d}$ systems are governed by down-quark masses, they are ${\cal O}(m^2_b/M^2_{Z^\prime})$ and negligible. With the ${\cal O}(m^2_t/M^2_{Z^\prime})$ suppression they are likely negligible also in the $D$ system. We present an explicit parametrization of $\hat\Delta_L(Z^\prime)$ in terms of two mixing angles and two complex phases that distinguishes it profoundly from the CKM matrix. This framework can be generalized to purely leptonic decays with matrices analogous to the PMNS matrix but profoundly different from it. Interestingly, the breakdown of flavour universality between the first two generations and the third one, both for quark and lepton couplings to $Z^\prime$, is identified as a consequence of $\hat\Delta_L(Z^\prime)$ being hermitian. The importance of the unitarity for both $\hat\Delta_L(Z^\prime)$ and the CKM matrix in the light of the Cabibbo anomaly is emphasized.


(893)CRESCENDO: an on-the-fly Fokker-Planck solver for spectral cosmic rays in cosmological simulations
  • Ludwig M. Böss,
  • Ulrich P. Steinwandel,
  • Klaus Dolag,
  • Harald Lesch
Monthly Notices of the Royal Astronomical Society (02/2023) doi:10.1093/mnras/stac3584
abstract + abstract -

Non-thermal emission from relativistic cosmic ray (CR) electrons gives insight into the strength and morphology of intra-cluster magnetic fields, as well as providing powerful tracers of structure formation shocks. Emission caused by CR protons on the other hand still challenges current observations and is therefore testing models of proton acceleration at intra-cluster shocks. Large-scale simulations including the effects of CRs have been difficult to achieve and have been mainly reduced to simulating an overall energy budget, or tracing CR populations in post-processing of simulation output and has often been done for either protons or electrons. We introduce CRESCENDO: Cosmic Ray Evolution with SpeCtral Electrons aND prOtons, an efficient on-the-fly Fokker-Planck solver to evolve distributions of CR protons and electrons within every resolution element of our simulation. The solver accounts for CR (re-)acceleration at intra-cluster shocks, based on results of recent particle-in-cell simulations, adiabatic changes, and radiative losses of electrons. We show its performance in test cases as well as idealized galaxy cluster (GC) simulations. We apply the model to an idealized GC merger following best-fitting parameters for CIZA J2242.4 + 5301-1 and study CR injection, radio relic morphology, spectral steepening, and synchrotron emission.


(892)Euclid: Forecasts from the void-lensing cross-correlation
  • M. Bonici,
  • C. Carbone,
  • S. Davini,
  • P. Vielzeuf,
  • L. Paganin
  • +128
  • V. Cardone,
  • N. Hamaus,
  • A. Pisani,
  • A. J. Hawken,
  • A. Kovacs,
  • S. Nadathur,
  • S. Contarini,
  • G. Verza,
  • I. Tutusaus,
  • F. Marulli,
  • L. Moscardini,
  • M. Aubert,
  • C. Giocoli,
  • A. Pourtsidou,
  • S. Camera,
  • S. Escoffier,
  • A. Caminata,
  • S. Di Domizio,
  • M. Martinelli,
  • M. Pallavicini,
  • V. Pettorino,
  • Z. Sakr,
  • D. Sapone,
  • G. Testera,
  • S. Tosi,
  • V. Yankelevich,
  • A. Amara,
  • N. Auricchio,
  • M. Baldi,
  • D. Bonino,
  • E. Branchini,
  • M. Brescia,
  • J. Brinchmann,
  • V. Capobianco,
  • J. Carretero,
  • M. Castellano,
  • S. Cavuoti,
  • R. Cledassou,
  • G. Congedo,
  • L. Conversi,
  • Y. Copin,
  • L. Corcione,
  • F. Courbin,
  • M. Cropper,
  • A. Da Silva,
  • H. Degaudenzi,
  • M. Douspis,
  • F. Dubath,
  • C. A. J. Duncan,
  • X. Dupac,
  • S. Dusini,
  • A. Ealet,
  • S. Farrens,
  • S. Ferriol,
  • P. Fosalba,
  • M. Frailis,
  • E. Franceschi,
  • M. Fumana,
  • P. Gómez-Alvarez,
  • B. Garilli,
  • B. Gillis,
  • A. Grazian,
  • F. Grupp,
  • L. Guzzo,
  • S. V. H. Haugan,
  • W. Holmes,
  • F. Hormuth,
  • A. Hornstrup,
  • K. Jahnke,
  • M. Kümmel,
  • S. Kermiche,
  • A. Kiessling,
  • M. Kilbinger,
  • M. Kunz,
  • H. Kurki-Suonio,
  • R. Laureijs,
  • S. Ligori,
  • P. B. Lilje,
  • I. Lloro,
  • E. Maiorano,
  • O. Mansutti,
  • O. Marggraf,
  • K. Markovic,
  • R. Massey,
  • E. Medinaceli,
  • M. Melchior,
  • M. Meneghetti,
  • G. Meylan,
  • M. Moresco,
  • E. Munari,
  • S. M. Niemi,
  • C. Padilla,
  • S. Paltani,
  • F. Pasian,
  • K. Pedersen,
  • W. J. Percival,
  • S. Pires,
  • G. Polenta,
  • M. Poncet,
  • L. Popa,
  • F. Raison,
  • R. Rebolo,
  • A. Renzi,
  • J. Rhodes,
  • E. Rossetti,
  • R. Saglia,
  • B. Sartoris,
  • M. Scodeggio,
  • A. Secroun,
  • G. Seidel,
  • C. Sirignano,
  • G. Sirri,
  • L. Stanco,
  • J. -L. Starck,
  • C. Surace,
  • P. Tallada-Crespí,
  • D. Tavagnacco,
  • A. N. Taylor,
  • I. Tereno,
  • R. Toledo-Moreo,
  • F. Torradeflot,
  • E. A. Valentijn,
  • L. Valenziano,
  • Y. Wang,
  • J. Weller,
  • G. Zamorani,
  • J. Zoubian,
  • S. Andreon
  • (less)
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202244445
abstract + abstract -

The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing, and their cross-correlation. To this aim, we implemented a Fisher matrix approach tailored for voids from the Euclid photometric dataset and we present the first forecasts on cosmological parameters that include the void-lensing correlation. We examined two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carried out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, Mν, and a dynamical dark energy (DE) equation of state, w(z), described by the popular Chevallier-Polarski-Linder parametrization. We find that void clustering constraints on h and Ωb are competitive with galaxy lensing alone, while errors on ns decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, with respect to assuming the two probes as independent, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by 10 − 15%, and enhances the joint void clustering and galaxy lensing figure of merit (FoM) by 10% and 25%, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on h, Ωb, the neutrino mass, and the DE evolution.

This paper is published on behalf of the Euclid Consortium.


(891)Accuracy and precision of triaxial orbit models I: SMBH mass, stellar mass, and dark-matter halo
  • B. Neureiter,
  • S. de Nicola,
  • J. Thomas,
  • R. Saglia,
  • R. Bender
  • +1
Monthly Notices of the Royal Astronomical Society (02/2023) doi:10.1093/mnras/stac3652
abstract + abstract -

We investigate the accuracy and precision of triaxial dynamical orbit models by fitting 2D mock observations of a realistic N-body merger simulation resembling a massive early-type galaxy with a supermassive black hole. We show that we can reproduce the triaxial N-body merger remnant's correct black hole mass, stellar mass-to-light ratio and total enclosed mass (inside the half-light radius) for several different tested orientations with an unprecedented accuracy of 5-10 per cent. Our dynamical models use the entire non-parametric line-of-sight velocity distribution (LOSVD) rather than parametric LOSVDs or velocity moments as constraints. Our results strongly suggest that state-of-the-art integral-field projected kinematic data contain only minor degeneracies with respect to the mass and anisotropy recovery. Moreover, this also demonstrates the strength of the Schwarzschild method in general. We achieve the proven high recovery accuracy and precision with our newly developed modelling machinery by combining several advancements: (i) our new semiparametric deprojection code probes degeneracies and allows us to constrain the viewing angles of a triaxial galaxy; (ii) our new orbit modelling code SMART uses a 5-dim orbital starting space to representatively sample in particular near-Keplerian orbits in galaxy centres; (iii) we use a generalized information criterion AICp to optimize the smoothing and to compare different mass models to avoid biases that occur in χ2-based models with varying model flexibilities.


(890)Accretion Flow Morphology in Numerical Simulations of Black Holes from the ngEHT Model Library: The Impact of Radiation Physics
  • Koushik Chatterjee,
  • Andrew Chael,
  • Paul Tiede,
  • Yosuke Mizuno,
  • Razieh Emami
  • +16
  • Christian Fromm,
  • Angelo Ricarte,
  • Lindy Blackburn,
  • Freek Roelofs,
  • Michael D. Johnson,
  • Sheperd S. Doeleman,
  • Philipp Arras,
  • Antonio Fuentes,
  • Jakob Knollmüller,
  • Nikita Kosogorov,
  • Greg Lindahl,
  • Hendrik Müller,
  • Nimesh Patel,
  • Alexander Raymond,
  • Efthalia Traianou,
  • Justin Vega
  • (less)
Galaxies (02/2023) doi:10.3390/galaxies11020038
abstract + abstract -

In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87* and Sgr A*, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87*. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work.


(889)Massive quiescent galaxies at z 3: A comparison of selection, stellar population, and structural properties with simulation predictions
  • Peter Lustig,
  • Veronica Strazzullo,
  • Rhea-Silvia Remus,
  • Chiara D'Eugenio,
  • Emanuele Daddi
  • +10
  • Andreas Burkert,
  • Gabriella De Lucia,
  • Ivan Delvecchio,
  • Klaus Dolag,
  • Fabio Fontanot,
  • Raphael Gobat,
  • Joseph J. Mohr,
  • Masato Onodera,
  • Maurilio Pannella,
  • Annalisa Pillepich
  • (less)
Monthly Notices of the Royal Astronomical Society (02/2023) doi:10.1093/mnras/stac3450
abstract + abstract -

We study stellar population and structural properties of massive log (M/M) > 11 galaxies at z ≈ 2.7 in the Magneticum and IllustrisTNG hydrodynamical simulations and GAEA semi-analytic model. We find stellar mass functions broadly consistent with observations, with no scarcity of massive, quiescent galaxies at z ≈ 2.7, but with a higher quiescent galaxy fraction at high masses in IllustrisTNG. Average ages of simulated quiescent galaxies are between ≈0.8 and ${1.0\, \textrm {Gyr}}$, older by a factor ≈2 than observed in spectroscopically confirmed quiescent galaxies at similar redshift. Besides being potentially indicative of limitations of simulations in reproducing observed star formation histories, this discrepancy may also reflect limitations in the estimation of observed ages. We investigate the purity of simulated UVJ rest-frame colour-selected massive quiescent samples with photometric uncertainties typical of deep surveys (e.g. COSMOS). We find evidence for significant contamination (up to ${60\, \rm {per\, cent}}$) by dusty star-forming galaxies in the UVJ region that is typically populated by older quiescent sources. Furthermore, the completeness of UVJ-selected quiescent samples at this redshift may be reduced by $\approx {30\, \rm {per\, cent}}$ due to a high fraction of young quiescent galaxies not entering the UVJ quiescent region. Massive, quiescent galaxies in simulations have on average lower angular momenta and higher projected axis ratios and concentrations than star-forming counterparts. Average sizes of simulated quiescent galaxies are broadly consistent with observations within the uncertainties. The average size ratio of quiescent and star-forming galaxies in the probed mass range is formally consistent with observations, although this result is partly affected by poor statistics.


(888)Gravitational waves from defect-driven phase transitions: domain walls
  • Simone Blasi,
  • Ryusuke Jinno,
  • Thomas Konstandin,
  • Henrique Rubira,
  • Isak Stomberg
abstract + abstract -

We discuss the gravitational wave spectrum produced by first-order phase transitions seeded by domain wall networks. This setup is important for many two-step phase transitions as seen for example in the singlet extension of the standard model. Whenever the correlation length of the domain wall network is larger than the typical bubble size, this setup leads to a gravitational wave signal that is shifted to lower frequencies and with an enhanced amplitude compared to homogeneous phase transitions without domain walls. We discuss our results in light of the recent PTA hints for gravitational waves.


(887)COMET: Clustering observables modelled by emulated perturbation theory
  • Alexander Eggemeier,
  • Benjamin Camacho-Quevedo,
  • Andrea Pezzotta,
  • Martin Crocce,
  • Román Scoccimarro
  • +1
Monthly Notices of the Royal Astronomical Society (02/2023) doi:10.1093/mnras/stac3667
abstract + abstract -

In this paper, we present COMET, a Gaussian process emulator of the galaxy power spectrum multipoles in redshift space. The model predictions are based on one-loop perturbation theory and we consider two alternative descriptions of redshift-space distortions: one that performs a full expansion of the real- to redshift-space mapping, as in recent effective field theory models, and another that preserves the non-perturbative impact of small-scale velocities by means of an effective damping function. The outputs of COMET can be obtained at arbitrary redshifts, for arbitrary fiducial background cosmologies, and for a large parameter space that covers the shape parameters ωc, ωb, and ns, as well as the evolution parameters h, As, ΩK, w0, and wa. This flexibility does not impair COMET's accuracy, since we exploit an exact degeneracy between the evolution parameters that allows us to train the emulator on a significantly reduced parameter space. While the predictions are sped up by two orders of magnitude, validation tests reveal an accuracy of $0.1\, {{\ \rm per\ cent}}$ for the monopole and quadrupole ($0.3\, {{\ \rm per\ cent}}$ for the hexadecapole), or alternatively, better than $0.25\, \sigma$ for all three multipoles in comparison to statistical uncertainties expected for the Euclid survey with a tenfold increase in volume. We show that these differences translate into shifts in mean posterior values that are at most of the same size, meaning that COMET can be used with the same confidence as the exact underlying models. COMET is a publicly available PYTHON package that also provides the tree-level bispectrum multipoles and Gaussian covariance matrices.


RU-A
(886)$Z^\prime$-Tandem Mechanism for the Suppression of New Physics in Quark Mixing with Implications for K, D and B Decays
  • Andrzej J. Buras
abstract + abstract -

$Z^\prime$ models belong to the ones that can most easily explain the anomalies in $b\to s \mu^+\mu^-$ transitions. However, such an explanation by a single $Z^\prime$ gauge boson, as done in the literature, is severly constrained by the $B^0_s-\bar B_s^0$ mixing. Also the recent finding, hat the mass differences $\Delta M_s$, $\Delta M_d$, the CP-violating parameter $\varepsilon_K$, and the mixing induced CP-asymmetries $S_{\psi K_S}$ and $S_{\psi \phi}$ can be simultaneously well described within the SM without new physics (NP) contributions, is a challenge for $Z^\prime$ models with a single $Z^\prime$ contributing at tree-level to quark mixing. We point out that including a second $Z^\prime$ in the model allows to eliminate simultaneously tree-level contributions to the five $\Delta F=2$ observables used in the determination of the CKM parameters while leaving the room for NP in $\Delta M_K$ and $\Delta M_D$. The latter one can be removed at the price of infecting $\Delta M_s$ or $\Delta M_d$ by NP which is presently disfavoured. This pattern is transparently seen using the new mixing matrix for $Z^\prime$ interactions with quarks. This strategy allows significant tree-level contributions to $K$, $B_s$ and $B_d$ decays thereby allowing to explain the existing anomalies in $b\to s\mu^+\mu^-$ transitions and the anticipated anomaly in the ratio $\varepsilon'/\varepsilon$ much easier than in $Z^\prime$-Single scenarios. The proposed $Z^\prime$-Tandem mechanism bears some similarities to the GIM mechanism for the suppression of the FCNCs in the SM with the role of the charm quark played here by the second $Z^\prime$. However, it differs from the latter profoundly in that only NP contributions to quark mixing are eliminated at tree-level. We discuss briefly the implied flavour patterns in $K$ and $B$ decay observables in this NP scenario.


(885)Signal-background interference effects in Higgs-mediated diphoton production beyond NLO
  • Piotr Bargieła,
  • Federico Buccioni,
  • Fabrizio Caola,
  • Federica Devoto,
  • Andreas von Manteuffel
  • +1
European Physical Journal C (02/2023) doi:10.1140/epjc/s10052-023-11337-w
abstract + abstract -

In this paper we consider signal-background interference effects in Higgs-mediated diphoton production at the LHC. After reviewing earlier works that show how to use these effects to constrain the Higgs boson total decay width, we provide predictions beyond NLO accuracy for the interference and related observables, and study the impact of QCD radiative corrections on the Higgs width determination. In particular, we use the so-called soft-virtual approximation to estimate interference effects at NNLO in QCD. The inclusion of these effects reduces the NNLO prediction for the total Higgs cross-section in the diphoton channel by about 1.7%. We study in detail the impact of QCD corrections on the Higgs-boson line-shape and its implications for the Higgs boson width extraction. In particular, we find that the shift of the Higgs resonance peak arising from interference effects gets reduced by about 30% with respect to the NLO prediction. Assuming an experimental resolution of about 150 MeV on interference-induced modifications of the Higgs-boson line-shape, our NNLO analysis shows that one could constrain the Higgs-boson total width to about 10-20 times its Standard Model value.


(884)Long-term multi-wavelength study of 1ES 0647+250
  • MAGIC Collaboration,
  • V. A. Acciari,
  • T. Aniello,
  • S. Ansoldi,
  • L. A. Antonelli
  • +215
  • A. Arbet Engels,
  • C. Arcaro,
  • M. Artero,
  • K. Asano,
  • D. Baack,
  • A. Babić,
  • A. Baquero,
  • U. Barres de Almeida,
  • J. A. Barrio,
  • I. Batković,
  • J. Becerra González,
  • W. Bednarek,
  • E. Bernardini,
  • M. Bernardos,
  • A. Berti,
  • J. Besenrieder,
  • W. Bhattacharyya,
  • C. Bigongiari,
  • A. Biland,
  • O. Blanch,
  • H. Bökenkamp,
  • G. Bonnoli,
  • Ž. Bošnjak,
  • I. Burelli,
  • G. Busetto,
  • R. Carosi,
  • M. Carretero-Castrillo,
  • G. Ceribella,
  • Y. Chai,
  • A. Chilingarian,
  • S. Cikota,
  • E. Colombo,
  • J. L. Contreras,
  • J. Cortina,
  • S. Covino,
  • G. D'Amico,
  • V. D'Elia,
  • P. da Vela,
  • F. Dazzi,
  • A. de Angelis,
  • B. de Lotto,
  • A. Del Popolo,
  • M. Delfino,
  • J. Delgado,
  • C. Delgado Mendez,
  • D. Depaoli,
  • F. di Pierro,
  • L. di Venere,
  • E. Do Souto Espiñeira,
  • D. Dominis Prester,
  • A. Donini,
  • D. Dorner,
  • M. Doro,
  • D. Elsaesser,
  • G. Emery,
  • V. Fallah Ramazani,
  • L. Fariña,
  • A. Fattorini,
  • L. Font,
  • C. Fruck,
  • S. Fukami,
  • Y. Fukazawa,
  • R. J. García López,
  • M. Garczarczyk,
  • S. Gasparyan,
  • M. Gaug,
  • J. G. Giesbrecht Paiva,
  • N. Giglietto,
  • F. Giordano,
  • P. Gliwny,
  • N. Godinović,
  • J. G. Green,
  • D. Green,
  • D. Hadasch,
  • A. Hahn,
  • T. Hassan,
  • L. Heckmann,
  • J. Herrera,
  • D. Hrupec,
  • M. Hütten,
  • T. Inada,
  • R. Iotov,
  • K. Ishio,
  • Y. Iwamura,
  • I. Jiménez Martínez,
  • J. Jormanainen,
  • D. Kerszberg,
  • Y. Kobayashi,
  • H. Kubo,
  • J. Kushida,
  • A. Lamastra,
  • D. Lelas,
  • F. Leone,
  • E. Lindfors,
  • L. Linhoff,
  • S. Lombardi,
  • F. Longo,
  • R. López-Coto,
  • M. López-Moya,
  • A. López-Oramas,
  • S. Loporchio,
  • A. Lorini,
  • E. Lyard,
  • B. Machado de Oliveira Fraga,
  • P. Majumdar,
  • M. Makariev,
  • G. Maneva,
  • M. Manganaro,
  • S. Mangano,
  • K. Mannheim,
  • M. Mariotti,
  • M. Martínez,
  • A. Mas Aguilar,
  • D. Mazin,
  • S. Menchiari,
  • S. Mender,
  • S. Mićanović,
  • D. Miceli,
  • T. Miener,
  • J. M. Miranda,
  • R. Mirzoyan,
  • E. Molina,
  • H. A. Mondal,
  • A. Moralejo,
  • D. Morcuende,
  • V. Moreno,
  • T. Nakamori,
  • C. Nanci,
  • L. Nava,
  • V. Neustroev,
  • M. Nievas Rosillo,
  • C. Nigro,
  • K. Nilsson,
  • K. Nishijima,
  • T. Njoh Ekoume,
  • K. Noda,
  • S. Nozaki,
  • Y. Ohtani,
  • T. Oka,
  • J. Otero-Santos,
  • S. Paiano,
  • M. Palatiello,
  • D. Paneque,
  • R. Paoletti,
  • J. M. Paredes,
  • L. Pavletić,
  • M. Persic,
  • M. Pihet,
  • F. Podobnik,
  • P. G. Prada Moroni,
  • E. Prandini,
  • G. Principe,
  • C. Priyadarshi,
  • I. Puljak,
  • W. Rhode,
  • M. Ribó,
  • J. Rico,
  • C. Righi,
  • A. Rugliancich,
  • N. Sahakyan,
  • T. Saito,
  • S. Sakurai,
  • K. Satalecka,
  • F. G. Saturni,
  • B. Schleicher,
  • K. Schmidt,
  • F. Schmuckermaier,
  • J. L. Schubert,
  • T. Schweizer,
  • J. Sitarek,
  • V. Sliusar,
  • D. Sobczynska,
  • A. Spolon,
  • A. Stamerra,
  • J. Strišković,
  • D. Strom,
  • M. Strzys,
  • Y. Suda,
  • T. Surić,
  • M. Takahashi,
  • R. Takeishi,
  • F. Tavecchio,
  • P. Temnikov,
  • T. Terzić,
  • M. Teshima,
  • L. Tosti,
  • S. Truzzi,
  • A. Tutone,
  • S. Ubach,
  • J. van Scherpenberg,
  • G. Vanzo,
  • M. Vazquez Acosta,
  • S. Ventura,
  • V. Verguilov,
  • I. Viale,
  • C. F. Vigorito,
  • V. Vitale,
  • I. Vovk,
  • R. Walter,
  • M. Will,
  • C. Wunderlich,
  • T. Yamamoto,
  • D. Zarić,
  • J. A. Acosta-Pulido,
  • F. D'Ammando,
  • T. Hovatta,
  • S. Kiehlmann,
  • I. Liodakis,
  • C. Leto,
  • W. Max-Moerbeck,
  • L. Pacciani,
  • M. Perri,
  • A. C. S. Readhead,
  • R. A. Reeves,
  • F. Verrecchia
  • (less)
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202244477
abstract + abstract -

Context. The BL Lac object 1ES 0647+250 is one of the few distant γ-ray emitting blazars detected at very high energies (VHEs; ≳100 GeV) during a non-flaring state. It was detected with the MAGIC telescopes during a period of low activity in the years 2009−2011 as well as during three flaring activities in the years 2014, 2019, and 2020, with the highest VHE flux in the last epoch. An extensive multi-instrument data set was collected as part of several coordinated observing campaigns over these years.
Aims: We aim to characterise the long-term multi-band flux variability of 1ES 0647+250, as well as its broadband spectral energy distribution (SED) during four distinct activity states selected in four different epochs, in order to constrain the physical parameters of the blazar emission region under certain assumptions.
Methods: We evaluated the variability and correlation of the emission in the different energy bands with the fractional variability and the Z-transformed discrete correlation function, as well as its spectral evolution in X-rays and γ rays. Owing to the controversy in the redshift measurements of 1ES 0647+250 reported in the literature, we also estimated its distance in an indirect manner through a comparison of the GeV and TeV spectra from simultaneous observations with Fermi-LAT and MAGIC during the strongest flaring activity detected to date. Moreover, we interpret the SEDs from the four distinct activity states within the framework of one-component and two-component leptonic models, proposing specific scenarios that are able to reproduce the available multi-instrument data.
Results: We find significant long-term variability, especially in X-rays and VHE γ rays. Furthermore, significant (3−4σ) correlations were found between the radio, optical, and high-energy (HE) γ-ray fluxes, with the radio emission delayed by about ∼400 days with respect to the optical and γ-ray bands. The spectral analysis reveals a harder-when-brighter trend during the non-flaring state in the X-ray domain. However, no clear patterns were observed for either the enhanced states or the HE (30 MeV < E < 100 GeV) and VHE γ-ray emission of the source. The indirect estimation of the redshift yielded a value of z = 0.45 ± 0.05, which is compatible with some of the values reported in the literature. The SEDs related to the low-activity state and the three flaring states of 1ES 0647+250 can be described reasonably well with the both one-component and two-component leptonic scenarios. However, the long-term correlations indicate the need for an additional radio-producing region located about 3.6 pc downstream from the gamma-ray producing region.


(883)Leaky dust traps: How fragmentation impacts dust filtering by planets
  • Sebastian Markus Stammler,
  • Tim Lichtenberg,
  • Joanna Drążkowska,
  • Tilman Birnstiel
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202245512
abstract + abstract -

The nucleosynthetic isotope dichotomy between carbonaceous (CC) and non-carbonaceous (NC) meteorites has been interpreted as evidence for spatial separation and the coexistence of two distinct planet-forming reservoirs for several million years in the solar protoplanetary disk. The rapid formation of Jupiter's core within one million years after the formation of calcium-aluminium-rich inclusions (CAIs) has been suggested as a potential mechanism for spatial and temporal separation. In this scenario, Jupiter's core would open a gap in the disk and trap inward-drifting dust grains in the pressure bump at the outer edge of the gap, separating the inner and outer disk materials from each other. We performed simulations of dust particles in a protoplanetary disk with a gap opened by an early-formed Jupiter core, including dust growth and fragmentation as well as dust transport, using the dust evolution software DustPy. Our numerical experiments indicate that particles trapped in the outer edge of the gap rapidly fragment and are transported through the gap, contaminating the inner disk with outer disk material on a timescale that is inconsistent with the meteoritic record. This suggests that other processes must have initiated or at least contributed to the isotopic separation between the inner and outer Solar System.


(882)Family dispute: do Type IIP supernova siblings agree on their distance?
  • Géza Csörnyei,
  • Christian Vogl,
  • Stefan Taubenberger,
  • Andreas Flörs,
  • Stéphane Blondin
  • +5
  • Maria Gabriela Cudmani,
  • Alexander Holas,
  • Sabrina Kressierer,
  • Bruno Leibundgut,
  • Wolfgang Hillebrandt
  • (less)
abstract + abstract -

Context: Type II supernovae provide a direct way to estimate distances through the expanding photosphere method, which is independent of the cosmic distance ladder. A recently introduced Gaussian process-based method allows for a fast and precise modelling of spectral time series, which puts accurate and computationally cheap Type II-based absolute distance determinations within reach. Aims: The goal of the paper is to assess the internal consistency of this new modelling technique coupled with the distance estimation empirically, using the spectral time series of supernova siblings, i.e. supernovae that exploded in the same host galaxy. Methods: We use a recently developed spectral emulator code, which is trained on \textsc{Tardis} radiative transfer models and is capable of a fast maximum likelihood parameter estimation and spectral fitting. After calculating the relevant physical parameters of supernovae we apply the expanding photosphere method to estimate their distances. Finally, we test the consistency of the obtained values by applying the formalism of Bayes factors. Results: The distances to four different host galaxies were estimated based on two supernovae in each. The distance estimates are not only consistent within the errors for each of the supernova sibling pairs, but in the case of two hosts they are precise to better than 5\%. Conclusions: Even though the literature data we used was not tailored for the requirements of our analysis, the agreement of the final estimates shows that the method is robust and is capable of inferring both precise and consistent distances. By using high-quality spectral time series, this method can provide precise distance estimates independent of the distance ladder, which are of high value for cosmology.


(881)Compact jets dominate the continuum emission in low-luminosity active galactic nuclei
  • J. A. Fernández-Ontiveros,
  • X. López-López,
  • A. Prieto
Astronomy and Astrophysics (02/2023) doi:10.1051/0004-6361/202243547
abstract + abstract -

Low-luminosity active galactic nuclei (LLAGN) are special among their kind due to the profound structural changes that the central engine experiences at low accretion rates (≲ 10−3 in Eddington units). The disappearance of the accretion disc - the blue bump - leaves behind a faint optical nuclear continuum whose nature has been largely debated. This is mainly due to serious limitations on the observational side imposed by the starlight contamination from the host galaxy and the absorption by hydrogen, preventing the detection of these weak nuclei in the infrared (IR) to ultraviolet (UV) range. We addressed these challenges by combining multi-wavelength sub-arcsecond resolution observations - able to isolate the genuine nuclear continuum - with nebular lines in the mid-IR, which allowed us to indirectly probe the shape of the extreme UV continuum. We found that eight of the nearest prototype LLAGN are compatible with pure compact jet emission over more than ten orders of magnitude in frequency. This consists of self-absorbed synchrotron emission from radio to the UV plus the associated synchrotron self-Compton component dominating the emission in the UV to X-ray range. Additionally, the LLAGN continua show two particular characteristics when compared with the typical jet spectrum seen in radio galaxies: (i) a very steep spectral slope in the IR-to-optical/UV range (−3.7 < α0 < −1.3; Fν ∝ να0); and (ii) a very high turnover frequency (0.2-30 THz; 1.3 mm-10 μm) that separates the optically thick radio emission from the optically thin continuum in the IR-to-optical/UV range. These attributes can be explained if the synchrotron continuum is mainly dominated by thermalised particles at the jet base or the corona with considerably high temperatures, whereas only a small fraction of the energy (∼20%) would be distributed along the high-energy power-law tail of accelerated particles. On the other hand, the nebular gas excitation in LLAGN is in agreement with photo-ionisation from inverse Compton radiation (αx ∼ −0.7), which would dominate the nuclear continuum shortwards of ∼3000 Å, albeit a possible contribution from low-velocity shocks (< 500 km s−1) to the line excitation cannot be discarded. No sign of a standard hot accretion disc is seen in our sample of LLAGN, nevertheless, a weak cold disc (< 3000 K) is detected at the nucleus of the Sombrero galaxy, though its contribution to the nebular gas excitation is negligible. Our results suggest that the continuum emission in LLAGN is dominated at all wavelengths by undeveloped jets, powered by a thermalised particle distribution with high energies, on average. This is in agreement with their compact morphology and their high turnover frequencies. This behaviour is similar to that observed in peaked-spectrum radio sources and also compact jets in quiescent black hole X-ray binaries. Nevertheless, the presence of extended jet emission at kiloparsec scales for some of the objects in the sample is indicative of past jet activity, suggesting that these nuclei may undergo a rejuvenation event after a more active phase that produced their extended jets. These results imply that the dominant channel for energy release in LLAGN is mainly kinetic via the jet, rather than the radiative one. This has important implications in the context of galaxy evolution, since LLAGN probably represent a major but underestimated source of kinetic feedback in galaxies.

The flux distribution of the nine LLAGN in the sample are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/670/A22


(880)Long term neutron irradiation studies of square meter sized resistive strip micromegas detectors
  • Fabian Vogel,
  • Otmar Biebel,
  • Christoph Jagfeld,
  • Katrin Penski,
  • Maximilian Rinnagel
  • +2
  • Chrysostomos Valderanis,
  • Ralf Hertenberger
  • (less)
Nuclear Instruments and Methods in Physics Research A (01/2023) doi:10.1016/j.nima.2022.167653
abstract + abstract -

Resistive strip Micromegas (MICRO-MEsh GAseous Structure) detectors provide even at square meter sizes a high spatial resolution for the reconstruction of Minimum Ionizing Particles (MIPs) like muons. Micromegas detectors consist of three parallel planar structures. A cathode, a grounded mesh and a segmented anode structure form the detector. Square meter sizes challenge the high-voltage stability during operation, especially when using the frequently used gas mixture of Ar:CO2 (93:7 vol%) with low quencher content. To improve the HV-stability and to enhance the discharge quenching different gas mixtures have been investigated. A very promising one has an 2% admixture of isobutane forming the ternary gas Ar:CO2:iC4H10 (93:5:2 vol%). Long term irradiation studies investigating both gas mixtures interrupted by cosmic muon tracking efficiency measurements have been performed by irradiation with neutrons and gammas from a 10 GBq Am-Be source for a period of two years. The comparison shows gain increase under Ar:CO2:iC4H10 and a considerably improved HV-stable operation of the detector. It is investigated for any performance deterioration for each of the two gas mixtures with focus on pulse-height and changes of efficiency.


(879)Directing Min protein patterns with advective bulk flow
  • Sabrina Meindlhumer,
  • Fridtjof Brauns,
  • Jernej Rudi Finžgar,
  • Jacob Kerssemakers,
  • Cees Dekker
  • +1
Nature Communications (01/2023) doi:10.1038/s41467-023-35997-0
abstract + abstract -

The Min proteins constitute the best-studied model system for pattern formation in cell biology. We theoretically predict and experimentally show that the propagation direction of in vitro Min protein patterns can be controlled by a hydrodynamic flow of the bulk solution. We find downstream propagation of Min wave patterns for low MinE:MinD concentration ratios, upstream propagation for large ratios, but multistability of both propagation directions in between. Whereas downstream propagation can be described by a minimal model that disregards MinE conformational switching, upstream propagation can be reproduced by a reduced switch model, where increased MinD bulk concentrations on the upstream side promote protein attachment. Our study demonstrates that a differential flow, where bulk flow advects protein concentrations in the bulk, but not on the surface, can control surface-pattern propagation. This suggests that flow can be used to probe molecular features and to constrain mathematical models for pattern-forming systems.


(878)Indirect upper limits on ℓ<SUB>i</SUB>→ℓ<SUB>j</SUB>γ γ from ℓ<SUB>i</SUB>→ℓ<SUB>j</SUB>γ
  • Fabiola Fortuna,
  • Alejandro Ibarra,
  • Xabier Marcano,
  • Marcela Marín,
  • Pablo Roig
Physical Review D (01/2023) doi:10.1103/PhysRevD.107.015027
abstract + abstract -

We perform an effective field theory analysis to correlate the charged lepton flavor violating processes ℓi→ℓjγ γ and ℓi→ℓjγ . Using the current upper bounds on the rate for ℓi→ℓjγ , we derive model-independent upper limits on the rates for ℓi→ℓjγ γ . Our indirect limits are about three orders of magnitude stronger than the direct bounds from current searches for μ →e γ γ , and four orders of magnitude better than current bounds for τ →ℓγ γ . We also stress the relevance of Belle II or a Super Tau Charm Facility to discover the rare decay τ →ℓγ γ .


(877)Enhanced prospects for direct detection of inelastic dark matter from a non-galactic diffuse component
  • Gonzalo Herrera,
  • Alejandro Ibarra,
  • Satoshi Shirai
abstract + abstract -

In some scenarios, the dark matter particle predominantly scatters inelastically with the target, producing a heavier neutral particle in the final state. In this class of scenarios, the reach in parameter space of direct detection experiments is limited by the velocity of the dark matter particle, usually taken as the escape velocity from the Milky Way. On the other hand, it has been argued that a fraction of the dark matter particles in the Solar System could be bound to the envelope of the Local Group or to the Virgo Supercluster, and not to our Galaxy, and therefore could carry velocities larger than the escape velocity from the Milky Way. In this paper we estimate the enhancement in sensitivity of current direct detection experiments to inelastic dark matter scatterings with nucleons or electrons due to the non-galactic diffuse components, and we discuss the implications for some well motivated models.


(876)Resolution tests for ΛCDM : A comparison of three cosmological codes
  • Flor Lozano-Rodríguez,
  • César Hernández-Aguayo,
  • Luis Arturo Ureña-López
Astronomische Nachrichten (01/2023) doi:10.1002/asna.20220110

(875)The effect of stellar contamination on low-resolution transmission spectroscopy: needs identified by NASA's Exoplanet Exploration Program Study Analysis Group 21
  • Benjamin V. Rackham,
  • Néstor Espinoza,
  • Svetlana V. Berdyugina,
  • Heidi Korhonen,
  • Ryan J. MacDonald
  • +56
  • Benjamin T. Montet,
  • Brett M. Morris,
  • Mahmoudreza Oshagh,
  • Alexander I. Shapiro,
  • Yvonne C. Unruh,
  • Elisa V. Quintana,
  • Robert T. Zellem,
  • Dániel Apai,
  • Thomas Barclay,
  • Joanna K. Barstow,
  • Giovanni Bruno,
  • Ludmila Carone,
  • Sarah L. Casewell,
  • Heather M. Cegla,
  • Serena Criscuoli,
  • Catherine Fischer,
  • Damien Fournier,
  • Mark S. Giampapa,
  • Helen Giles,
  • Aishwarya Iyer,
  • Greg Kopp,
  • Nadiia M. Kostogryz,
  • Natalie Krivova,
  • Matthias Mallonn,
  • Chima McGruder,
  • Karan Molaverdikhani,
  • Elisabeth R. Newton,
  • Mayukh Panja,
  • Sarah Peacock,
  • Kevin Reardon,
  • Rachael M. Roettenbacher,
  • Gaetano Scandariato,
  • Sami Solanki,
  • Keivan G. Stassun,
  • Oskar Steiner,
  • Kevin B. Stevenson,
  • Jeremy Tregloan-Reed,
  • Adriana Valio,
  • Sven Wedemeyer,
  • Luis Welbanks,
  • Jie Yu,
  • Munazza K. Alam,
  • James R. A. Davenport,
  • Drake Deming,
  • Chuanfei Dong,
  • Elsa Ducrot,
  • Chloe Fisher,
  • Emily Gilbert,
  • Veselin Kostov,
  • Mercedes López-Morales,
  • Mike Line,
  • Teo Močnik,
  • Susan Mullally,
  • Rishi R. Paudel,
  • Ignasi Ribas,
  • Jeff A. Valenti
  • (less)
RAS Techniques and Instruments (01/2023) doi:10.1093/rasti/rzad009
abstract + abstract -

Study Analysis Group 21 (SAG21) of NASA's Exoplanet Exploration Program Analysis Group was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like Hubble Space Telescope and JWST. The analysis produced 14 findings, which fall into three science themes encompassing (i) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities ('The Sun as the Stellar Benchmark'), (ii) how stars other than the Sun extend our knowledge of heterogeneities ('Surface Heterogeneities of Other Stars'), and (iii) how to incorporate information gathered for the Sun and other stars into transit studies ('Mapping Stellar Knowledge to Transit Studies'). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.


(874)ΛCDM with baryons versus MOND: The time evolution of the universal acceleration scale in the Magneticum simulations
  • Alexander C. Mayer,
  • Adelheid F. Teklu,
  • Klaus Dolag,
  • Rhea-Silvia Remus
Monthly Notices of the Royal Astronomical Society (01/2023) doi:10.1093/mnras/stac3017
abstract + abstract -

MOdified Newtonian Dynamics (MOND) is an alternative to the standard Cold Dark Matter (CDM) paradigm which proposes an alteration of Newton's laws of motion at low accelerations, characterized by a universal acceleration scale a0. It attempts to explain observations of galactic rotation curves and predicts a specific scaling relation of the baryonic and total acceleration in galaxies, referred to as the Rotational Acceleration Relation (RAR), which can be equivalently formulated as a Mass Discrepancy Acceleration Relation (MDAR). The appearance of these relations in observational data such as SPARC has lead to investigations into the existence of similar relations in cosmological simulations using the standard ΛCDM model. Here, we report the existence of an RAR and MDAR similar to that predicted by MOND in ΛCDM using a large sample of galaxies extracted from a cosmological, hydrodynamical simulation (Magneticum). Furthermore, by using galaxies in Magneticum at different redshifts, a prediction for the evolution of the inferred acceleration parameter a0 with cosmic time is derived by fitting a MOND force law to these galaxies. In Magneticum, the best fit for a0 is found to increase by a factor ≃3 from redshift z = 0 to z = 2.3. This offers a powerful test from cosmological simulations to distinguish between MOND and ΛCDM observationally.


RU-A
(873)Electroweak resummation of neutralino dark-matter annihilation into high-energy photons
  • Martin Beneke,
  • Stefan Lederer,
  • Clara Peset
Journal of High Energy Physics2211.14341 (01/2023) e-Print:2211.14341 doi:doi.org/10.1007/JHEP01(2023)171
abstract + abstract -

We consider the resummation of large electroweak Sudakov logarithms for the annihilation of neutralino DM with (TeV) mass to high-energy photons in the minimal supersymmetric standard model, extending previous work on the minimal wino and Higgsino models. We find that NLL resummation reduces the yield of photons by about 20% for Higgsino-dominated DM at masses around 1~TeV, and up to 45% for neutralinos with larger wino admixture at heavier masses near 3~TeV. This sizable effect is relevant when observations or exclusion limits are translated into MSSM parameter-space constraints.


(872)The ngEHT Analysis Challenges
  • Freek Roelofs,
  • Lindy Blackburn,
  • Greg Lindahl,
  • Sheperd S. Doeleman,
  • Michael D. Johnson
  • +13
  • Philipp Arras,
  • Koushik Chatterjee,
  • Razieh Emami,
  • Christian Fromm,
  • Antonio Fuentes,
  • Jakob Knollmüller,
  • Nikita Kosogorov,
  • Hendrik Müller,
  • Nimesh Patel,
  • Alexander Raymond,
  • Paul Tiede,
  • Efthalia Traianou,
  • Justin Vega
  • (less)
Galaxies (01/2023) doi:10.3390/galaxies11010012
abstract + abstract -

The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges.


(871)Suppressing variance in 21 cm signal simulations during reionization
  • Sambit K. Giri,
  • Aurel Schneider,
  • Francisco Maion,
  • Raul E. Angulo
Astronomy and Astrophysics (01/2023) doi:10.1051/0004-6361/202244986
abstract + abstract -

Current best limits on the 21 cm signal during reionization are provided at large scales (≳100 Mpc). To model these scales, enormous simulation volumes are required, which are computationally expensive. We find that the primary source of uncertainty at these large scales is sample variance, which determines the minimum size of simulations required to analyse current and upcoming observations. In large-scale structure simulations, the method of `fixing' the initial conditions (ICs) to exactly follow the initial power spectrum and `pairing' two simulations with exactly out-of-phase ICs has been shown to significantly reduce sample variance. Here we apply this `fixing and pairing' (F&P) approach to reionization simulations whose clustering signal originates from both density fluctuations and reionization bubbles. Using a semi-numerical code, we show that with the traditional method, simulation boxes of L ≃ 500 (300) Mpc are required to model the large-scale clustering signal at k = 0.1 Mpc−1 with a precision of 5 (10)%. Using F&P, the simulation boxes can be reduced by a factor of 2 to obtain the same precision level. We conclude that the computing costs can be reduced by at least a factor of 4 when using the F&P approach.


(870)Impact of H<SUB>2</SUB>-driven star formation and stellar feedback from low-enrichment environments on the formation of spiral galaxies
  • Milena Valentini,
  • Klaus Dolag,
  • Stefano Borgani,
  • Giuseppe Murante,
  • Umberto Maio
  • +6
  • Luca Tornatore,
  • Gian Luigi Granato,
  • Cinthia Ragone-Figueroa,
  • Andreas Burkert,
  • Antonio Ragagnin,
  • Elena Rasia
  • (less)
Monthly Notices of the Royal Astronomical Society (01/2023) doi:10.1093/mnras/stac2110
abstract + abstract -

The reservoir of molecular gas (H2) represents the fuel for the star formation (SF) of a galaxy. Connecting the star formation rate (SFR) to the available H2 is key to accurately model SF in cosmological simulations of galaxy formation. We investigate how modifying the underlying modelling of H2 and the description of stellar feedback in low-metallicity environments (LMF, i.e. low-metallicity stellar feedback) in cosmological zoomed-in simulations of a Milky Way-size halo influences the formation history of the forming, spiral galaxy, and its final properties. We exploit two different models to compute the molecular fraction of cold gas ($f_{\rm H_{2}}$): (i) the theoretical model by Krumholz et al. (2009b) and (ii) the phenomenological prescription by Blitz and Rosolowsky (2006). We find that the model adopted to estimate $f_{\rm H_{2}}$ plays a key role in determining final properties and in shaping the morphology of the galaxy. The clumpier interstellar medium (ISM) and the more complex H2 distribution that the Krumholz et al. model predicts result in better agreement with observations of nearby disc galaxies. This shows how crucial it is to link the SFR to the physical properties of the star-forming, molecular ISM. The additional source of energy that LMF supplies in a metal-poor ISM is key in controlling SF at high redshift and in regulating the reservoir of SF across cosmic time. Not only is LMF able to regulate cooling properties of the ISM, but it also reduces the stellar mass of the galaxy bulge. These findings can foster the improvement of the numerical modelling of SF in cosmological simulations.


(869)Towards an automated data cleaning with deep learning in CRESST
  • G. Angloher,
  • S. Banik,
  • D. Bartolot,
  • G. Benato,
  • A. Bento
  • +61
  • A. Bertolini,
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Diâ Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. V. Feilitzsch,
  • N. Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V. M. Ghete,
  • S. Gerster,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • M. Lackner,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • L. Meyer,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • D. Rizvanovic,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema,
  • W. Waltenberger,
  • CRESST Collaboration
  • (less)
European Physical Journal Plus (01/2023) doi:10.1140/epjp/s13360-023-03674-2
abstract + abstract -

The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks. With a data set of over one million labeled records from 68 detectors, recorded between 2013 and 2019 by CRESST, we test the capability of four commonly used neural network architectures to learn the data cleaning task. Our best performing model achieves a balanced accuracy of 0.932 on our test set. We show on an exemplary detector that about half of the wrongly predicted events are in fact wrongly labeled events, and a large share of the remaining ones have a context-dependent ground truth. We furthermore evaluate the recall and selectivity of our classifiers with simulated data. The results confirm that the trained classifiers are well suited for the data cleaning task.


(868)CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope
  • CCAT-Prime Collaboration,
  • Manuel Aravena,
  • Jason E. Austermann,
  • Kaustuv Basu,
  • Nicholas Battaglia
  • +83
  • Benjamin Beringue,
  • Frank Bertoldi,
  • Frank Bigiel,
  • J. Richard Bond,
  • Patrick C. Breysse,
  • Colton Broughton,
  • Ricardo Bustos,
  • Scott C. Chapman,
  • Maude Charmetant,
  • Steve K. Choi,
  • Dongwoo T. Chung,
  • Susan E. Clark,
  • Nicholas F. Cothard,
  • Abigail T. Crites,
  • Ankur Dev,
  • Kaela Douglas,
  • Cody J. Duell,
  • Rolando Dünner,
  • Haruki Ebina,
  • Jens Erler,
  • Michel Fich,
  • Laura M. Fissel,
  • Simon Foreman,
  • R. G. Freundt,
  • Patricio A. Gallardo,
  • Jiansong Gao,
  • Pablo García,
  • Riccardo Giovanelli,
  • Joseph E. Golec,
  • Christopher E. Groppi,
  • Martha P. Haynes,
  • Douglas Henke,
  • Brandon Hensley,
  • Terry Herter,
  • Ronan Higgins,
  • Renée Hložek,
  • Anthony Huber,
  • Zachary Huber,
  • Johannes Hubmayr,
  • Rebecca Jackson,
  • Douglas Johnstone,
  • Christos Karoumpis,
  • Laura C. Keating,
  • Eiichiro Komatsu,
  • Yaqiong Li,
  • Benjamin Magnelli,
  • Brenda C. Matthews,
  • Philip D. Mauskopf,
  • Jeffrey J. McMahon,
  • P. Daniel Meerburg,
  • Joel Meyers,
  • Vyoma Muralidhara,
  • Norman W. Murray,
  • Michael D. Niemack,
  • Thomas Nikola,
  • Yoko Okada,
  • Roberto Puddu,
  • Dominik A. Riechers,
  • Erik Rosolowsky,
  • Kayla Rossi,
  • Kaja Rotermund,
  • Anirban Roy,
  • Sarah I. Sadavoy,
  • Reinhold Schaaf,
  • Peter Schilke,
  • Douglas Scott,
  • Robert Simon,
  • Adrian K. Sinclair,
  • Gregory R. Sivakoff,
  • Gordon J. Stacey,
  • Amelia M. Stutz,
  • Juergen Stutzki,
  • Mehrnoosh Tahani,
  • Karun Thanjavur,
  • Ralf A. Timmermann,
  • Joel N. Ullom,
  • Alexander van Engelen,
  • Eve M. Vavagiakis,
  • Michael R. Vissers,
  • Jordan D. Wheeler,
  • Simon D. M. White,
  • Yijie Zhu,
  • Bugao Zou
  • (less)
The Astrophysical Journal Supplement Series (01/2023) doi:10.3847/1538-4365/ac9838
abstract + abstract -

We present a detailed overview of the science goals and predictions for the Prime-Cam direct-detection camera-spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6 m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of institutions led by Cornell University and sited at more than 5600 m on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way. Prime-Cam on the FYST will have a mapping speed that is over 10 times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies.


(867)Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices
  • Y. Omori,
  • E. J. Baxter,
  • C. Chang,
  • O. Friedrich,
  • A. Alarcon
  • +160
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • K. Bechtol,
  • M. R. Becker,
  • G. M. Bernstein,
  • J. Blazek,
  • L. E. Bleem,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • R. Chen,
  • A. Choi,
  • J. Cordero,
  • T. M. Crawford,
  • M. Crocce,
  • C. Davis,
  • J. DeRose,
  • S. Dodelson,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • M. Gatti,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • I. Harrison,
  • K. Herner,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • M. Jarvis,
  • E. Krause,
  • N. Kuropatkin,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • N. MacCrann,
  • J. McCullough,
  • J. Muir,
  • J. Myles,
  • A. Navarro-Alsina,
  • S. Pandey,
  • Y. Park,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • R. P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • E. S. Rykoff,
  • C. Sánchez,
  • J. Sanchez,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • T. M. C. Abbott,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • B. A. Benson,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D. L. Burke,
  • J. E. Carlstrom,
  • J. Carretero,
  • C. L. Chang,
  • R. Chown,
  • M. Costanzi,
  • L. N. da Costa,
  • A. T. Crites,
  • M. E. S. Pereira,
  • T. de Haan,
  • J. De Vicente,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • P. Doel,
  • W. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztanaga,
  • E. M. George,
  • T. Giannantonio,
  • N. W. Halverson,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • D. J. James,
  • L. Knox,
  • K. Kuehn,
  • O. Lahav,
  • A. T. Lee,
  • M. Lima,
  • D. Luong-Van,
  • M. March,
  • J. J. McMahon,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • T. Natoli,
  • S. Padin,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • C. Pryke,
  • C. L. Reichardt,
  • A. K. Romer,
  • J. E. Ruhl,
  • E. Sanchez,
  • K. K. Schaffer,
  • M. Schubnell,
  • S. Serrano,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • J. D. Vieira,
  • J. Weller,
  • R. Williamson,
  • DES,
  • SPT Collaborations
  • (less)
Physical Review D (01/2023) doi:10.1103/PhysRevD.107.023529
abstract + abstract -

Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S88√{Ωm/0.3 } at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level.


(866)Anapole moment of Majorana fermions and implications for direct detection of neutralino dark matter
  • Alejandro Ibarra,
  • Merlin Reichard,
  • Ryo Nagai
Journal of High Energy Physics (01/2023) doi:10.1007/JHEP01(2023)086
abstract + abstract -

For Majorana fermions the anapole moment is the only allowed electromagnetic multipole moment. In this work we calculate the anapole moment induced at one-loop by the Yukawa and gauge interactions of a Majorana fermion, using the pinch technique to ensure the finiteness and gauge-invariance of the result. As archetypical example of a Majorana fermion, we calculate the anapole moment for the lightest neutralino in the Minimal Supersymmetric Standard Model, and specifically in the bino, wino and higgsino limits. Finally, we briefly discuss the implications of the anapole moment for the direct detection of dark matter in the form of Majorana fermions.


(865)Asymptotic dynamics and charges for FLRW spacetimes
  • Martín Enríquez Rojo,
  • Till Heckelbacher,
  • Roberto Oliveri
Physical Review D (01/2023) doi:10.1103/PhysRevD.107.024039
abstract + abstract -

We investigate the asymptotia of decelerating and spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes at future null infinity. We find that the asymptotic algebra of diffeomorphisms can be enlarged to the recently discovered Weyl-Bondi-van der Burg-Metzner-Sachs (BMS) algebra for asymptotically flat spacetimes by relaxing the boundary conditions. This algebra remains undeformed in the cosmological setting contrary to previous extensions of the BMS algebra. We then study the equations of motion for asymptotically FLRW spacetimes with finite fluxes and show that the dynamics is fully constrained by the energy-momentum tensor of the source. Finally, we propose an expression for the charges that are associated with the cosmological supertranslations and whose evolution equation features a novel contribution arising from the Hubble-Lemaître flow.


(864)Decomposition of galactic X-ray emission with PHOX. Contributions from hot gas and X-ray binaries
  • S. Vladutescu-Zopp,
  • V. Biffi,
  • K. Dolag
Astronomy and Astrophysics (01/2023) doi:10.1051/0004-6361/202244726
abstract + abstract -

Context. X-ray observations of galaxies with high spatial resolution instruments such as Chandra have revealed that major contributions to their diffuse emission originate from X-ray-bright point sources in the galactic stellar field. It has been established that these point sources, called X-ray binaries, are accreting compact objects with stellar donors in a binary configuration. They are classified according to the predominant accretion process: wind-fed in the case of high-mass donors and Roche-lobe mass transfer in the case of low-mass donors. Observationally, it is challenging to reliably disentangle these two populations from each other because of their similar spectra.
Aims: We provide a numerical framework with which spatially and spectrally accurate representations of X-ray binary populations can be studied from hydrodynamical cosmological simulations. We construct average spectra, accounting for a hot gas component, and verify the emergence of observed scaling relations between galaxy-wide X-ray luminosity (LX) and stellar mass (M*) and between LX and the star-formation rate (SFR).
Methods: Using simulated galaxy halos extracted from the (48 h−1 cMpc)3 volume of the Magneticum Pathfinder cosmological simulations at z = 0.07, we generate mock spectra with the X-ray photon-simulator PHOX. We extend the PHOX code to account for the stellar component in the simulation and study the resulting contribution in composite galactic spectra.
Results: Well-known X-ray binary scaling relations with galactic SFR and M* emerge self-consistently, verifying our numerical approach. Average X-ray luminosity functions are perfectly reproduced up to the one-photon luminosity limit. Comparing our resulting LX − SFR − M* relation for X-ray binaries with recent observations of field galaxies in the Virgo galaxy cluster, we find significant overlap. Invoking a metallicity-dependent model for high-mass X-ray binaries yields an anticorrelation between mass-weighted stellar metallicity and SFR-normalized luminosity. The spatial distribution of high-mass X-ray binaries coincides with star-formation regions of simulated galaxies, while low-mass X-ray binaries follow the stellar mass surface density. X-ray binary emission is the dominant contribution in the hard X-ray band (2-10 keV) in the absence of an actively accreting central super-massive black hole, and it provides a ∼50% contribution in the soft X-ray band (0.5-2 keV), rivaling the hot gas component.
Conclusions: We conclude that our modeling remains consistent with observations despite the uncertainties connected to our approach. The predictive power and easily extendable framework hold great value for future investigations of galactic X-ray spectra.


(863)Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and P l a n c k . II. Cross-correlation measurements and cosmological constraints
  • C. Chang,
  • Y. Omori,
  • E. J. Baxter,
  • C. Doux,
  • A. Choi
  • +163
  • S. Pandey,
  • A. Alarcon,
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • K. Bechtol,
  • M. R. Becker,
  • G. M. Bernstein,
  • F. Bianchini,
  • J. Blazek,
  • L. E. Bleem,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • R. Chen,
  • J. Cordero,
  • T. M. Crawford,
  • M. Crocce,
  • C. Davis,
  • J. DeRose,
  • S. Dodelson,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • O. Friedrich,
  • M. Gatti,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • I. Harrison,
  • K. Herner,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • M. Jarvis,
  • A. Kovacs,
  • E. Krause,
  • N. Kuropatkin,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • N. MacCrann,
  • J. McCullough,
  • J. Muir,
  • J. Myles,
  • A. Navarro-Alsina,
  • Y. Park,
  • A. Porredon,
  • J. Prat,
  • M. Raveri,
  • R. P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • E. S. Rykoff,
  • C. Sánchez,
  • J. Sanchez,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • T. M. C. Abbott,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • B. A. Benson,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D. L. Burke,
  • J. E. Carlstrom,
  • J. Carretero,
  • C. L. Chang,
  • R. Chown,
  • M. Costanzi,
  • L. N. da Costa,
  • A. T. Crites,
  • M. E. S. Pereira,
  • T. de Haan,
  • J. De Vicente,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • P. Doel,
  • W. Everett,
  • I. Ferrero,
  • B. Flaugher,
  • D. Friedel,
  • J. Frieman,
  • J. García-Bellido,
  • E. Gaztanaga,
  • E. M. George,
  • T. Giannantonio,
  • N. W. Halverson,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • D. J. James,
  • L. Knox,
  • K. Kuehn,
  • O. Lahav,
  • A. T. Lee,
  • M. Lima,
  • D. Luong-Van,
  • M. March,
  • J. J. McMahon,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • T. Natoli,
  • S. Padin,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • C. Pryke,
  • C. L. Reichardt,
  • M. Rodríguez-Monroy,
  • A. K. Romer,
  • J. E. Ruhl,
  • E. Sanchez,
  • K. K. Schaffer,
  • M. Schubnell,
  • S. Serrano,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • G. Tarle,
  • D. Thomas,
  • C. To,
  • J. D. Vieira,
  • J. Weller,
  • R. Williamson,
  • DES,
  • SPT Collaborations
  • (less)
abstract + abstract -

Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of Ωm=0.272-0.052+0.032 and S8≡σ8√{Ωm/0.3 }=0.736-0.028+0.032m=0.245-0.044+0.026 and S8=0.734-0.028+0.035 ) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find Ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034 . Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck.


(862)Towards a population synthesis of discs and planets. II. Confronting disc models and observations at the population level
  • Alexandre Emsenhuber,
  • Remo Burn,
  • Jesse Weder,
  • Kristina Monsch,
  • Giovanni Picogna
  • +2
  • Barbara Ercolano,
  • Thomas Preibisch
  • (less)
abstract + abstract -

Aims. We want to find the distribution of initial conditions that best reproduces disc observations at the population level. Methods. We first ran a parameter study using a 1D model that includes the viscous evolution of a gas disc, dust, and pebbles, coupled with an emission model to compute the millimetre flux observable with ALMA. This was used to train a machine learning surrogate model that can compute the relevant quantity for comparison with observations in seconds. This surrogate model was used to perform parameter studies and synthetic disc populations. Results. Performing a parameter study, we find that internal photoevaporation leads to a lower dependency of disc lifetime on stellar mass than external photoevaporation. This dependence should be investigated in the future. Performing population synthesis, we find that under the combined losses of internal and external photoevaporation, discs are too short lived. Conclusions. To match observational constraints, future models of disc evolution need to include one or a combination of the following processes: infall of material to replenish the discs, shielding of the disc from internal photoevaporation due to magnetically driven disc winds, and extinction of external high-energy radiation. Nevertheless, disc properties in low-external-photoevaporation regions can be reproduced by having more massive and compact discs. Here, the optimum values of the $\alpha$ viscosity parameter lie between $3\times10^{-4}$ and $10^{-3}$ and with internal photoevaporation being the main mode of disc dispersal.


(861)Implications for the Δ A<SUB>F B</SUB> anomaly in B<SUP>¯0</SUP>→D<SUP>*+</SUP><SUP>ℓ-</SUP>ν ¯ using a new Monte Carlo event generator
  • Bhubanjyoti Bhattacharya,
  • Thomas E. Browder,
  • Quinn Campagna,
  • Alakabha Datta,
  • Shawn Dubey
  • +2
  • Lopamudra Mukherjee,
  • Alexei Sibidanov
  • (less)
Physical Review D (01/2023) doi:10.1103/PhysRevD.107.015011
abstract + abstract -

Recent experimental results in B physics from Belle, BABAR, and LHCb suggest new physics (NP) in the weak b →c charged-current processes. Here we focus specifically on the decay modes B¯0→D*+ℓ-ν¯ with ℓ=e and μ . The world averages of the ratios RD and RD* currently differ from the Standard Model (SM) predictions by 3.4 σ while recently a new anomaly has been observed in the forward-backward asymmetry measurement, AFB , in B¯0→D*+μ-ν ¯ decay. It is found that Δ AFB=AFB(B →D*μ ν )-AFB(B →D*e ν ) is around 4.1 σ away from the SM prediction in an analysis of 2019 Belle data. In this work we explore possible solutions to the Δ AFB anomaly and point out correlated NP signals in other angular observables. These correlations between angular observables must be present in the case of beyond the Standard Model physics. We stress the importance of Δ type observables that are obtained by taking the difference of the observable for the muon and the electron mode. These quantities cancel form-factor uncertainties in the SM and allow for clean tests of NP. These intriguing results also suggest an urgent need for improved simulation and analysis techniques in B¯0→D*+ℓ-ν¯ decays. Here we also describe a new Monte Carlo event generator tool based on EVTGEN that we developed to allow simulation of the NP signatures in B¯0→D*+ℓ-ν, which arise due to the interference between the SM and NP amplitudes. We then discuss prospects for improved observables sensitive to NP couplings with 1, 5, 50, and 250 ab -1 of Belle II data, which seem to be ideally suited for this class of measurements.


(860)Metal enrichment of ionised and neutral gas of galaxies in the EAGLE simulations
  • M. Arabsalmani,
  • L. Garratt-Smithson,
  • N. Wijers,
  • J. Schaye,
  • A. Burkert
  • +5
  • C. D. P. Lagos,
  • E. Le Floc'h,
  • D. Obreschkow,
  • C. Peroux,
  • B. Schneider
  • (less)
abstract + abstract -

We study the relation between the metallicities of ionised and neutral gas in star-forming galaxies at z=1-3 using the EAGLE cosmological, hydrodynamical simulations. This is done by constructing a dense grid of sightlines through the simulated galaxies and obtaining the star formation rate- and HI column density-weighted metallicities, Z_{SFR} and Z_{HI}, for each sightline as proxies for the metallicities of ionised and neutral gas, respectively. We find Z_{SFR} > Z_{HI} for almost all sightlines, with their difference generally increasing with decreasing metallicity. The stellar masses of galaxies do not have a significant effect on this trend, but the positions of the sightlines with respect to the galaxy centres play an important role: the difference between the two metallicities decreases when moving towards the galaxy centres, and saturates to a minimum value in the central regions of galaxies, irrespective of redshift and stellar mass. This implies that the mixing of the two gas phases is most efficient in the central regions of galaxies where sightlines generally have high column densities of HI. However, a high HI column density alone does not guarantee a small difference between the two metallicities. In galaxy outskirts, the inefficiency of the mixing of star-forming gas with HI seems to dominate over the dilution of heavy elements in HI through mixing with the pristine gas. We find good agreement between the limited amount of available observational data and the Z_{SFR}-Z_{HI} relation predicted by the EAGLE simulations, but more data is required for stringent tests.


RU-A
(859)Standard Model predictions for rare K and B decays without new physics infection
  • Andrzej J. Buras
European Physical Journal C (01/2023) doi:10.1140/epjc/s10052-023-11222-6
abstract + abstract -

The Standard Model (SM) does not contain by definition any new physics (NP) contributions to any observable but contains four CKM parameters which are not predicted by this model. We point out that if these four parameters are determined in a global fit which includes processes that are infected by NP and therefore by sources outside the SM, the resulting so-called SM contributions to rare decay branching ratios cannot be considered as genuine SM contributions to the latter. On the other hand genuine SM predictions, that are free from the CKM dependence, can be obtained for suitable ratios of the K and B rare decay branching ratios to Δ Ms , Δ Md and | εK| , all calculated within the SM. These three observables contain by now only small hadronic uncertainties and are already well measured so that rather precise SM predictions for the ratios in question can be obtained. In this context the rapid test of NP infection in the Δ F =2 sector is provided by a | Vcb|-γ plot that involves Δ Ms , Δ Md , | εK| , and the mixing induced CP-asymmetry Sψ KS. As with the present hadronic matrix elements this test turns out to be negative, assuming negligible NP infection in the Δ F =2 sector and setting the values of these four observables to the experimental ones, allows to obtain SM predictions for all K and B rare decay branching ratios that are most accurate to date and as a byproduct to obtain the full CKM matrix on the basis of Δ F =2 transitions alone. Using this strategy we obtain SM predictions for 26 branching ratios for rare semileptonic and leptonic K and B decays with the μ+μ- pair or the ν ν ¯ pair in the final state. Most interesting turn out to be the anomalies in the low q2 bin in B+→K+μ+μ- (5.1 σ ) and Bs→ϕ μ+μ- (4.8 σ ).


(858)Disintegration of beauty: a precision study
  • Alexander Lenz,
  • Maria Laura Piscopo,
  • Aleksey V. Rusov
Journal of High Energy Physics (01/2023) doi:10.1007/JHEP01(2023)004
abstract + abstract -

We update the Standard Model (SM) predictions for B-meson lifetimes within the heavy quark expansion (HQE). Including for the first time the contribution of the Darwin operator, SU(3)F breaking corrections to the matrix element of dimension-six four-quark operators and the so-called eye-contractions, we obtain for the total widths Γ (B+)=(0.58−0.07+0.11)ps−1,Γ (Bd)=(0.63−0.07+0.11)ps−1,Γ (Bs)=(0.63−0.07+0.11)ps−1, and for the lifetime ratios τ(B+)/τ(Bd) = 1.086 ± 0.022, τ(Bs)/τ(Bd) = 1.003 ± 0.006 (1.028 ± 0.011). The two values for the last observable arise from using two different sets of input for the non-perturbative parameters μπ2(Bd),μG2(Bd), and ρD3(Bd) as well as from different estimates of the SU(3)F breaking in these parameters. Our results are overall in very good agreement with the corresponding experimental data, however, there seems to emerge a tension in τ(Bs)/τ(Bd) when considering the second set of input parameters. Specifically, this observable is extremely sensitive to the size of the parameter ρD3(Bd) and of the SU(3)F breaking effects in μπ2G2 and ρD3; hence, it is of utmost importance to be able to better constrain all these parameters. In this respect, an extraction of μπ2(Bs),μG2(Bs),ρD3(Bs) from future experimental data on inclusive semileptonic Bs-meson decays or from direct non-perturbative calculations, as well as more insights about the value of ρD3(B ) extracted from fits to inclusive semileptonic B-decays, would be very helpful in reducing the corresponding theory uncertainties.


(857)STRIDES: automated uniform models for 30 quadruply imaged quasars
  • T. Schmidt,
  • T. Treu,
  • S. Birrer,
  • A. J. Shajib,
  • C. Lemon
  • +67
  • M. Millon,
  • D. Sluse,
  • A. Agnello,
  • T. Anguita,
  • M. W. Auger-Williams,
  • R. G. McMahon,
  • V. Motta,
  • P. Schechter,
  • C. Spiniello,
  • I. Kayo,
  • F. Courbin,
  • S. Ertl,
  • C. D. Fassnacht,
  • J. A. Frieman,
  • A. More,
  • S. Schuldt,
  • S. H. Suyu,
  • M. Aguena,
  • F. Andrade-Oliveira,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • D. Brooks,
  • D. L. Burke,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • C. Conselice,
  • M. Costanzi,
  • L. N. da Costa,
  • M. E. S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • P. Doel,
  • S. Everett,
  • I. Ferrero,
  • D. Friedel,
  • J. García-Bellido,
  • E. Gaztanaga,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • S. R. Hinton,
  • D. L. Hollowood,
  • K. Honscheid,
  • D. J. James,
  • K. Kuehn,
  • O. Lahav,
  • F. Menanteau,
  • R. Miquel,
  • A. Palmese,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • J. Prat,
  • M. Rodriguez-Monroy,
  • A. K. Romer,
  • E. Sanchez,
  • V. Scarpine,
  • I. Sevilla-Noarbe,
  • M. Smith,
  • E. Suchyta,
  • G. Tarle,
  • C. To,
  • T. N. Varga,
  • DES Collaboration
  • (less)
Monthly Notices of the Royal Astronomical Society (01/2023) doi:10.1093/mnras/stac2235
abstract + abstract -

Gravitational time delays provide a powerful one-step measurement of H0, independent of all other probes. One key ingredient in time-delay cosmography are high-accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (105-106 CPU hours and ~0.5-1 yr, respectively). Major improvements in modelling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, we develop an automated modelling pipeline and apply it to a sample of 31 lens systems, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in the Fermat potential (proportional to time delay) with respect to modelling choices. We find that for 10/30 lenses, our models are cosmography or nearly cosmography grade (<3 per cent and 3-5 per cent variations). For 6/30 lenses, the models are close to cosmography grade (5-10 per cent). These results utilize informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modelling sequence and options. In conclusion, we show that uniform cosmography grade modelling of large strong lens samples is within reach.


(856)Strong gravitational lensing and microlensing of supernovae
  • Sherry H. Suyu,
  • Ariel Goobar,
  • Thomas Collett,
  • Anupreeta More,
  • Giorgos Vernardos
abstract + abstract -

Strong gravitational lensing and microlensing of supernovae (SNe) are emerging as a new probe of cosmology and astrophysics in recent years. We provide an overview of this nascent research field, starting with a summary of the first discoveries of strongly lensed SNe. We describe the use of the time delays between multiple SN images as a way to measure cosmological distances and thus constrain cosmological parameters, particularly the Hubble constant, whose value is currently under heated debates. New methods for measuring the time delays in lensed SNe have been developed, and the sample of lensed SNe from the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to provide competitive cosmological constraints. Lensed SNe are also powerful astrophysical probes. We review the usage of lensed SNe to constrain SN progenitors, acquire high-z SN spectra through lensing magnifications, infer SN sizes via microlensing, and measure properties of dust in galaxies. The current challenge in the field is the rarity and difficulty in finding lensed SNe. We describe various methods and ongoing efforts to find these spectacular explosions, forecast the properties of the expected sample of lensed SNe from upcoming surveys particularly the LSST, and summarize the observational follow-up requirements to enable the various scientific studies. We anticipate the upcoming years to be exciting with a boom in lensed SN discoveries.


(855)KiDS-1000 cosmology: Constraints from density split statistics
  • Pierre A. Burger,
  • Oliver Friedrich,
  • Joachim Harnois-Déraps,
  • Peter Schneider,
  • Marika Asgari
  • +11
  • Maciej Bilicki,
  • Hendrik Hildebrandt,
  • Angus H. Wright,
  • Tiago Castro,
  • Klaus Dolag,
  • Catherine Heymans,
  • Benjamin Joachimi,
  • Konrad Kuijken,
  • Nicolas Martinet,
  • HuanYuan Shan,
  • Tilman Tröster
  • (less)
Astronomy and Astrophysics (01/2023) doi:10.1051/0004-6361/202244673
abstract + abstract -

Context. Weak lensing and clustering statistics beyond two-point functions can capture non-Gaussian information about the matter density field, thereby improving the constraints on cosmological parameters relative to the mainstream methods based on correlation functions and power spectra.
Aims: This paper presents a cosmological analysis of the fourth data release of the Kilo Degree Survey based on the density split statistics, which measures the mean shear profiles around regions classified according to foreground densities. The latter is constructed from a bright galaxy sample, which we further split into red and blue samples, allowing us to probe their respective connection to the underlying dark matter density.
Methods: We used the state-of-the-art model of the density splitting statistics and validated its robustness against mock data infused with known systematic effects such as intrinsic galaxy alignment and baryonic feedback.
Results: After marginalising over the photometric redshift uncertainty and the residual shear calibration bias, we measured for the full KiDS-bright sample a structure growth parameter of S_8\equiv σ8 \sqrt{Ωm/0.3}=0.73+0.03-0.02 that is competitive and consistent with two-point cosmic shear results, a matter density of Ωm = 0.27 ± 0.02, and a constant galaxy bias of b = 1.37 ± 0.10.


(854)Asymptotic symmetries and memories of gauge theories in FLRW spacetimes
  • Martín Enríquez Rojo,
  • Tobias Schröder
Journal of High Energy Physics (01/2023) doi:10.1007/JHEP01(2023)011
abstract + abstract -

In this paper, we investigate the asymptotic structure of gauge theories in decelerating and spatially flat Friedmann-Lemaître-Robertson-Walker universes. Firstly, we thoroughly explore the asymptotic symmetries of electrodynamics in this background, which reveals a major inconsistency already present in the flat case. Taking advantage of this treatment, we derive the associated memory effects, discussing their regime of validity and differences with respect to their flat counterparts. Next, we extend our analysis to non-Abelian Yang-Mills, coupling it dynamically and simultaneously to a Dirac spinor and a complex scalar field. Within this novel setting, we examine the possibility of constructing Poisson superbrackets based on the covariant phase space formalism.


(853)Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints
  • T. M. C. Abbott,
  • M. Aguena,
  • A. Alarcon,
  • O. Alves,
  • A. Amon
  • +168
  • F. Andrade-Oliveira,
  • J. Annis,
  • B. Ansarinejad,
  • S. Avila,
  • D. Bacon,
  • E. J. Baxter,
  • K. Bechtol,
  • M. R. Becker,
  • B. A. Benson,
  • G. M. Bernstein,
  • E. Bertin,
  • J. Blazek,
  • L. E. Bleem,
  • S. Bocquet,
  • D. Brooks,
  • E. Buckley-Geer,
  • D. L. Burke,
  • H. Camacho,
  • A. Campos,
  • J. E. Carlstrom,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • J. Carretero,
  • R. Cawthon,
  • C. Chang,
  • C. L. Chang,
  • R. Chen,
  • A. Choi,
  • R. Chown,
  • C. Conselice,
  • J. Cordero,
  • M. Costanzi,
  • T. Crawford,
  • A. T. Crites,
  • M. Crocce,
  • L. N. da Costa,
  • C. Davis,
  • T. M. Davis,
  • T. de Haan,
  • J. De Vicente,
  • J. DeRose,
  • S. Desai,
  • H. T. Diehl,
  • M. A. Dobbs,
  • S. Dodelson,
  • P. Doel,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T. F. Eifler,
  • F. Elsner,
  • J. Elvin-Poole,
  • S. Everett,
  • W. Everett,
  • X. Fang,
  • I. Ferrero,
  • A. Ferté,
  • B. Flaugher,
  • P. Fosalba,
  • O. Friedrich,
  • J. Frieman,
  • J. García-Bellido,
  • M. Gatti,
  • E. M. George,
  • T. Giannantonio,
  • G. Giannini,
  • D. Gruen,
  • R. A. Gruendl,
  • J. Gschwend,
  • G. Gutierrez,
  • N. W. Halverson,
  • I. Harrison,
  • K. Herner,
  • S. R. Hinton,
  • G. P. Holder,
  • D. L. Hollowood,
  • W. L. Holzapfel,
  • K. Honscheid,
  • J. D. Hrubes,
  • H. Huang,
  • E. M. Huff,
  • D. Huterer,
  • B. Jain,
  • D. J. James,
  • M. Jarvis,
  • T. Jeltema,
  • S. Kent,
  • L. Knox,
  • A. Kovacs,
  • E. Krause,
  • K. Kuehn,
  • N. Kuropatkin,
  • O. Lahav,
  • A. T. Lee,
  • P. -F. Leget,
  • P. Lemos,
  • A. R. Liddle,
  • C. Lidman,
  • D. Luong-Van,
  • J. J. McMahon,
  • N. MacCrann,
  • M. March,
  • J. L. Marshall,
  • P. Martini,
  • J. McCullough,
  • P. Melchior,
  • F. Menanteau,
  • S. S. Meyer,
  • R. Miquel,
  • L. Mocanu,
  • J. J. Mohr,
  • R. Morgan,
  • J. Muir,
  • J. Myles,
  • T. Natoli,
  • A. Navarro-Alsina,
  • R. C. Nichol,
  • Y. Omori,
  • S. Padin,
  • S. Pandey,
  • Y. Park,
  • F. Paz-Chinchón,
  • M. E. S. Pereira,
  • A. Pieres,
  • A. A. Plazas Malagón,
  • A. Porredon,
  • J. Prat,
  • C. Pryke,
  • M. Raveri,
  • C. L. Reichardt,
  • R. P. Rollins,
  • A. K. Romer,
  • A. Roodman,
  • R. Rosenfeld,
  • A. J. Ross,
  • J. E. Ruhl,
  • E. S. Rykoff,
  • C. Sánchez,
  • E. Sanchez,
  • J. Sanchez,
  • K. K. Schaffer,
  • L. F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • E. Shirokoff,
  • M. Smith,
  • Z. Staniszewski,
  • A. A. Stark,
  • E. Suchyta,
  • M. E. C. Swanson,
  • G. Tarle,
  • C. To,
  • M. A. Troxel,
  • I. Tutusaus,
  • T. N. Varga,
  • J. D. Vieira,
  • N. Weaverdyck,
  • R. H. Wechsler,
  • J. Weller,
  • R. Williamson,
  • W. L. K. Wu,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • DES,
  • SPT Collaborations
  • (less)
Physical Review D (01/2023) doi:10.1103/PhysRevD.107.023531
abstract + abstract -

We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT +P l a n c k CMB lensing, we find Ωm=0.344 ±0.030 and S8≡σ8m/0.3 )0.5=0.773 ±0.016 , assuming Λ CDM . When additionally combining with measurements of the CMB lensing autospectrum, we find Ωm=0.306-0.021+0.018 and S8=0.792 ±0.012 . The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the REDMAGIC galaxies and high-redshift MAGLIM galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems.


(852)X-ray emission from a rapidly accreting narrow-line Seyfert 1 galaxy at z = 6.56
  • J. Wolf,
  • K. Nandra,
  • M. Salvato,
  • J. Buchner,
  • M. Onoue
  • +12
  • T. Liu,
  • R. Arcodia,
  • A. Merloni,
  • S. Ciroi,
  • F. Di Mille,
  • V. Burwitz,
  • M. Brusa,
  • R. Ishimoto,
  • N. Kashikawa,
  • Y. Matsuoka,
  • T. Urrutia,
  • S. G. H. Waddell
  • (less)
Astronomy and Astrophysics (01/2023) doi:10.1051/0004-6361/202244688
abstract + abstract -

Context. The space density of X-ray-luminous, blindly selected active galactic nuclei (AGN) traces the population of rapidly accreting super-massive black holes through cosmic time. It is encoded in the X-ray luminosity function, whose bright end remains poorly constrained in the first billion years after the Big Bang as X-ray surveys have thus far lacked the required cosmological volume. With the eROSITA Final Equatorial-Depth Survey (eFEDS), the largest contiguous and homogeneous X-ray survey to date, X-ray AGN population studies can now be extended to new regions of the luminosity-redshift space (L2 − 10 keV > 1045 erg s−1 and z > 6).
Aims: The current study aims at identifying luminous quasars at z > 5.7 among X-ray-selected sources in the eFEDS field in order to place a lower limit on black hole accretion well into the epoch of re-ionisation. A secondary goal is the characterisation of the physical properties of these extreme coronal emitters at high redshifts.
Methods: Cross-matching eFEDS catalogue sources to optical counterparts from the DESI Legacy Imaging Surveys, we confirm the low significance detection with eROSITA of a previously known, optically faint z = 6.56 quasar from the Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs) survey. We obtained a pointed follow-up observation of the source with the Chandra X-ray telescope in order to confirm the low-significance eROSITA detection. Using new near-infrared spectroscopy, we derived the physical properties of the super-massive black hole. Finally, we used this detection to infer a lower limit on the black hole accretion density rate at z > 6.
Results: The Chandra observation confirms the eFEDS source as the most distant blind X-ray detection to date. The derived X-ray luminosity is high with respect to the rest-frame optical emission of the quasar. With a narrow MgII line, low derived black hole mass, and high Eddington ratio, as well as its steep photon index, the source shows properties that are similar to local narrow-line Seyfert 1 galaxies, which are thought to be powered by young super-massive black holes. In combination with a previous high-redshift quasar detection in the field, we show that quasars with L2 − 10 keV > 1045 erg s−1 dominate accretion onto super-massive black holes at z ∼ 6.


(851)An 600 pc View of the Strongly Lensed, Massive Main-sequence Galaxy J0901: A Baryon-dominated, Thick Turbulent Rotating Disk with a Clumpy Cold Gas Ring at z = 2.259
  • Daizhong Liu,
  • N. M. Förster Schreiber,
  • R. Genzel,
  • D. Lutz,
  • S. H. Price
  • +17
  • L. L. Lee,
  • Andrew J. Baker,
  • A. Burkert,
  • R. T. Coogan,
  • R. I. Davies,
  • R. L. Davies,
  • R. Herrera-Camus,
  • Tadayuki Kodama,
  • Minju M. Lee,
  • A. Nestor,
  • C. Pulsoni,
  • A. Renzini,
  • Chelsea E. Sharon,
  • T. T. Shimizu,
  • L. J. Tacconi,
  • Ken-ichi Tadaki,
  • H. Übler
  • (less)
The Astrophysical Journal (01/2023) doi:10.3847/1538-4357/aca46b
abstract + abstract -

We present a high-resolution kinematic study of the massive main-sequence star-forming galaxy (SFG) SDSS J090122.37+181432.3 (J0901) at z = 2.259, using ~0.″36 Atacama Large Millimeter/submillimeter Array CO(3-2) and ~0.″1-0.″5 SINFONI/VLT Hα observations. J0901 is a rare, strongly lensed but otherwise normal massive ( $\mathrm{log}({M}_{\star }/{M}_{\odot })\sim 11$ ) main-sequence SFG, offering a unique opportunity to study a typical massive SFG under the microscope of lensing. Through forward dynamical modeling incorporating lensing deflection, we fit the CO and Hα kinematics in the image plane out to about one disk effective radius (R e ~ 4 kpc) at an ~600 pc delensed physical resolution along the kinematic major axis. Our results show high intrinsic dispersions of the cold molecular and warm ionized gas (σ 0,mol. ~ 40 km s-1 and σ 0,ion. ~ 66 km s-1) that remain constant out to R e; a moderately low dark matter fraction (f DM ~ 0.3-0.4) within R e; and a centrally peaked Toomre Q parameter-agreeing well with the previously established σ 0 versus z, f DM versus Σbaryon, and Q's radial trends using large-sample non-lensed main-sequence SFGs. Our data further reveal a high stellar mass concentration within ~1-2 kpc with little molecular gas, and a clumpy molecular gas ring-like structure at R ~ 2-4 kpc, in line with the inside-out quenching scenario. Our further analysis indicates that J0901 had assembled half of its stellar mass only ~400 Myr before its observed cosmic time, and the cold gas ring and dense central stellar component are consistent with signposts of a recent wet compaction event of a highly turbulent disk found in recent simulations.


(850)Is the star-formation rate in z 6 quasars overestimated?
  • Fabio Di Mascia,
  • Stefano Carniani,
  • Simona Gallerani,
  • Fabio Vito,
  • Andrea Pallottini
  • +2
  • Andrea Ferrara,
  • Milena Valentini
  • (less)
Monthly Notices of the Royal Astronomical Society (01/2023) doi:10.1093/mnras/stac3306
abstract + abstract -

The large total infrared (TIR) luminosities (LTIR; ≳1012 L) observed in z ~ 6 quasars are generally converted into high star-formation rates (SFRs; $\gtrsim\!{10}^2~{\rm M}_{\odot }\, {\rm yr}^{-1}$) of their host galaxies. However, these estimates rely on the assumption that dust heating is dominated by stellar radiation, neglecting the contribution from the central active galactic nucleus (AGN). We test the validity of this assumption by combining cosmological hydrodynamic simulations with radiative transfer calculations. We find that, when AGN radiation is included in the simulations, the mass (luminosity)-weighted dust temperature in the host galaxies increases from T ≈ 50 K (T ≈ 70 K) to T ≈ 80 K (T ≈ 200 K), suggesting that AGN effectively heats the bulk of dust in the host galaxy. We compute the AGN-host galaxy SFR from the synthetic spectral energy distribution by using standard SFR - LTIR relations, and compare the results with the 'true' values in the simulations. We find that the SFR is overestimated by a factor of ≈3 (≳10) for AGN bolometric luminosities of Lbol ≈ 1012 L (≳1013 L), implying that the SFRs of z ~ 6 quasars can be overestimated by over an order of magnitude.


(849)Covariance Matrix of Fast Radio Bursts Dispersion
  • Robert Reischke,
  • Steffen Hagstotz
abstract + abstract -

The dispersion of fast radio bursts (FRBs) is a measure of the large-scale electron distribution. It enables measurements of cosmological parameters, especially of the expansion rate and the cosmic baryon fraction. The number of events is expected to increase dramatically over the coming years, and of particular interest are bursts with identified host galaxy and therefore redshift information. In this paper, we explore the covariance matrix of the dispersion measure (DM) of FRBs induced by the large-scale structure, as bursts from a similar direction on the sky are correlated by long wavelength modes of the electron distribution. We derive analytical expressions for the covariance matrix and examine the impact on parameter estimation from the FRB dispersion measure - redshift relation. The covariance also contains additional information that is missed by analysing the events individually. For future samples containing over $\sim300$ FRBs with host identification over the full sky, the covariance needs to be taken into account for unbiased inference, and the effect increases dramatically for smaller patches of the sky.


(848)ALMACAL IX: Multiband ALMA survey for dusty star-forming galaxies and the resolved fractions of the cosmic infrared background
  • Jianhang Chen,
  • R. J. Ivison,
  • Martin A. Zwaan,
  • Ian Smail,
  • Anne Klitsch
  • +6
  • Céline Péroux,
  • Gergö Popping,
  • Andrew D. Biggs,
  • Roland Szakacs,
  • Aleksandra Hamanowicz,
  • Claudia Lagos
  • (less)
Monthly Notices of the Royal Astronomical Society (01/2023) doi:10.1093/mnras/stac2989
abstract + abstract -

Wide, deep, blind continuum surveys at submillimetre/millimetre (submm/mm) wavelengths are required to provide a full inventory of the dusty, distant Universe. However, conducting such surveys to the necessary depth, with sub-arcsec angular resolution, is prohibitively time-consuming, even for the most advanced submm/mm telescopes. Here, we report the most recent results from the ALMACAL project, which exploits the 'free' calibration data from the Atacama Large Millimetre/submillimetre Array (ALMA) to map the lines of sight towards and beyond the ALMA calibrators. ALMACAL has now covered 1001 calibrators, with a total sky coverage around 0.3 deg2, distributed across the sky accessible from the Atacama desert, and has accumulated more than 1000 h of integration. The depth reached by combining multiple visits to each field makes ALMACAL capable of searching for faint, dusty, star-forming galaxies (DSFGs), with detections at multiple frequencies to constrain the emission mechanism. Based on the most up-to-date ALMACAL data base, we report the detection of 186 DSFGs with flux densities down to S870 µm ~ 0.2 mJy, comparable with existing ALMA large surveys but less susceptible to cosmic variance. We report the number counts at five wavelengths between 870 μm and 3 mm, in ALMA bands 3, 4, 5, 6, and 7, providing a benchmark for models of galaxy formation and evolution. By integrating the observed number counts and the best-fitting functions, we also present the resolved fraction of the cosmic infrared background (CIB) and the CIB spectral shape. Combining existing surveys, ALMA has currently resolved about half of the CIB in the submm/mm regime.


(847)Effective Field Theories for Dark Matter Pairs in the Early Universe
  • S. Biondini,
  • N. Brambilla,
  • G. Qerimi,
  • A. Vairo
Letters in High Energy Physics (2023) doi:10.31526/LHEP.2023.375
abstract + abstract -

In this conference paper, we consider effective field theories of non-relativistic dark matter particles interacting with a light force mediator in the early expanding universe. We present a general framework, where to account in a systematic way for the relevant processes that may affect the dynamics during thermal freeze-out. In the temperature regime where near-threshold effects, most notably the formation of bound states and Sommerfeld enhancement, have a large impact on the dark matter relic density, we scrutinize possible contributions from higher excited states and radiative corrections in the annihilations and decays of dark-matter pairs.


(846)Unveiling the engine of the Sun: Measurements of the pp-chain solar neutrinos with Borexino
  • D. Guffanti,
  • A.C. Re,
  • O. Smirnov,
  • M. Agostini,
  • K. Altenmüller
  • +91
  • S. Appel,
  • V. Atroshchenko,
  • Z. Bagdasarian,
  • D. Basilico,
  • G. Bellini,
  • J. Benziger,
  • R. Biondi,
  • D. Bravo,
  • B. Caccianiga,
  • F. Calaprice,
  • A. Caminata,
  • P. Cavalcante,
  • A. Chepurnov,
  • D. D’Angelo,
  • S. Davini,
  • A. Derbin,
  • A.Di Giacinto,
  • V.Di Marcello,
  • X.F. Ding,
  • A.Di Ludovico,
  • L.Di Noto,
  • I. Drachnev,
  • A. Formozov,
  • D. Franco,
  • C. Galbiati,
  • C. Ghiano,
  • M. Giammarchi,
  • A. Goretti,
  • A.S. Göttel,
  • M. Gromov,
  • Aldo Ianni,
  • Andrea Ianni,
  • A. Jany,
  • D. Jeschke,
  • V. Kobychev,
  • G. Korga,
  • S. Kumaran,
  • M. Laubenstein,
  • E. Litvinovich,
  • P. Lombardi,
  • I. Lomskaya,
  • L. Ludhova,
  • G. Lukyanchenko,
  • L. Lukyanchenko,
  • I. Machulin,
  • J. Martyn,
  • E. Meroni,
  • M. Meyer,
  • L. Miramonti,
  • M. Misiaszek,
  • V. Muratova,
  • B. Neumair,
  • M. Nieslony,
  • R. Nugmanov,
  • L. Oberauer,
  • V. Orekhov,
  • F. Ortica,
  • M. Pallavicini,
  • L. Papp,
  • L. Pelicci,
  • Ö. Penek,
  • L. Pietrofaccia,
  • N. Pilipenko,
  • A. Pocar,
  • G. Raikov,
  • M.T. Ranalli,
  • G. Ranucci,
  • A. Razeto,
  • M. Redchuk,
  • A. Romani,
  • N. Rossi,
  • S. Schönert,
  • D. Semenov,
  • G. Settanta,
  • M. Skorokhvatov,
  • A. Singhal,
  • A. Sotnikov,
  • Y. Suvorov,
  • R. Tartaglia,
  • G. Testera,
  • J. Thurn,
  • E. Unzhakov,
  • F. Villante,
  • A. Vishneva,
  • R.B. Vogelaar,
  • F. von Feilitzsch,
  • M. Wojcik,
  • M. Wurm,
  • S. Zavatarelli,
  • K. Zuber,
  • G. Zuzel
  • (less)
abstract + abstract -

The details of the strategy adopted by the Borexino collaboration for successfully isolating the spectral components of the pp-chain neutrinos signal from residual backgrounds in the total energy spectrum will be presented.


(845)Calorimeter calibration of the ComPol CubeSat gamma-ray polarimeter
  • Ion Cojocari,
  • Matthias Meier,
  • Philippe Laurent,
  • Adrien Laviron,
  • Marco Arrigucci
  • +16
  • Marco Carminati,
  • Griseld Deda,
  • Carlo Fiorini,
  • Katrin Geigenberger,
  • Cynthia Glas,
  • Jochen Greiner,
  • Peter Hindenberger,
  • Pietro King,
  • Peter Lechner,
  • Martin Losekamm,
  • Susanne Mertens,
  • David Meßmann,
  • Sebastian Rückerl,
  • Lorenzo Toscano,
  • Ulrich Walter,
  • Michael Willers
  • (less)
Nucl.Instrum.Meth.A (2023) doi:10.1016/j.nima.2022.167662
abstract + abstract -

ComPol is a proposed CubeSat mission dedicated to long-term study of gamma-ray polarisation of astrophysical objects. Besides spectral and timing measurements, polarisation analysis can be a powerful tool in constraining current models of the geometry, magnetic field structure and acceleration mechanisms of different astrophysical sources. The ComPol payload is a Compton telescope optimised for polarimetry and consists of a 2 layer stacked detector configuration. The top layer, the scatterer, is a Silicon Drift Detector matrix developed by the Max Planck Institute for Physics and Politecnico di Milano. The second layer is a calorimeter consisting of a CeBr<math display="inline" id="d1e778" altimg="si10.svg"><msub><mrow/><mrow><mn>3</mn></mrow></msub></math> scintillator read-out by silicon photo-multipliers developed at CEA Saclay. This paper presents the results of the prototype calorimeter calibration campaign, executed in March 2022 at IJCLab Orsay and simulations of the expected performance of the polarimeter using updated performance figures of the detectors.


(844)The signature of large-scale turbulence driving on the structure of the interstellar medium
  • Colman,
  • T.,
  • Robitaille,
  • J.-F.,
  • Hennebelle
  • +19
  • P.,
  • Miville-Deschênes,
  • M.-A.,
  • Brucy,
  • N.,
  • Klessen,
  • R. S.,
  • Glover,
  • S. C. O.,
  • Soler,
  • J. D.,
  • Elia,
  • D.,
  • Traficante,
  • A.,
  • Molinari,
  • S.,
  • & Testi,
  • L
  • (less)
abstract + abstract -

The mechanisms that maintain turbulence in the interstellar medium (ISM) are still not identified. This work investigates how we can distinguish between two fundamental driving mechanisms: the accumulated effect of stellar feedback versus the energy injection from galactic scales. We perform a series of numerical simulations describing a stratified star-forming ISM subject to self-consistent stellar feedback. Large-scale external turbulent driving, of various intensities, is added to mimic galactic driving mechanisms. We analyse the resulting column density maps with a technique called Multi-scale non-Gaussian segmentation, which separates the coherent structures and the Gaussian background. This effectively discriminates between the various simulations and is a promising method to understand the ISM structure. In particular, the power spectrum of the coherent structures flattens above 60 pc when turbulence is driven only by stellar feedback. When large-scale driving is applied, the turn-over shifts to larger scales. A systematic comparison with the Large Magellanic Cloud (LMC) is then performed. Only 1 out of 25 regions has a coherent power spectrum that is consistent with the feedback-only simulation. A detailed study of the turn-over scale leads us to conclude that regular stellar feedback is not enough to explain the observed ISM structure on scales larger than 60 pc. Extreme feedback in the form of supergiant shells likely plays an important role but cannot explain all the regions of the LMC. If we assume ISM structure is generated by turbulence, another large-scale driving mechanism is needed to explain the entirety of the observations.

 


CN-3
CN-6
PhD Thesis
RU-A
(843)Modeling of the Galactic Cosmic-Ray Antiproton Flux and Development of a Multi-Purpose Active-Target Particle Telescope for Cosmic Rays
  • Thomas Pöschl - Advisor: Stephan Paul
Thesis (7/2022) link
abstract + abstract -

Cosmic rays are an excellent probe to study energetic processes in our galaxy. The measurement of antinuclei is particularly informative. In this thesis, the production and propagation of cosmic antiprotons in our galaxy is investigated. In addition, a novel detector concept based on scintillating plastic fibers coupled to silicon photomultipliers is presented. The detector shall be used for cosmic-ray studies in future.


CN-7
RU-A
(842)First measurement of massive virtual photon emission from N* baryon resonances
  • R. Abou Yassine,
  • J. Adamczewski-Musch,
  • O. Arnold,
  • E.T. Atomssa,
  • M. Becker
  • +116
  • C. Behnke,
  • J.C. Berger-Chen,
  • A. Blanco,
  • C. Blume,
  • M. Böhmer,
  • L. Chlad,
  • P. Chudoba,
  • I. Ciepal,
  • C. Deveaux,
  • D. Dittert,
  • J. Dreyer,
  • E. Epple,
  • L. Fabbietti,
  • P. Fonte,
  • C. Franco,
  • J. Friese,
  • I. Fröhlich,
  • J. Förtsch,
  • T. Galatyuk,
  • J.A. Garzon,
  • R. Gernhäuser,
  • R. Greifenhagen,
  • M. Grunwald,
  • M. Gumberidze,
  • S. Harabasz,
  • T. Heinz,
  • T. Hennino,
  • C. Höhne,
  • F. Hojeij,
  • R. Holzmann,
  • M. Idzik,
  • B. Kämpfer,
  • K-H. Kampert,
  • B. Kardan,
  • V. Kedych,
  • I. Koenig,
  • W. Koenig,
  • M. Kohls,
  • B.W. Kolb,
  • G. Korcyl,
  • G. Kornakov,
  • F. Kornas,
  • R. Kotte,
  • W. Krueger,
  • A. Kugler,
  • T. Kunz,
  • R. Lalik,
  • K. Lapidus,
  • S. Linev,
  • L. Lopes,
  • M. Lorenz,
  • T. Mahmoud,
  • L. Maier,
  • A. Malige,
  • J. Markert,
  • S. Maurus,
  • V. Metag,
  • J. Michel,
  • D.M. Mihaylov,
  • V. Mikhaylov,
  • A. Molenda,
  • C. Müntz,
  • R. Münzer,
  • L. Naumann,
  • K. Nowakowski,
  • J.-H. Otto,
  • Y. Parpottas,
  • M. Parschau,
  • C. Pauly,
  • V. Pechenov,
  • O. Pechenova,
  • J. Pietraszko,
  • T. Povar,
  • A. Prozorov,
  • W. Przygoda,
  • K. Pysz,
  • B. Ramstein,
  • N. Rathod,
  • P. Rodriguez-Ramos,
  • A. Rost,
  • P. Salabura,
  • T. Scheib,
  • N. Schild,
  • K. Schmidt-Sommerfeld,
  • H. Schuldes,
  • E. Schwab,
  • F. Scozzi,
  • F. Seck,
  • P. Sellheim,
  • J. Siebenson,
  • L. Silva,
  • U. Singh,
  • J. Smyrski,
  • S. Spataro,
  • S. Spies,
  • M.S. Stefaniak,
  • H. Ströbele,
  • J. Stroth,
  • P. Strzempek,
  • C. Sturm,
  • K. Sumara,
  • O. Svoboda,
  • M. Szala,
  • P. Tlusty,
  • M. Traxler,
  • H. Tsertos,
  • O. Vazquez-Doce,
  • V. Wagner,
  • A.A. Weber,
  • C. Wendisch,
  • M.G. Wiebusch,
  • J. Wirth,
  • H.P. Zbroszczyk,
  • E. Zherebtsova,
  • P. Zumbruch,
  • M. Zetenyi
  • (less)
abstract + abstract -

First information on the timelike electromagnetic structure of baryons in the second resonance region has been obtained from measurements of invariant mass and angular distributions in the quasi-free reaction $\pi^- p \to nee$ at $\sqrt{s_{\pi^- p}}$ = 1.49 GeV with the High Acceptance Di-Electron Spectrometer (HADES) detector at GSI using the pion beam impinging on a CH$_2$ target. We find a total cross section $\sigma (\pi^- p \to nee) = 2.97 \pm 0.07^{data} \pm 0.21^{acc} \pm 0.31^{\rm{Z}_{\rm{eff}}} \mu$b. Combined with the Partial Wave Analysis of the concurrently measured two-pion channel, these data sets provide a crucial test of Vector Meson Dominance (VMD) inspired models. The commonly used "strict VMD" approach strongly overestimates the $e^+e^-$ yield. Instead, approaches based on a VMD amplitude vanishing at small $e^+e^-$ invariant masses supplemented coherently by a direct photon amplitude provide a better agreement. A good description of the data is also obtained using a calculation of electromagnetic timelike baryon transition form factors in a covariant spectator-quark model, demonstrating the dominance of meson cloud effects. The angular distributions of $e^+e^-$ pairs demonstrate the contributions of virtual photons with longitudinal polarization, in contrast to real photons. The virtual photon angular dependence supports the dominance of J=3/2, I=1/2 contributions observed in both the $\gamma^{\star} n$ and the $\pi \pi n$ channels.


CN-2
CN-8
PhD Thesis
RU-D
(841)Hadean water-dew cycles drive the evolution of DNA and protocells.
  • Alan Ianeselli - Advisor: Dieter Braun
Thesis (4/2022) doi:10.5282/edoc.29754
abstract + abstract -

Liquid water is a fundamental requirement for any form of life. On Earth, it can ubiquitously be found in the form of bulk, fog or dew, and cycling between them requires a continuous influx of energy. These water evaporation-condensation cycles can be provided globally by the sun, or locally by differences in temperatures. Differentially heated rock pores on the Hadean Earth present the non-equilibrium conditions to evaporate bulk water and re-condense it as fog and dew. The resulting microscale bulk-dew cycles are driven by the surface tension of water and lead to periodic oscillations in the concentration of salts and molecules, pH and wet-dry states. [...]


CN-3
CN-4
PhD Thesis
RU-B
RU-C
RU-D
(840)Machine learning strong lensing
  • Stefan Schuldt - Advisor: Sherry Suyu
Thesis (4/2022) link
abstract + abstract -

The main focus of the dissertation is the development of a neural network to model fast and autonomusly strong gravitational lenses. For generating realistic training data, we developed a simulation pipeline that accepts real observed images, simulating only the gravitational lensing effect. We have further carried out a dedicated comparison on real lenses to traditionally obtained models. Besides this, we present NetZ, a photo-z network using a novel approach.


CN-7
RU-A
(839)Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources
  • Laura ŠerkšnytÄ--,
  • Stephan Königstorfer,
  • Philip von Doetinchem,
  • Laura Fabbietti,
  • Diego Mauricio Gomez-Coral
  • +6
  • Johannes Herms,
  • Alejandro Ibarra,
  • Thomas Pöschl,
  • Anirvan Shukla,
  • Andrew Strong,
  • Ivan Vorobyev
  • (less)
Physical Review D (4/2022) doi:10.1103/PhysRevD.105.083021
abstract + abstract -

Cosmic-ray antideuterons could be a key for the discovery of exotic phenomena in our Galaxy, such as dark-matter annihilations or primordial black hole evaporation. Unfortunately the theoretical predictions of the antideuteron flux at Earth are plagued with uncertainties from the mechanism of antideuteron production and propagation in the Galaxy. We present the most up-to-date calculation of the antideuteron fluxes from cosmic-ray collisions with the interstellar medium and from exotic processes. We include for the first time the antideuteron inelastic interaction cross section recently measured by the ALICE collaboration to account for the loss of antideuterons during propagation. In order to bracket the uncertainty in the expected fluxes, we consider several state-of-the-art models of antideuteron production and of cosmic-ray propagation.


CN-7
RU-A
(838)Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions
  • J. Adamczewski-Musch,
  • O. Arnold,
  • C. Behnke,
  • A. Belounnas,
  • A. Belyaev
  • +122
  • J.C. Berger-Chen,
  • A. Blanco,
  • C. Blume,
  • M. Böhmer,
  • P. Bordalo,
  • S. Chernenko,
  • L. Chlad,
  • I. Ciepał,
  • C. Deveaux,
  • J. Dreyer,
  • E. Epple,
  • L. Fabbietti,
  • O. Fateev,
  • P. Filip,
  • P. Fonte,
  • C. Franco,
  • J. Friese,
  • I. Fröhlich,
  • T. Galatyuk,
  • J.A. Garzon,
  • R. Gernhäuser,
  • S. Gläßel,
  • R. Greifenhagen,
  • F. Guber,
  • M. Gumberidze,
  • S. Harabasz,
  • T. Heinz,
  • T. Hennino,
  • S. Hlavac,
  • C. Höhne,
  • R. Holzmann,
  • A. Ierusalimov,
  • A. Ivashkin,
  • B. Kämpfer,
  • T. Karavicheva,
  • B. Kardan,
  • I. Koenig,
  • W. Koenig,
  • M. Kohls,
  • B.W. Kolb,
  • G. Korcyl,
  • G. Kornakov,
  • F. Kornas,
  • R. Kotte,
  • A. Kugler,
  • T. Kunz,
  • A. Kurepin,
  • A. Kurilkin,
  • P. Kurilkin,
  • V. Ladygin,
  • R. Lalik,
  • K. Lapidus,
  • A. Lebedev,
  • S. Linev,
  • L. Lopes,
  • M. Lorenz,
  • T. Mahmoud,
  • L. Maier,
  • A. Malige,
  • A. Mangiarotti,
  • J. Markert,
  • T. Matulewicz,
  • S. Maurus,
  • V. Metag,
  • J. Michel,
  • D.M. Mihaylov,
  • S. Morozov,
  • C. Müntz,
  • R. Münzer,
  • M. Nabroth,
  • L. Naumann,
  • K. Nowakowski,
  • Y. Parpottas,
  • M. Parschau,
  • V. Pechenov,
  • O. Pechenova,
  • O. Petukhov,
  • K. Piasecki,
  • J. Pietraszko,
  • W. Przygoda,
  • K. Pysz,
  • S. Ramos,
  • B. Ramstein,
  • N. Rathod,
  • A. Reshetin,
  • P. Rodriguez-Ramos,
  • P. Rosier,
  • A. Rost,
  • A. Rustamov,
  • A. Sadovsky,
  • P. Salabura,
  • T. Scheib,
  • H. Schuldes,
  • N. Schild,
  • E. Schwab,
  • F. Scozzi,
  • F. Seck,
  • P. Sellheim,
  • I. Selyuzhenkov,
  • J. Siebenson,
  • L. Silva,
  • U. Singh,
  • J. Smyrski,
  • Yu.G. Sobolev,
  • S. Spataro,
  • S. Spies,
  • H. Ströbele,
  • J. Stroth,
  • C. Sturm,
  • K. Sumara,
  • O. Svoboda,
  • M. Szala,
  • P. Tlusty,
  • M. Traxler,
  • H. Tsertos,
  • E. Usenko,
  • V. Wagner,
  • C. Wendisch,
  • M.G. Wiebusch,
  • J. Wirth,
  • Y. Zanevsky,
  • P. Zumbruch
  • (less)
abstract + abstract -

In nuclear collisions the incident protons generate a Coulomb field which acts on produced charged particles. The impact of these interactions on charged pion transverse-mass and rapidity spectra, as well as on pion-pion momentum correlations is investigated in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We show that the low-mt part of the data ($m_t < 0.2$ GeV/c$^2$) can be well described with a Coulomb-modified Boltzmann distribution that also takes changes of the Coulomb field during the expansion of the fireball into account. The observed centrality dependence of the fitted mean Coulomb potential deviates strongly from a $A_{part}^{2/3}$ scaling, indicating that, next to the fireball, the non-interacting charged spectators have to be taken into account. For the most central collisions, the Coulomb modifications of the HBT source radii are found to be consistent with the potential extracted from the single-pion transverse-mass distributions. This finding suggests that the region of homogeneity obtained from two-pion correlations coincides with the region in which the pions freeze-out. Using the inferred mean-square radius of the charge distribution at freeze-out, we have deduced a baryon density, in fair agreement with values obtained from statistical hadronization model fits to the particle yields.


(837)Second Analysis Ecosystem Workshop Report
  • Mohamed Aly,
  • Jackson Burzynski,
  • Bryan Cardwell,
  • Daniel C. Craik,
  • Tal van Daalen
  • +64
  • Tomas Dado,
  • Ayanabha Das,
  • Antonio Delgado Peris,
  • Caterina Doglioni,
  • Peter Elmer,
  • Engin Eren,
  • Martin B. Eriksen,
  • Jonas Eschle,
  • Giulio Eulisse,
  • Conor Fitzpatrick,
  • José Flix Molina,
  • Alessandra Forti,
  • Ben Galewsky,
  • Sean Gasiorowski,
  • Aman Goel,
  • Loukas Gouskos,
  • Enrico Guiraud,
  • Kanhaiya Gupta,
  • Stephan Hageboeck,
  • Allison Reinsvold Hall,
  • Lukas Heinrich,
  • Alexander Held,
  • José M. Hernández,
  • Michel Hernández Villanueva,
  • Julius Hrivnac,
  • Michel Jouvin,
  • Teng Jian Khoo,
  • Luke Kreczko,
  • Nils Krumnack,
  • Thomas Kuhr,
  • Baidyanath Kundu,
  • Eric Lancon,
  • Johannes Lange,
  • Paul Laycock,
  • Kilian Lieret,
  • Nicholas J. Manganelli,
  • Pere Mato Villa,
  • Andrzej Novak,
  • Antonio Perez-Calero Yzquierdo,
  • Jim Pivarski,
  • Mason Proffitt,
  • Jonas Rembser,
  • Eduardo Rodrigues,
  • Grigori Rybkin,
  • Jana Schaarschmidt,
  • Henry F. Schreiner,
  • Markus Schulz,
  • Andrea Sciabà,
  • Sezen Sekmen,
  • Elizabeth Sexton-Kennedy,
  • Oksana Shadura,
  • Tibor Simko,
  • Nathan Simpson,
  • Jaydip Singh,
  • Nicola Skidmore,
  • Nicholas Smith,
  • Michael Sokoloff,
  • Graeme A. Stewart,
  • Giles C. Strong,
  • Gokhan Unel,
  • Vassil Vassilev,
  • Mark Waterlaat,
  • Gordon Watts,
  • Efe Yazgan
  • (less)
abstract + abstract -

The second workshop on the HEP Analysis Ecosystem took place 23-25 May 2022 at IJCLab in Orsay, to look at progress and continuing challenges in scaling up HEP analysis to meet the needs of HL-LHC and DUNE, as well as the very pressing needs of LHC Run 3 analysis. The workshop was themed around six particular topics, which were felt to capture key questions, opportunities and challenges. Each topic arranged a plenary session introduction, often with speakers summarising the state-of-the art and the next steps for analysis. This was then followed by parallel sessions, which were much more discussion focused, and where attendees could grapple with the challenges and propose solutions that could be tried. Where there was significant overlap between topics, a joint discussion between them was arranged. In the weeks following the workshop the session conveners wrote this document, which is a summary of the main discussions, the key points raised and the conclusions and outcomes. The document was circulated amongst the participants for comments before being finalised here.


(836)Charm mass effects in the static energy computed in 2+1+1 flavor lattice QCD
  • Johannes Heinrich Weber,
  • Nora Brambilla,
  • Rafael L. Delgado,
  • Andreas Kronfeld,
  • Viljami Leino
  • +3
  • Peter Petreczky,
  • Sebastian Steinbeißer,
  • Antonio Vairo
  • (less)
abstract + abstract -

We report our analysis for the static energy in (2+1+1)-flavor QCD over a wide range of lattice spacings and several quark masses. We obtain results for the static energy out to distances of nearly 1 fm, allowing us to perform a simultaneous determination of the lattice scales $r_2$, $r_1$ and $r_0$ as well as the string tension, $\sigma$. While our results for ${r_0}/{r_1}$ and $r_0$ $\sqrt{\sigma}$ agree with published (2+1)-flavor results, our result for ${r_1}/{r_2}$ differs significantly from the value obtained in the (2+1)-flavor case, likely due to the effect of the charm quark. We study in detail the effect of the charm quark on the static energy by comparing our results on the finest lattices with the previously published (2+1)-flavor QCD results at similar lattice spacing. The lattice results agree well with the two-loop perturbative expression of the static energy incorporating finite charm mass effects.


(835)Mildly Relativistic Perpendicular Multiple-ion GRB Shocks
  • Jonas M. Graw,
  • Martin S. Weidl,
  • Frank Jenko
The Astrophysical Journal (12/2022) doi:10.3847/1538-4357/ac9bf1
abstract + abstract -

Mildly relativistic perpendicular, collisionless multiple-ion gamma-ray burst shocks are analyzed using 2D3V particle-in-cell simulations. A characteristic feature of multiple-ion shocks is alternating maxima of the α particle and the proton densities, at least in the early downstream. Turbulence, shock-drift acceleration, and evidence of stochastic acceleration are observed. We performed simulations with both in-plane (B y ) and out-of-plane (B z ) magnetic fields, as well as in a perpendicular shock setup with φ = 45°, and saw multiple differences: while with B z , the highest-energetic particles mostly gain energy at the beginning of the shock, with B y , particles continue gaining energy and it does not appear that they have reached their final energy level. A larger magnetization σ leads to more high-energetic particles in our simulations. One important quantity for astronomers is the electron acceleration efficiency ϵ e , which is measurable due to synchrotron radiation. This quantity hardly changes when changing the amount of α particles while keeping σ constant. It is, however, noteworthy that ϵ e strongly differs for in-plane and out-of-plane magnetic fields. When looking at the proton and α acceleration efficiency, ϵ p and ϵ α , the energy of α particles always decreases when passing the shock into the downstream, whereas the energy of protons can increase if α particles account for the majority of the ions.


(834)The impact of dynamic pressure bumps on the observational properties of protoplanetary disks
  • Jochen Stadler,
  • Matías Gárate,
  • Paola Pinilla,
  • Christian Lenz,
  • Cornelis P. Dullemond
  • +2
  • Til Birnstiel,
  • Sebastian M. Stammler
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202243338
abstract + abstract -

Context. Over the last years, large (sub-)millimetre surveys of protoplanetary disks in different star forming regions have well constrained the demographics of disks, such as their millimetre luminosities, spectral indices, and disk radii. Additionally, several high-resolution observations have revealed an abundance of substructures in the disk's dust continuum. The most prominent are ring like structures, which are likely caused by pressure bumps trapping dust particles. The origins and characteristics of these pressure bumps, nevertheless, need to be further investigated.
Aims: The purpose of this work is to study how dynamic pressure bumps affect observational properties of protoplanetary disks. We further aim to differentiate between the planetary- versus zonal flow-origin of pressure bumps.
Methods: We perform one-dimensional gas and dust evolution simulations, setting up models with varying pressure bump features, including their amplitude and location, growth time, and number of bumps. We subsequently run radiative transfer calculations to obtain synthetic images, from which we obtain the different quantities of observations.
Results: We find that the outermost pressure bump determines the disk's dust size across different millimetre wavelengths and confirm that the observed dust masses of disks with optically thick inner bumps (<40 au) are underestimated by up to an order of magnitude. Our modelled dust traps need to form early (<0.1 Myr), fast (on viscous timescales), and must be long lived (>Myr) to obtain the observed high millimetre luminosities and low spectral indices of disks. While the planetary bump models can reproduce these observables irrespectively of the opacity prescription, the highest opacities are needed for the dynamic bump model, which mimics zonal flows in disks, to be in line with observations.
Conclusions: Our findings favour the planetary- over the zonal flow-origin of pressure bumps and support the idea that planet formation already occurs in early class 0-1 stages of circumstellar disks. The determination of the disk's effective size through its outermost pressure bump also delivers a possible answer to why disks in recent low-resolution surveys appear to have the same sizes across different millimetre wavelengths.


(833)Modelling photoevaporation in planet forming discs
  • Barbara Ercolano,
  • Giovanni Picogna
European Physical Journal Plus (12/2022) doi:10.1140/epjp/s13360-022-03515-8
abstract + abstract -

Planets are born from the gas and dust discs surrounding young stars. Energetic radiation from the central star can drive thermal outflows from the discs atmospheres, strongly affecting the evolution of the discs and the nascent planetary system. In this context, several numerical models of varying complexity have been developed to study the process of disc photoevaporation from their central stars. We describe the numerical techniques, the results and the predictivity of current models and identify observational tests to constrain them.


(832)Constraining the multi-scale dark-matter distribution in CASSOWARY 31 with strong gravitational lensing and stellar dynamics
  • H. Wang,
  • R. Cañameras,
  • G. B. Caminha,
  • S. H. Suyu,
  • A. Yıldırım
  • +4
  • G. Chirivì,
  • L. Christensen,
  • C. Grillo,
  • S. Schuldt
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202243600
abstract + abstract -

We study the inner structure of the group-scale lens CASSOWARY 31 (CSWA 31) by adopting both strong lensing and dynamical modeling. CSWA 31 is a peculiar lens system. The brightest group galaxy (BGG) is an ultra-massive elliptical galaxy at z = 0.683 with a weighted mean velocity dispersion of σ = 432 ± 31 km s−1. It is surrounded by group members and several lensed arcs probing up to ≃150 kpc in projection. Our results significantly improve on previous analyses of CSWA 31 thanks to the new HST imaging and MUSE integral-field spectroscopy. From the secure identification of five sets of multiple images and measurements of the spatially resolved stellar kinematics of the BGG, we conduct a detailed analysis of the multi-scale mass distribution using various modeling approaches, in both the single and multiple lens-plane scenarios. Our best-fit mass models reproduce the positions of multiple images and provide robust reconstructions for two background galaxies at z = 1.4869 and z = 2.763. Despite small variations related to the different sets of input constraints, the relative contributions from the BGG and group-scale halo are remarkably consistent in our three reference models, demonstrating the self-consistency between strong lensing analyses based on image position and extended image modeling. We find that the ultra-massive BGG dominates the projected total mass profiles within 20 kpc, while the group-scale halo dominates at larger radii. The total projected mass enclosed within Reff = 27.2 kpc is 1.10−0.04+0.02 × 1013 M. We find that CSWA 31 is a peculiar fossil group, strongly dark-matter dominated toward the central region, and with a projected total mass profile similar to higher-mass cluster-scale halos. The total mass-density slope within the effective radius is shallower than isothermal, consistent with previous analyses of early-type galaxies in overdense environments.

Full Table B.1 is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/668/A162


(831)Length Regulation Drives Self-Organization in Filament-Motor Mixtures
  • Moritz Striebel,
  • Fridtjof Brauns,
  • Erwin Frey
Physical Review Letters (12/2022) doi:10.1103/PhysRevLett.129.238102
abstract + abstract -

Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.


(830)Three-loop helicity amplitudes for quark-gluon scattering in QCD
  • Fabrizio Caola,
  • Amlan Chakraborty,
  • Giulio Gambuti,
  • Andreas von Manteuffel,
  • Lorenzo Tancredi
Journal of High Energy Physics (12/2022) doi:10.1007/JHEP12(2022)082
abstract + abstract -

We compute the three-loop helicity amplitudes for q q ¯ → gg and its crossed partonic channels, in massless QCD. Our analytical results provide a non-trivial check of the color quadrupole contribution to the infrared poles for external states in different color representations. At high energies, the qg → qg amplitude shows the predicted factorized form from Regge theory and confirms previous results for the gluon Regge trajectory extracted from qq' → qq' and gg → gg scattering.


(829)Rapid formation of massive planetary cores in a pressure bump
  • Tommy Chi Ho Lau,
  • Joanna Drążkowska,
  • Sebastian M. Stammler,
  • Tilman Birnstiel,
  • Cornelis P. Dullemond
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202244864
abstract + abstract -

Context. Models of planetary core growth by either planetesimal or pebble accretion are traditionally disconnected from the models of dust evolution and formation of the first gravitationally bound planetesimals. State-of-the-art models typically start with massive planetary cores already present.
Aims: We aim to study the formation and growth of planetary cores in a pressure bump, motivated by the annular structures observed in protoplanetary disks, starting with submicron-sized dust grains.
Methods: We connect the models of dust coagulation and drift, planetesimal formation in the streaming instability, gravitational interactions between planetesimals, pebble accretion, and planet migration into one uniform framework.
Results: We find that planetesimals forming early at the massive end of the size distribution grow quickly, predominantly by pebble accretion. These few massive bodies grow on timescales of ~100 000 yr and stir the planetesimals that form later, preventing the emergence of further planetary cores. Additionally, a migration trap occurs, allowing for retention of the growing cores.
Conclusions: Pressure bumps are favourable locations for the emergence and rapid growth of planetary cores by pebble accretion as the dust density and grain size are increased and the pebble accretion onset mass is reduced compared to a smooth-disc model.


(828)Strong lensing time-delay cosmography in the 2020s
  • Tommaso Treu,
  • Sherry H. Suyu,
  • Philip J. Marshall
Astronomy and Astrophysics Review (12/2022) doi:10.1007/s00159-022-00145-y
abstract + abstract -

Multiply imaged time-variable sources can be used to measure absolute distances as a function of redshifts and thus determine cosmological parameters, chiefly the Hubble Constant H0. In the two decades up to 2020, through a number of observational and conceptual breakthroughs, this so-called time-delay cosmography has reached a precision sufficient to be an important independent voice in the current "Hubble tension" debate between early- and late-universe determinations of H0. The 2020s promise to deliver major advances in time-delay cosmography, owing to the large number of lenses to be discovered by new and upcoming surveys and the vastly improved capabilities for follow-up and analysis. In this review, after a brief summary of the foundations of the method and recent advances, we outline the opportunities for the decade and the challenges that will need to be overcome in order to meet the goal of the determination of H0 from time-delay cosmography with 1% precision and accuracy.


(827)Implications of gradient flow on the static force
  • Nora Brambilla,
  • Viljami Leino,
  • Julian Mayer-Steudte,
  • Antonio Vairo
abstract + abstract -

We use gradient flow to compute the static force based on a Wilson loop with a chromoelectric field insertion. The result can be compared on one hand to the static force from the numerical derivative of the lattice static energy, and on the other hand to the perturbative calculation, allowing a precise extraction of the $\Lambda_0$ parameter. This study may open the way to gradient flow calculations of correlators of chromoelectric and chromomagnetic fields, which typically arise in the nonrelativistic effective field theory factorization.


(826)Voids fill us in on rising cosmology tensions
  • Sofia Contarini,
  • Alice Pisani,
  • Nico Hamaus,
  • Federico Marulli,
  • Lauro Moscardini
  • +1
abstract + abstract -

We investigate the main tensions within the current standard model of cosmology from the perspective of the void size function in BOSS DR12 data. For this purpose, we present the first cosmological constraints on the parameters $S_8\equiv \sigma_8\sqrt{\Omega_{\rm m}/0.3}$ and $H_0$ obtained from voids as a stand-alone probe. We rely on an extension of the popular volume-conserving model for the void size function, tailored to the application on data, including geometric and dynamic distortions. We calibrate the two nuisance parameters of this model with the official BOSS collaboration mock catalogs and propagate their uncertainty through the statistical analysis of the BOSS void number counts. We focus our analysis on the $\Omega_{\rm m}$--$\sigma_8$ and $\Omega_{\rm m}$--$H_0$ parameter planes and derive the marginalized constraints $S_8 = 0.78^{+0.16}_{-0.14}$ and $H_0=65.2^{+4.5}_{-3.6}$ $\mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-1}$. Our estimate of $S_8$ is fully compatible with constraints from the literature, while our $H_0$ value slightly disagrees by more than $1\sigma$ with recent local distance ladder measurements of type Ia supernovae. Our results open up a new viewing angle on the rising cosmological tensions and are expected to improve notably in precision when jointly analyzed with independent probes.


(825)Razor-thin dust layers in protoplanetary disks: Limits on the vertical shear instability
  • C. P. Dullemond,
  • A. Ziampras,
  • D. Ostertag,
  • C. Dominik
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202244218
abstract + abstract -

Context. Recent observations with the Atacama Large Millimeter Array (ALMA) have shown that the large dust aggregates observed at millimeter wavelengths settle to the midplane into a remarkably thin layer. This sets strong limits on the strength of the turbulence and other gas motions in these disks.
Aims: We intend to find out if the geometric thinness of these layers is evidence against the vertical shear instability (VSI) operating in these disks. We aim to verify if a dust layer consisting of large enough dust aggregates could remain geometrically thin enough to be consistent with the latest observations of these dust layers, even if the disk is unstable to the VSI. If this is falsified, then the observed flatness of these dust layers proves that these disks are stable against the VSI, even out to the large radii at which these dust layers are observed.
Methods: We performed hydrodynamic simulations of a protoplanetary disk with a locally isothermal equation of state, and let the VSI fully develop. We sprinkled dust particles with a given grain size at random positions near the midplane and followed their motion as they got stirred up by the VSI, assuming no feedback onto the gas. We repeated the experiment for different grain sizes and determined for which grain size the layer becomes thin enough to be consistent with ALMA observations. We then verified if, with these grain sizes, it is still possible (given the constraints of dust opacity and gravitational stability) to generate a moderately optically thick layer at millimeter wavelengths, as observations appear to indicate.
Results: We found that even very large dust aggregates with Stokes numbers close to unity get stirred up to relatively large heights above the midplane by the VSI, which is in conflict with the observed geometric thinness. For grains so large that the Stokes number exceeds unity, the layer can be made to remain thin, but we show that it is hard to make dust layers optically thick at ALMA wavelengths (e.g., τ1.3mm ≳ 1) with such large dust aggregates.
Conclusions: We conclude that protoplanetary disks with geometrically thin midplane dust layers cannot be VSI unstable, at least not down to the disk midplane. Explanations for the inhibition of the VSI out to several hundreds of au include a high dust-to-gas ratio of the midplane layer, a modest background turbulence, and/or a reduced dust-to-gas ratio of the small dust grains that are responsible for the radiative cooling of the disk. A reduction of small grains by a factor of between 10 and 100 is sufficient to quench the VSI. Such a reduction is plausible in dust growth models, and still consistent with observations at optical and infrared wavelengths.


(824)Comparing accretion flow morphology in numerical simulations of black holes from the ngEHT Model Library: the impact of radiation physics
  • Koushik Chatterjee,
  • Andrew Chael,
  • Paul Tiede,
  • Yosuke Mizuno,
  • Razieh Emami
  • +16
  • Christian Fromm,
  • Angelo Ricarte,
  • Lindy Blackburn,
  • Freek Roelofs,
  • Michael D. Johnson,
  • Sheperd S. Doeleman,
  • Philipp Arras,
  • Antonio Fuentes,
  • Jakob Knollmüller,
  • Nikita Kosogorov,
  • Greg Lindahl,
  • Hendrik Müller,
  • Nimesh Patel,
  • Alexander Raymond,
  • Thalia Traiano,
  • Justin Vega
  • (less)
abstract + abstract -

In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies so as to inform the ngEHT array design and analysis algorithm development. In this work, we take a look at the numerical fluid simulations used to construct the source models in the challenge set, which currently target M87* and Sgr A*. We have a rich set of models encompassing steady-state radiatively-inefficient accretion flows with time-dependent shearing hotspots, radiative and non-radiative general relativistic magneto-hydrodynamic simulations that incorporate electron heating and cooling. We find that the models exhibit remarkably similar temporal and spatial properties, except for the electron temperature since radiative losses substantially cool down electrons near the BH and the jet sheath. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work.


(823)The probability of galaxy-galaxy strong lensing events in hydrodynamical simulations of galaxy clusters
  • Massimo Meneghetti,
  • Antonio Ragagnin,
  • Stefano Borgani,
  • Francesco Calura,
  • Giulia Despali
  • +25
  • Carlo Giocoli,
  • Gian Luigi Granato,
  • Claudio Grillo,
  • Lauro Moscardini,
  • Elena Rasia,
  • Piero Rosati,
  • Giuseppe Angora,
  • Luigi Bassini,
  • Pietro Bergamini,
  • Gabriel B. Caminha,
  • Giovanni Granata,
  • Amata Mercurio,
  • Robert Benton Metcalf,
  • Priyamvada Natarajan,
  • Mario Nonino,
  • Giada Venusta Pignataro,
  • Cinthia Ragone-Figueroa,
  • Eros Vanzella,
  • Ana Acebron,
  • Klaus Dolag,
  • Giuseppe Murante,
  • Giuliano Taffoni,
  • Luca Tornatore,
  • Luca Tortorelli,
  • Milena Valentini
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202243779
abstract + abstract -

Context. An excess of galaxy-galaxy strong lensing (GGSL) in galaxy clusters compared to expectations from the Λ cold-dark-matter (CDM) cosmological model has recently been reported. Theoretical estimates of the GGSL probability are based on the analysis of numerical hydrodynamical simulations in ΛCDM cosmology.
Aims: We quantify the impact of the numerical resolution and active galactic nucleus (AGN) feedback scheme adopted in cosmological simulations on the predicted GGSL probability, and determine if varying these simulation properties can alleviate the gap with observations.
Methods: We analyze cluster-size halos (M200 > 5 × 1014 M) simulated with different mass and force resolutions and implementing several independent AGN feedback schemes. Our analysis focuses on galaxies with Einstein radii in the range 0.5 ≤ θE ≤ 3″.
Results: We find that improving the mass resolution by factors of 10 and 25, while using the same galaxy formation model that includes AGN feedback, does not affect the GGSL probability. We find similar results regarding the choice of gravitational softening. On the contrary, adopting an AGN feedback scheme that is less efficient at suppressing gas cooling and star formation leads to an increase in the GGSL probability by a factor of between 3 and 6. However, we notice that such simulations form overly massive galaxies whose contribution to the lensing cross section would be significant but that their Einstein radii are too large to be consistent with the observations. The primary contributors to the observed GGSL cross sections are galaxies with smaller masses that are compact enough to become critical for lensing. The population with these required characteristics appears to be absent from simulations. Conclusion. Based on these results, we reaffirm the tension between observations of GGSL and theoretical expectations in the framework of the ΛCDM cosmological model. The GGSL probability is sensitive to the galaxy formation model implemented in the simulations. Still, all the tested models have difficulty simultaneously reproducing the stellar mass function and the internal structure of galaxies.


CN-7
RU-A
(822)Evidence of a p-$\phi$ bound state
  • Emma Chizzali,
  • Yuki Kamiya,
  • Raffaele Del Grande,
  • Takumi Doi,
  • Laura Fabbietti
  • +2
abstract + abstract -

The existence of a nucleon-$\phi$ (N-$\phi$) bound state has been subject of theoretical and experimental investigations for decades. In this letter a re-analysis of the p-$\phi$ correlation measured at the LHC is presented, using as input recent lattice calculations of the N-$\phi$ interaction in the spin 3/2 channel obtained by the HAL QCD collaboration. A constrained fit of the experimental data allows to determine the spin 1/2 channel of the p-$\phi$ interaction with evidence of the formation of a p-$\phi$ bound state. The scattering length and effective range extracted from the spin 1/2 channel are $f_0^{(1/2)}=(-1.47^{+0.44}_{-0.37}(\mathrm{stat.})^{+0.14}_{-0.17}(\mathrm{syst.})+i\cdot0.00^{+0.26}_{-0.00}(\mathrm{stat.})^{+0.15}_{-0.00}(\mathrm{syst.}))$ fm and $d_0^{(1/2)}=(0.37^{+0.07}_{-0.08}(\mathrm{stat.})^{+0.03}_{-0.03}(\mathrm{syst.})+i\cdot~0.00^{+0.00}_{-0.02}(\mathrm{stat.})^{+0.00}_{-0.01}(\mathrm{syst.}))$ fm, respectively. The corresponding binding energy is estimated to be in the range $14.7-56.6$ MeV. This is the first experimental evidence of a p-$\phi$ bound state.


(821)Results on sub-GeV Dark Matter from a 10 eV Threshold CRESST-III Silicon Detector
  • CRESST Collaboration,
  • G. Angloher,
  • S. Banik,
  • G. Benato,
  • A. Bento
  • +57
  • A. Bertolini,
  • R. Breier,
  • C. Bucci,
  • J. Burkhart,
  • L. Canonica,
  • A. D'Addabbo,
  • S. Di Lorenzo,
  • L. Einfalt,
  • A. Erb,
  • F. v. Feilitzsch,
  • N. Ferreiro Iachellini,
  • S. Fichtinger,
  • D. Fuchs,
  • A. Fuss,
  • A. Garai,
  • V. M. Ghete,
  • S. Gerster,
  • P. Gorla,
  • P. V. Guillaumon,
  • S. Gupta,
  • D. Hauff,
  • M. Ješkovský,
  • J. Jochum,
  • M. Kaznacheeva,
  • A. Kinast,
  • H. Kluck,
  • H. Kraus,
  • A. Langenkämper,
  • M. Mancuso,
  • L. Marini,
  • L. Meyer,
  • V. Mokina,
  • A. Nilima,
  • M. Olmi,
  • T. Ortmann,
  • C. Pagliarone,
  • L. Pattavina,
  • F. Petricca,
  • W. Potzel,
  • P. Povinec,
  • F. Pröbst,
  • F. Pucci,
  • F. Reindl,
  • J. Rothe,
  • K. Schäffner,
  • J. Schieck,
  • D. Schmiedmayer,
  • S. Schönert,
  • C. Schwertner,
  • M. Stahlberg,
  • L. Stodolsky,
  • C. Strandhagen,
  • R. Strauss,
  • I. Usherov,
  • F. Wagner,
  • M. Willers,
  • V. Zema
  • (less)
abstract + abstract -

We present limits on the spin-independent interaction cross section of dark matter particles with silicon nuclei, derived from data taken with a cryogenic calorimeter with 0.35 g target mass operated in the CRESST-III experiment. A baseline nuclear recoil energy resolution of $(1.36\pm 0.05)$ eV$_{\text{nr}}$, currently the lowest reported for macroscopic particle detectors, and a corresponding energy threshold of $(10.0\pm 0.2)$ eV$_{\text{nr}}$ have been achieved, improving the sensitivity to light dark matter particles with masses below 160 MeV/c$^2$ by a factor of up to 20 compared to previous results. We characterize the observed low energy excess, and we exclude noise triggers and radioactive contaminations on the crystal surfaces as dominant contributions.


(820)Reducing the complexity of chemical networks via interpretable autoencoders
  • T. Grassi,
  • F. Nauman,
  • J. P. Ramsey,
  • S. Bovino,
  • G. Picogna
  • +1
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202039956
abstract + abstract -

In many astrophysical applications, the cost of solving a chemical network represented by a system of ordinary differential equations (ODEs) grows significantly with the size of the network and can often represent a significant computational bottleneck, particularly in coupled chemo-dynamical models. Although standard numerical techniques and complex solutions tailored to thermochemistry can somewhat reduce the cost, more recently, machine learning algorithms have begun to attack this challenge via data-driven dimensional reduction techniques. In this work, we present a new class of methods that take advantage of machine learning techniques to reduce complex data sets (autoencoders), the optimization of multiparameter systems (standard backpropagation), and the robustness of well-established ODE solvers to to explicitly incorporate time dependence. This new method allows us to find a compressed and simplified version of a large chemical network in a semiautomated fashion that can be solved with a standard ODE solver, while also enabling interpretability of the compressed, latent network. As a proof of concept, we tested the method on an astrophysically relevant chemical network with 29 species and 224 reactions, obtaining a reduced but representative network with only 5 species and 12 reactions, and an increase in speed by a factor 65.


(819)Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Scattered light detection of a possible disk wind in RY Tau
  • P. -G. Valegård,
  • C. Ginski,
  • C. Dominik,
  • J. Bae,
  • M. Benisty
  • +12
  • T. Birnstiel,
  • S. Facchini,
  • A. Garufi,
  • M. Hogerheijde,
  • R. G. van Holstein,
  • M. Langlois,
  • C. F. Manara,
  • P. Pinilla,
  • Ch. Rab,
  • Á. Ribas,
  • L. B. F. M. Waters,
  • J. Williams
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202244001
abstract + abstract -

Context. Disk winds are an important mechanism for accretion and disk evolution around young stars. The accreting intermediate-mass T-Tauri star RY Tau has an active jet and a previously known disk wind. Archival optical and new near-infrared observations of the RY Tau system show two horn-like components stretching out as a cone from RY Tau. Scattered light from the disk around RY Tau is visible in the near-infrared, but not seen at optical wavelengths. In the near-infrared, dark wedges separate the horns from the disk, indicating that we may see the scattered light from a disk wind.
Aims: We aim to test the hypothesis that a dusty disk wind could be responsible for the optical effect in which the disk around RY Tau is hidden in the I band, but visible in the H band. This could be the first detection of a dusty disk wind in scattered light. We also want to constrain the grain size and dust mass in the wind and the wind-launching region.
Methods: We used archived Atacama-Large-Millimetre-Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) I band observations combined with newly acquired SPHERE H band observations and available literature to build a simple geometric model of the RY Tau disk and disk wind. We used Monte Carlo radiative transfer modelling MCMax3D to create comparable synthetic observations that test the effect of a dusty wind on the optical effect in the observations. We constrained the grain size and dust mass needed in the disk wind to reproduce the effect from the observations.
Results: A model geometrically reminiscent of a dusty disk wind with small micron to sub-micron-sized grains elevated above the disk can reproduce the optical effect seen in the observations. The mass in the obscuring component of the wind has been constrained to 1 × 10−9 M ≤ M ≤ 5 × 10−8 M, which corresponds to a mass-loss rate in the wind of about ~1 × 10−8 M yr−1.
Conclusions: A simple model of a disk wind with micron to sub-micron-sized grains elevated above the disk is able to prevent stellar radiation to scatter in the disk at optical wavelengths while allowing photons to reach the disk in the near-infrared. Estimates of mass-loss rate correspond to previously presented theoretical models and points towards the idea that a magneto-hydrodynamic-type wind is the more likely scenario.


(818)On the Proof of Chiral Symmetry Breaking from Anomaly Matching in QCD-like Theories
  • Luca Ciambriello,
  • Roberto Contino,
  • Ling-Xiao Xu
abstract + abstract -

We critically reconsider the argument based on 't Hooft anomaly matching that aims at proving chiral symmetry breaking in QCD-like theories with $N_c>2$ colors and $N_f$ flavors of vectorlike quarks in the fundamental representation. The main line of reasoning relies on a property of the solutions of the anomaly matching and persistent mass equations called $N_f$-independence. The validity of $N_f$-independence was assumed based on qualitative arguments, but it was never proven rigorously. We provide a detailed proof and clarify under which (dynamical) conditions it holds. Our result is valid for a generic spectrum of massless composite fermions including baryons and exotics. We then present a novel argument that does not require any dynamical assumption and is based on downlifting solutions to smaller values of $N_f$. When applied to QCD ($N_c=3)$, our theorem implies that chiral symmetry must be spontaneously broken for $3\leq N_f<N_f^{CFT}$, where $N_f^{CFT}$ is the lower edge of the conformal window. A second argument is also presented based on continuity, which assumes the absence of phase transitions when the quark masses are sent to infinity. When applied to QCD, this result explains why chiral symmetry is broken for $N_f=2$, despite integer solutions of the equations exist in this case. Explicit examples and a numerical analysis are presented in a companion paper.


(817)A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback
  • P. Barrère,
  • J. Guilet,
  • A. Reboul-Salze,
  • R. Raynaud,
  • H. -T. Janka
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202244172
abstract + abstract -

Magnetars are isolated young neutron stars characterised by the most intense magnetic fields known in the Universe, which power a wide variety of high-energy emissions from giant flares to fast radio bursts. The origin of their magnetic field is still a challenging question. In situ magnetic field amplification by dynamo action could potentially generate ultra-strong magnetic fields in fast-rotating progenitors. However, it is unclear whether the fraction of progenitors harbouring fast core rotation is sufficient to explain the entire magnetar population. To address this point, we propose a new scenario for magnetar formation involving a slowly rotating progenitor, in which a slow-rotating proto-neutron star is spun up by the supernova fallback. We argue that this can trigger the development of the Tayler-Spruit dynamo while other dynamo processes are disfavoured. Using the findings of previous studies of this dynamo and simulation results characterising the supernova fallback, we derive equations modelling the coupled evolution of the proto-neutron star rotation and magnetic field. Their time integration for different accreted masses is successfully compared with analytical estimates of the amplification timescales and saturation value of the magnetic field. We find that the magnetic field is amplified within 20 − 40 s after the core bounce, and that the radial magnetic field saturates at intensities between ∼1013 and 1015 G, therefore spanning the full range of a magnetar's dipolar magnetic fields. The toroidal magnetic field is predicted to be a factor of 10-100 times stronger, lying between ∼1015 and 3 × 1016 G. We also compare the saturation mechanisms proposed respectively by H.C. Spruit and J. Fuller, showing that magnetar-like magnetic fields can be generated for a neutron star spun up to rotation periods of ≲8 ms and ≲28 ms, corresponding to accreted masses of ≳ 4 × 10−2 M and ≳ 1.1 × 10−2 M, respectively. Therefore, our results suggest that magnetars can be formed from slow-rotating progenitors for accreted masses compatible with recent supernova simulations and leading to plausible initial rotation periods of the proto-neutron star.


(816)Tidal Love numbers of novel and admixed celestial objects
  • Michael Collier,
  • Djuna Croon,
  • Rebecca K. Leane
Physical Review D (12/2022) doi:10.1103/PhysRevD.106.123027
abstract + abstract -

A subfraction of dark matter or new particles trapped inside celestial objects can significantly alter their macroscopic properties. We investigate the new physics imprint on celestial objects by using a generic framework to solve the Tolman-Oppenheimer-Volkoff (TOV) equations for up to two fluids. We test the impact of populations of new particles on celestial objects, including the sensitivity to self-interaction sizes, new particle mass, and net population mass. Applying our setup to neutron stars and boson stars, we find rich phenomenology for a range of these parameters, including the creation of extended atmospheres. These atmospheres are detectable by their impact on the tidal Love number, which can be measured at upcoming gravitational wave experiments such as Advanced LIGO, the Einstein Telescope, and LISA. We release our calculation framework as a publicly available code, allowing the TOV equations to be generically solved for arbitrary new physics models in novel and admixed celestial objects.


(815)Shared Data and Algorithms for Deep Learning in Fundamental Physics
  • Lisa Benato,
  • Erik Buhmann,
  • Martin Erdmann,
  • Peter Fackeldey,
  • Jonas Glombitza
  • +8
  • Nikolai Hartmann,
  • Gregor Kasieczka,
  • William Korcari,
  • Thomas Kuhr,
  • Jan Steinheimer,
  • Horst Stöcker,
  • Tilman Plehn,
  • Kai Zhou
  • (less)
Computing and Software for Big Science (12/2022) doi:10.1007/s41781-022-00082-6
abstract + abstract -

We introduce a PYTHON package that provides simple and unified access to a collection of datasets from fundamental physics research—including particle physics, astroparticle physics, and hadron- and nuclear physics—for supervised machine learning studies. The datasets contain hadronic top quarks, cosmic-ray-induced air showers, phase transitions in hadronic matter, and generator-level histories. While public datasets from multiple fundamental physics disciplines already exist, the common interface and provided reference models simplify future work on cross-disciplinary machine learning and transfer learning in fundamental physics. We discuss the design and structure and line out how additional datasets can be submitted for inclusion. As showcase application, we present a simple yet flexible graph-based neural network architecture that can easily be applied to a wide range of supervised learning tasks. We show that our approach reaches performance close to dedicated methods on all datasets. To simplify adaptation for various problems, we provide easy-to-follow instructions on how graph-based representations of data structures, relevant for fundamental physics, can be constructed and provide code implementations for several of them. Implementations are also provided for our proposed method and all reference algorithms.


(814)Taking off the edge - simultaneous filament and end core formation
  • S. Heigl,
  • E. Hoemann,
  • A. Burkert
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac3110
abstract + abstract -

Simulations of idealized star-forming filaments of finite length typically show core growth that is dominated by two cores forming at its respective end. The end cores form due to a strong increasing acceleration at the filament ends that leads to a sweep-up of material during the filament collapse along its axis. As this growth mode is typically faster than any other core formation mode in a filament, the end cores usually dominate in mass and density compared to other cores forming inside a filament. However, observations of star-forming filaments do not show this prevalence of cores at the filament ends. We explore a possible mechanism to slow the growth of the end cores using numerical simulations of simultaneous filament and embedded core formation, in our case a radially accreting filament forming in a finite converging flow. While such a set-up still leads to end cores, they soon begin to move inwards and a density gradient is formed outside of the cores by the continued accumulation of material. As a result, the outermost cores are no longer located at the exact ends of the filament and the density gradient softens the inward gravitational acceleration of the cores. Therefore, the two end cores do not grow as fast as expected and thus do not dominate over other core formation modes in the filament.


(813)Fragmentation with discontinuous Galerkin schemes: non-linear fragmentation
  • Maxime Lombart,
  • Mark Hutchison,
  • Yueh-Ning Lee
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac2232
abstract + abstract -

Small grains play an essential role in astrophysical processes such as chemistry, radiative transfer, and gas/dust dynamics. The population of small grains is mainly maintained by the fragmentation process due to colliding grains. An accurate treatment of dust fragmentation is required in numerical modelling. However, current algorithms for solving fragmentation equation suffer from an overdiffusion in the conditions of 3D simulations. To tackle this challenge, we developed a discontinuous Galerkin scheme to solve efficiently the non-linear fragmentation equation with a limited number of dust bins.


(812)A multisimulation study of relativistic SZ temperature scalings in galaxy clusters and groups
  • Elizabeth Lee,
  • Dhayaa Anbajagane,
  • Priyanka Singh,
  • Jens Chluba,
  • Daisuke Nagai
  • +4
  • Scott T. Kay,
  • Weiguang Cui,
  • Klaus Dolag,
  • Gustavo Yepes
  • (less)
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac2781
abstract + abstract -

The Sunyaev-Zeldovich (SZ) effect is a powerful tool in modern cosmology. With future observations promising ever improving SZ measurements, the relativistic corrections to the SZ signals from galaxy groups and clusters are increasingly relevant. As such, it is important to understand the differences between three temperature measures: (a) the average relativistic SZ (rSZ) temperature, (b) the mass-weighted temperature relevant for the thermal SZ (tSZ) effect, and (c) the X-ray spectroscopic temperature. In this work, we compare these cluster temperatures, as predicted by the BAHAMAS & MACSIS, ILLUSTRISTNG, MAGNETICUM, and THE THREE HUNDRED PROJECT simulations. Despite the wide range of simulation parameters, we find the SZ temperatures are consistent across the simulations. We estimate a $\simeq 10{{\ \rm per\ cent}}$ level correction from rSZ to clusters with Y ≃ 10-4 Mpc-2. Our analysis confirms a systematic offset between the three temperature measures; with the rSZ temperature $\simeq 20{{\ \rm per\ cent}}$ larger than the other measures, and diverging further at higher redshifts. We demonstrate that these measures depart from simple self-similar evolution and explore how they vary with the defined radius of haloes. We investigate how different feedback prescriptions and resolutions affect the observed temperatures, and discover the SZ temperatures are rather insensitive to these details. The agreement between simulations indicates an exciting avenue for observational and theoretical exploration, determining the extent of relativistic SZ corrections. We provide multiple simulation-based fits to the scaling relations for use in future SZ modelling.


(811)The interplay between forming planets and photoevaporating discs I: forbidden line diagnostics
  • Michael L. Weber,
  • Barbara Ercolano,
  • Giovanni Picogna,
  • Christian Rab
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac2954
abstract + abstract -

Disc winds and planet formation are considered to be two of the most important mechanisms that drive the evolution and dispersal of protoplanetary discs and in turn define the environment in which planets form and evolve. While both have been studied extensively in the past, we combine them into one model by performing three-dimensional radiation-hydrodynamic simulations of giant planet hosting discs that are undergoing X-ray photoevaporation, with the goal to analyse the interactions between both mechanisms. In order to study the effect on observational diagnostics, we produce synthetic observations of commonly used wind-tracing forbidden emission lines with detailed radiative transfer and photoionization calculations. We find that a sufficiently massive giant planet carves a gap in the gas disc that is deep enough to affect the structure and kinematics of the pressure-driven photoevaporative wind significantly. This effect can be strong enough to be visible in the synthetic high-resolution observations of some of our wind diagnostic lines, such as the [O I] 6300 Å or [S II] 6730 Å lines. When the disc is observed at inclinations around 40° and higher, the spectral line profiles may exhibit a peak in the redshifted part of the spectrum, which cannot easily be explained by simple wind models alone. Moreover, massive planets can induce asymmetric substructures within the disc and the photoevaporative wind, giving rise to temporal variations of the line profiles that can be strong enough to be observable on time-scales of less than a quarter of the planet's orbital period.


(810)Accuracy and precision of triaxial orbit models - II. Viewing angles, shape, and orbital structure
  • Stefano de Nicola,
  • Bianca Neureiter,
  • Jens Thomas,
  • Roberto P. Saglia,
  • Ralf Bender
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac2852
abstract + abstract -

We explore the potential of our novel triaxial modelling machinery in recovering the viewing angles, the shape, and the orbit distribution of galaxies by using a high-resolution N-body merger simulation. Our modelling technique includes several recent advancements. (i) Our new triaxial deprojection algorithm shape3d is able to significantly shrink the range of possible orientations of a triaxial galaxy and therefore to constrain its shape relying only on photometric information. It also allows to probe degeneracies, i.e. to recover different deprojections at the same assumed orientation. With this method we can constrain the intrinsic shape of the N-body simulation, i.e. the axis ratios p = b/a and q = c/a, with Δp and Δq ≲ 0.1 using only photometric information. The typical accuracy of the viewing angles reconstruction is 15°-20°. (ii) Our new triaxial Schwarzschild code smart exploits the full kinematic information contained in the entire non-parametric line-of-sight velocity distributions along with a 5D orbital sampling in phase space. (iii) We use a new generalized Akaike information criterion AICp to optimize the smoothing and to select the best-fitting model, avoiding potential biases in purely χ2-based approaches. With our deprojected densities, we recover the correct orbital structure and anisotropy parameter β with Δβ ≲ 0.1. These results are valid regardless of the tested orientation of the simulation and suggest that even despite the known intrinsic photometric and kinematic degeneracies the above described advanced methods make it possible to recover the shape and the orbital structure of triaxial bodies with unprecedented accuracy.


(809)New Constraint on the Tensor-to-scalar Ratio from the Planck and BICEP/Keck Array Data Using the Profile Likelihood
  • Paolo Campeti,
  • Eiichiro Komatsu
The Astrophysical Journal (12/2022) doi:10.3847/1538-4357/ac9ea3
abstract + abstract -

Motivated by the discrepancy between Bayesian and frequentist upper limits on the tensor-to-scalar ratio parameter r found by the SPIDER collaboration, we investigate whether a similar trend is also present in the latest Planck and BICEP/Keck Array data. We derive a new upper bound on r using the frequentist profile likelihood method. We vary all the relevant cosmological parameters of the ΛCDM model, as well as the nuisance parameters. Unlike the Bayesian analysis using Markov Chain Monte Carlo (MCMC), our analysis is independent of the choice of priors. Using Planck Public Release 4, BICEP/Keck Array 2018, Planck cosmic microwave background lensing, and baryon acoustic oscillation data, we find an upper limit of r < 0.037 at 95% Confidence Level (C.L.), similar to the Bayesian MCMC result of r < 0.038 for a flat prior on r and a conditioned Planck lowlEB covariance matrix.


(808)Simultaneous radio and optical polarimetry of GRB 191221B afterglow
  • Yuji Urata,
  • Kenji Toma,
  • Stefano Covino,
  • Klaas Wiersema,
  • Kuiyun Huang
  • +14
  • Jiro Shimoda,
  • Asuka Kuwata,
  • Sota Nagao,
  • Keiichi Asada,
  • Hiroshi Nagai,
  • Satoko Takahashi,
  • Chao En Chung,
  • Glen Petitpas,
  • Kazutaka Yamaoka,
  • Luca Izzo,
  • Johan Fynbo,
  • Antonio de Ugarte Postigo,
  • Maryam Arabsalmani,
  • Makoto Tashiro
  • (less)
abstract + abstract -

Gamma-ray bursts (GRBs) are the most luminous transients in the universe and are utilized as probes of early stars, gravitational wave counterparts and collisionless shock physics. In spite of studies on polarimetry of GRBs in individual wavelengths that characterized intriguing properties of prompt emission and afterglow, no coordinated multi-wavelength measurements have yet been performed. Here we report the first coordinated simultaneous polarimetry in the optical and radio bands for the afterglow associated with the typical long GRB 191221B. Our observations successfully caught the radio emission, which is not affected by synchrotron self-absorption, and show that the emission is depolarized in the radio band compared with the optical one. Our simultaneous polarization angle measurement and temporal polarization monitoring indicate the existence of cool electrons that increase the estimate of jet kinetic energy by a factor of more than 4 for this GRB afterglow. Further coordinated multi-wavelength polarimetric campaigns would improve our understanding of the total jet energies and magnetic field configurations in the emission regions of various types of GRBs, which are required to comprehend the mass scales of their progenitor systems and the physics of collisionless shocks.


(807)Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes
  • J. Prat,
  • G. Zacharegkas,
  • Y. Park,
  • N. MacCrann,
  • E.R. Switzer
  • +110
  • S. Pandey,
  • C. Chang,
  • J. Blazek,
  • R. Miquel,
  • A. Alarcon,
  • O. Alves,
  • A. Amon,
  • F. Andrade-Oliveira,
  • K. Bechtol,
  • M.R. Becker,
  • G.M. Bernstein,
  • R. Chen,
  • A. Choi,
  • H. Camacho,
  • A. Campos,
  • A. Carnero Rosell,
  • M. Carrasco Kind,
  • R. Cawthon,
  • J. Cordero,
  • M. Crocce,
  • C. Davis,
  • J. DeRose,
  • H.T. Diehl,
  • S. Dodelson,
  • C. Doux,
  • A. Drlica-Wagner,
  • K. Eckert,
  • T.F. Eifler,
  • J. Elvin-Poole,
  • S. Everett,
  • X. Fang,
  • A. Ferté,
  • P. Fosalba,
  • O. Friedrich,
  • M. Gatti,
  • G. Giannini,
  • D. Gruen,
  • R.A. Gruendl,
  • I. Harrison,
  • W.G. Hartley,
  • K. Herner,
  • H. Huang,
  • E.M. Huff,
  • M. Jarvis,
  • E. Krause,
  • N. Kuropatkin,
  • P.-F. Leget,
  • J. McCullough,
  • J. Myles,
  • A. Navarro-Alsina,
  • A. Porredon,
  • M. Raveri,
  • R.P. Rollins,
  • A. Roodman,
  • R. Rosenfeld,
  • A.J. Ross,
  • E.S. Rykoff,
  • C. Sánchez,
  • J. Sanchez,
  • L.F. Secco,
  • I. Sevilla-Noarbe,
  • E. Sheldon,
  • T. Shin,
  • M.A. Troxel,
  • I. Tutusaus,
  • T.N. Varga,
  • B. Yanny,
  • B. Yin,
  • Y. Zhang,
  • J. Zuntz,
  • M. Aguena,
  • S. Allam,
  • J. Annis,
  • D. Bacon,
  • E. Bertin,
  • S. Bocquet,
  • D. Brooks,
  • D.L. Burke,
  • J. Carretero,
  • M. Costanzi,
  • M.E.S. Pereira,
  • J. De Vicente,
  • S. Desai,
  • I. Ferrero,
  • B. Flaugher,
  • D.W. Gerdes,
  • G. Gutierrez,
  • S.R. Hinton,
  • D.L. Hollowood,
  • K. Honscheid,
  • D.J. James,
  • M. Lima,
  • F. Menanteau,
  • J. Mena-Fernández,
  • A. Palmese,
  • M. Paterno,
  • F. Paz-Chinchón,
  • A. Pieres,
  • A.A. Plazas Malagón,
  • M. Rodriguez-Monroy,
  • E. Sanchez,
  • M. Schubnell,
  • M. Smith,
  • M. Soares-Santos,
  • E. Suchyta,
  • M.E.C. Swanson,
  • G. Tarle,
  • C. To,
  • N. Weaverdyck,
  • J. Weller
  • (less)
(12/2022) e-Print:2212.03734
abstract + abstract -

Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3$\times$2pt, had to discard a lot of signal-to-noise from small scales due to our inability to precisely model non-linearities and baryonic effects. Galaxy-galaxy lensing, or the position-shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale $\theta$ or physical scale $R$ carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently there have been a few independent efforts that aim to mitigate the non-locality of the galaxy-galaxy lensing signal. Here we perform a comparison of the different methods, including the Y transformation described in Park et al. (2021), the point-mass marginalization methodology presented in MacCrann et al. (2020) and the Annular Differential Surface Density statistic described in Baldauf et al. (2010). We do the comparison at the cosmological constraints level in a noiseless simulated combined galaxy clustering and galaxy-galaxy lensing analysis. We find that all the estimators perform equivalently using a Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup. This is because all the estimators project out the mode responsible for the non-local nature of the galaxy-galaxy lensing measurements, which we have identified as $1/R^2$. We finally apply all the estimators to DES Y3 data and confirm that they all give consistent results.


(806)(Extended) Proca-Nuevo under the two-dimensional loupe
  • Verónica Errasti Díez
(12/2022) e-Print:2212.02549
abstract + abstract -

Recently, two new families of non-linear massive electrodynamics have been proposed: Proca-Nuevo and Extended Proca-Nuevo. We explicitly show that both families are irremediably ghostful in two dimensions. Our calculations indicate the need to revisit the classical consistency of (Extended) Proca-Nuevo in higher dimensions before these settings can be regarded as ghostfree.


(805)The role of physical and numerical viscosity in hydrodynamical instabilities
  • Tirso Marin-Gilabert,
  • Milena Valentini,
  • Ulrich P. Steinwandel,
  • Klaus Dolag
Monthly Notices of the Royal Astronomical Society (12/2022) doi:10.1093/mnras/stac3042
abstract + abstract -

The evolution of the Kelvin-Helmholtz Instability (KHI) is widely used to assess the performance of numerical methods. We employ this instability to test both the smoothed particle hydrodynamics (SPH) and the meshless finite mass (MFM) implementation in OPENGADGET3. We quantify the accuracy of SPH and MFM in reproducing the linear growth of the KHI with different numerical and physical set-ups. Among them, we consider: (i) numerical induced viscosity, and (ii) physically motivated, Braginskii viscosity, and compare their effect on the growth of the KHI. We find that the changes of the inferred numerical viscosity when varying nuisance parameters such as the set-up or the number of neighbours in our SPH code are comparable to the differences obtained when using different hydrodynamical solvers, i.e. MFM. SPH reproduces the expected reduction of the growth rate in the presence of physical viscosity and recovers well the threshold level of physical viscosity needed to fully suppress the instability. In the case of galaxy clusters with a virial temperature of 3 × 107 K, this level corresponds to a suppression factor of ≍10-3 of the classical Braginskii value. The intrinsic, numerical viscosity of our SPH implementation in such an environment is inferred to be at least an order of magnitude smaller (i.e. ≍10-4), re-ensuring that modern SPH methods are suitable to study the effect of physical viscosity in galaxy clusters.


(804)StaNdaRT: a repository of standardised test models and outputs for supernova radiative transfer
  • Stéphane Blondin,
  • Sergei Blinnikov,
  • Fionntan P. Callan,
  • Christine E. Collins,
  • Luc Dessart
  • +24
  • Wesley Even,
  • Andreas Flörs,
  • Andrew G. Fullard,
  • D. John Hillier,
  • Anders Jerkstrand,
  • Daniel Kasen,
  • Boaz Katz,
  • Wolfgang Kerzendorf,
  • Alexandra Kozyreva,
  • Jack O'Brien,
  • Ezequiel A. Pássaro,
  • Nathaniel Roth,
  • Ken J. Shen,
  • Luke Shingles,
  • Stuart A. Sim,
  • Jaladh Singhal,
  • Isaac G. Smith,
  • Elena Sorokina,
  • Victor P. Utrobin,
  • Christian Vogl,
  • Marc Williamson,
  • Ryan Wollaeger,
  • Stan E. Woosley,
  • Nahliel Wygoda
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202244134
abstract + abstract -

We present the first results of a comprehensive supernova (SN) radiative-transfer (RT) code-comparison initiative (StaNdaRT), where the emission from the same set of standardised test models is simulated by currently used RT codes. We ran a total of ten codes on a set of four benchmark ejecta models of Type Ia SNe. We consider two sub-Chandrasekhar-mass (Mtot = 1.0 M) toy models with analytic density and composition profiles and two Chandrasekhar-mass delayed-detonation models that are outcomes of hydrodynamical simulations. We adopt spherical symmetry for all four models. The results of the different codes, including the light curves, spectra, and the evolution of several physical properties as a function of radius and time are provided in electronic form in a standard format via a public repository. We also include the detailed test model profiles and several Python scripts for accessing and presenting the input and output files. We also provide the code used to generate the toy models studied here. In this paper, we describe the test models, radiative-transfer codes, and output formats in detail, and provide access to the repository. We present example results of several key diagnostic features.


(803)Unveiling the Universe with emerging cosmological probes
  • Michele Moresco,
  • Lorenzo Amati,
  • Luca Amendola,
  • Simon Birrer,
  • John P. Blakeslee
  • +20
  • Michele Cantiello,
  • Andrea Cimatti,
  • Jeremy Darling,
  • Massimo Della Valle,
  • Maya Fishbach,
  • Claudio Grillo,
  • Nico Hamaus,
  • Daniel Holz,
  • Luca Izzo,
  • Raul Jimenez,
  • Elisabeta Lusso,
  • Massimo Meneghetti,
  • Ester Piedipalumbo,
  • Alice Pisani,
  • Alkistis Pourtsidou,
  • Lucia Pozzetti,
  • Miguel Quartin,
  • Guido Risaliti,
  • Piero Rosati,
  • Licia Verde
  • (less)
Living Reviews in Relativity (12/2022) doi:10.1007/s41114-022-00040-z
abstract + abstract -

The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging "beyond-standard" cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology.


(802)Assessing coincident neutrino detections using population models
  • F. Capel,
  • J. M. Burgess,
  • D. J. Mortlock,
  • P. Padovani
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202243116
abstract + abstract -

Several tentative associations between high-energy neutrinos and astrophysical sources have been recently reported, but a conclusive identification of these potential neutrino emitters remains challenging. We explore the use of Monte Carlo simulations of source populations to gain deeper insight into the physical implications of proposed individual source-neutrino associations. In particular, we focus on the IC170922A-TXS 0506+056 observation. Assuming a null model, we find a 7.6% chance of mistakenly identifying coincidences between γ-ray flares from blazars and neutrino alerts in 10-year surveys. We confirm that a blazar-neutrino connection based on the γ-ray flux is required to find a low chance coincidence probability and, therefore, a significant IC170922A-TXS 0506+056 association. We then assume this blazar-neutrino connection for the whole population and find that the ratio of neutrino to γ-ray fluxes must be ≲10−2 in order not to overproduce the total number of neutrino alerts seen by IceCube. For the IC170922A-TXS 0506+056 association to make sense, we must either accept this low flux ratio or suppose that only some rare sub-population of blazars is capable of high-energy neutrino production. For example, if we consider neutrino production only in blazar flares, we expect the flux ratio of between 10−3 and 10−1 to be consistent with a single coincident observation of a neutrino alert and flaring γ-ray blazar. These constraints should be interpreted in the context of the likelihood models used to find the IC170922A-TXS 0506+056 association, which assumes a fixed power-law neutrino spectrum of E−2.13 for all blazars.


(801)Lower-than-expected flare temperatures for TRAPPIST-1
  • A. J. Maas,
  • E. Ilin,
  • M. Oshagh,
  • E. Pallé,
  • H. Parviainen
  • +10
  • K. Molaverdikhani,
  • A. Quirrenbach,
  • E. Esparza-Borges,
  • F. Murgas,
  • V. J. S. Béjar,
  • N. Narita,
  • A. Fukui,
  • C. -L. Lin,
  • M. Mori,
  • P. Klagyivik
  • (less)
Astronomy and Astrophysics (12/2022) doi:10.1051/0004-6361/202243869
abstract + abstract -


Aims: Stellar flares emit thermal and nonthermal radiation in the X-ray and ultraviolet (UV) regime. Although high energetic radiation from flares is a potential threat to exoplanet atmospheres and may lead to surface sterilization, it might also provide the extra energy for low-mass stars needed to trigger and sustain prebiotic chemistry. Despite the UV continuum emission being constrained partly by the flare temperature, few efforts have been made to determine the flare temperature for ultra-cool M-dwarfs. We investigate two flares on TRAPPIST-1, an ultra-cool dwarf star that hosts seven exoplanets of which three lie within its habitable zone. The flares are detected in all four passbands of the MuSCAT2 instrument allowing a determination of their temperatures and bolometric energies.
Methods: We analyzed the light curves of the MuSCATl (multicolor simultaneous camera for studying atmospheres of transiting exoplanets) and MuSCAT2 instruments obtained between 2016 and 2021 in g, r, i, zs-filters. We conducted an automated flare search and visually confirmed possible flare events. The black body temperatures were inferred directly from the spectral energy distribution (SED) by extrapolating the filter-specific flux. We studied the temperature evolution, the global temperature, and the peak temperature of both flares.
Results: White-light M-dwarf flares are frequently described in the literature by a black body with a temperature of 9000-10 000 K. For the first time we infer effective black body temperatures of flares that occurred on TRAPPIST-1. The black body temperatures for the two TRAPPIST-1 flares derived from the SED are consistent with TSED = 7940−390+430 K and TSED = 6030−270+300 K. The flare black body temperatures at the peak are also calculated from the peak SED yielding TSEDp = 13 620−1220+1520 K and TSEDp = 8290−550+660 K. We update the flare frequency distribution of TRAPPIST-1 and discuss the impacts of lower black body temperatures on exoplanet habitability.
Conclusions: We show that for the ultra-cool M-dwarf TRAPPIST-1 the flare black body temperatures associated with the total continuum emission are lower and not consistent with the usually adopted assumption of 9000-10 000 K in the context of exoplanet research. For the peak emission, both flares seem to be consistent with the typical range from 9000 to 14 000 K, respectively. This could imply different and faster cooling mechanisms. Further multi-color observations are needed to investigate whether or not our observations are a general characteristic of ultra-cool M-dwarfs. This would have significant implications for the habitability of exoplanets around these stars because the UV surface flux is likely to be overestimated by the models with higher flare temperatures.

The photometry of the two flares in g, r, i, and zs filters is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/668/A111